1
|
Rajewska J, Kowalski J, Matys J, Dobrzyński M, Wiglusz RJ. The Use of Lactide Polymers in Bone Tissue Regeneration in Dentistry-A Systematic Review. J Funct Biomater 2023; 14:83. [PMID: 36826882 PMCID: PMC9961440 DOI: 10.3390/jfb14020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Different compositions of biodegradable materials are being investigated to successfully replace non-resorbable ones in bone tissue regeneration in dental surgery. The systematic review tried to address the question, "Can biodegradable polymers act as a replacement for conventional materials in dental surgery procedures?" (2) Methods: An electronic search of the PubMed and Scopus databases was conducted in October 2022. The following keywords were used: (lactide polymers) and (hydroxyapatite or fluorapatite) and (dentistry) and (regeneration). Initially, 59 studies were found. Forty-one studies met the inclusion criteria and were included in the review. (3) Results: These usually improved the properties and induced osteogenesis, tissue mineralisation and bone regeneration by inducing osteoblast proliferation. Five studies showed higher induction of osteogenesis in the case of biomaterials, UV-HAp/PLLA, ALBO-OS, bioresorbable raw particulate hydroxyapatite/poly-L-lactide and PLGA/Hap, compared to conventional materials such as titanium. Four studies confirmed improvement in tissue mineralisation with the usage of biomaterials: hydroxyapatite/polylactic acid (HA/PLA) loaded with dog's dental pulp stem cells (DPSCs), Coll/HAp/PLCL, PDLLA/VACNT-O:nHAp, incorporation of hydroxyapatite and simvastatin. Three studies showed an acceleration in proliferation of osteoblasts for the use of biomaterials with additional factors such as collagen and UV light. (4) Conclusions: Lactide polymers present higher osteointegration and cell proliferation rate than the materials compared. They are superior to non-biodegradable materials in terms of the biocompability, bone remodelling and healing time tests. Moreover, because there is no need of reoperation, as the material automatically degrades, the chance of scars and skin sclerosis is lower. However, more studies involving greater numbers of biomaterial types and mixes need to be performed in order to find a perfect biodegradable material.
Collapse
Affiliation(s)
- Justyna Rajewska
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Jakub Kowalski
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Jacek Matys
- Laser Laboratory Dental Surgery Department, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
- Department of Orthodontics, Technische Universitat Dresden, 01307 Dresden, Germany
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
2
|
Garcia Garcia A, Hébraud A, Duval JL, Wittmer CR, Gaut L, Duprez D, Egles C, Bedoui F, Schlatter G, Legallais C. Poly(ε-caprolactone)/Hydroxyapatite 3D Honeycomb Scaffolds for a Cellular Microenvironment Adapted to Maxillofacial Bone Reconstruction. ACS Biomater Sci Eng 2018; 4:3317-3326. [PMID: 33435068 DOI: 10.1021/acsbiomaterials.8b00521] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The elaboration of biomimetic materials inspired from the specific structure of native bone is one the main goal of tissue engineering approaches. To offer the most appropriate environment for bone reconstruction, we combined electrospinning and electrospraying to elaborate an innovative scaffold composed of alternating layers of polycaprolactone (PCL) and hydroxyapatite (HA). In our approach, the electrospun PCL was shaped into a honeycomb-like structure with an inner diameter of 160 μm, capable of providing bone cells with a 3D environment while ensuring the material biomechanical strength. After 5 days of culture without any differentiation factor, the murine embryonic cell line demonstrated excellent cell viability on contact with the PCL-HA structures as well as active colonization of the scaffold. The cell differentiation, as tested by RT-qPCR, revealed a 6-fold increase in the expression of the RNA of the Bglap involved in bone mineralization as compared to a classical 2D culture. This differentiation of the cells into osteoblasts was confirmed by alkaline phosphatase staining of the scaffold cultivated with the cell lineage. Later on, organotypic cultures of embryonic bone tissues showed the high capacity of the PCL-HA honeycomb structure to guide the migration of differentiated bone cells throughout the cavities and the ridge of the biomaterial, with a colonization surface twice as big as that of the control. Taken together, our results indicate that PCL-HA honeycomb structures are biomimetic supports that promotes in vitro osteocompatibility, osteoconduction, and osteoinduction and could be suitable for being used for bone reconstruction in complex situations such as the repair of maxillofacial defects.
Collapse
Affiliation(s)
- Alejandro Garcia Garcia
- CNRS, UMR 7338 Laboratory of Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiegne, France
| | - Anne Hébraud
- ICPEES UMR 7515, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Jean-Luc Duval
- CNRS, UMR 7338 Laboratory of Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiegne, France
| | - Corinne R Wittmer
- ICPEES UMR 7515, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Ludovic Gaut
- CNRS, UMR 7622, IBPS-Developmental Biology Laboratory, Sorbonne Université, 7-9 Quai Saint Bernard, 75005 Paris, France.,Inserm U1156, 7-9 Quai Saint Bernard, 75005 Paris, France
| | - Delphine Duprez
- CNRS, UMR 7622, IBPS-Developmental Biology Laboratory, Sorbonne Université, 7-9 Quai Saint Bernard, 75005 Paris, France.,Inserm U1156, 7-9 Quai Saint Bernard, 75005 Paris, France
| | - Christophe Egles
- CNRS, UMR 7338 Laboratory of Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiegne, France
| | - Fahmi Bedoui
- Roberval Laboratory for Mechanics, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiègne, France
| | - Guy Schlatter
- ICPEES UMR 7515, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Cecile Legallais
- CNRS, UMR 7338 Laboratory of Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiegne, France
| |
Collapse
|
3
|
Fujisawa K, Akita K, Fukuda N, Kamada K, Kudoh T, Ohe G, Mano T, Tsuru K, Ishikawa K, Miyamoto Y. Compositional and histological comparison of carbonate apatite fabricated by dissolution-precipitation reaction and Bio-Oss ®. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:121. [PMID: 30032409 DOI: 10.1007/s10856-018-6129-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Carbonate apatite (CO3Ap) is an inorganic component of bone. This study aimed to compare the composition and tissue response to of CO3Ap (CO3Ap-DP) fabricated by the dissolution-precipitation reaction using calcite as a precursor and Bio-Oss®, which is widely used in orthopedic and dental fields as a synthetic bone substitute. X-ray diffraction and Fourier transform infrared results showed that CO3Ap-DP and Bio-Oss® were both B-type carbonate apatite with low crystallinity. The average sizes of CO3Ap-DP and Bio-Oss® granules were 450 ± 58 and 667 ± 168μ m, respectively, and their carbonate contents were 12.1 ± 0.6 and 5.6 ± 0.1 wt%, respectively. CO3Ap-DP had a larger amount of CO3 than Bio-Oss® but higher crystallinity than Bio-Oss®. When a bone defect made at the femur of rabbits was reconstructed with CO3Ap-DP and Bio-Oss®, CO3Ap-DP granules were partially replaced with bone, whereas Bio-Oss® remained at 8 weeks after implantation. CO3Ap-DP granules elicited a significantly larger amount of new bone formation at the cortical bone portion than Bio-Oss® at 4 weeks after the implantation. The results obtained in the present study demonstrated that CO3Ap-DP and Bio-Oss® showed different behavior even though they were both classified as CO3Ap. The CO3 content in CO3Ap played a more important role than the crystallinity of CO3Ap for replacement to bone and high osteoconductivity.
Collapse
Affiliation(s)
- Kenji Fujisawa
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8504, Japan.
- Department of Oral Health Sciences, Faculty of Health and Welfare, Tokushima Bunri University, Yamashirocho, Tokushima, 770-8514, Japan.
| | - Kazuya Akita
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8504, Japan
| | - Naoyuki Fukuda
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8504, Japan
| | - Kumiko Kamada
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8504, Japan
| | - Takaharu Kudoh
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8504, Japan
| | - Go Ohe
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8504, Japan
| | - Takamitsu Mano
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8504, Japan
| | - Kanji Tsuru
- Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Youji Miyamoto
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8504, Japan
| |
Collapse
|