Nuytens P, Ruggiero G, Vandeweghe S, D'haese R. Trueness and precision of a handheld, a desktop and a mobile 3D face scanning system: An in vitro study.
J Dent 2025;
155:105639. [PMID:
39978748 DOI:
10.1016/j.jdent.2025.105639]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/26/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
OBJECTIVE
This in vitro study investigated the trueness and precision of three different face scanning systems: a handheld, a desktop and a mobile 3D face scanning system.
MATERIAL AND METHODS
Fourteen landmarks were placed on a mannequin head, and sixteen inter-landmark distances were measured using a digital vernier caliper, repeated 20 times over 80 days. Three 3D face scanning systems were evaluated: a handheld (Metismile; Shining 3D Tech Co., Hangzhou, China), a desktop (RAYFace v2.0; Ray Co., Ltd., Gyeonggi-do, Korea), and a mobile application (Heges, Simon Marinek) on a smart device (iPad Pro X, Apple Inc., Cupertino, CA). Sixty facial scans were analyzed using metrology software (Geomagic Control X), and inter-landmark distances were compared to anthropometric measurements. Trueness was determined by absolute linear deviation and analyzed using one-way ANOVA, with Bonferroni and Tamhane tests for significant variance. Precision was compared to anthropometric measurements and analyzed using Kruskall-Wallis test.
RESULTS
3D analysis showed that the handheld scanner had the highest trueness (0.18 ± 0.15 mm) and precision (0.22 ± 0.04 mm). The desktop scanner had a trueness of 0.35 ± 0.26 mm and precision of 0.61 ± 0.18 mm, while the mobile scan application had a trueness of 0.54 ± 0.34 mm and precision of 0.47 ± 0.12 mm. All systems showed the highest trueness for vertical measurements compared to horizontal measurements. In the lower face, the precision was higher than anthropometric measurements for all 3D face scanning systems.
CONCLUSIONS
The handheld scanner demonstrated the highest trueness and its precision surpassed anthropometric measurements. The desktop scanner outperformed the mobile scan application in trueness but not in precision.
CLINICAL SIGNIFICANCE
The handheld, the desktop and the mobile face scanning system showed clinically acceptable trueness (< 0.6 mm) and could be used for virtual facebow transfer. All 3D face scanning systems in the present study demonstrated superior precision in the lower face compared to anthropometric measurements.
Collapse