1
|
Kim DH, Kim J, Lee CY, Hong MH, Heo JH, Lee JH. Advancing oral health: the antimicrobial power of inorganic nanoparticles. JOURNAL OF THE KOREAN CERAMIC SOCIETY 2024; 61:201-223. [DOI: 10.1007/s43207-023-00358-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2025]
|
2
|
Wu N, Gao H, Wang X, Pei X. Surface Modification of Titanium Implants by Metal Ions and Nanoparticles for Biomedical Application. ACS Biomater Sci Eng 2023; 9:2970-2990. [PMID: 37184344 DOI: 10.1021/acsbiomaterials.2c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Implant surface modification can improve osseointegration and reduce peri-implant inflammation. Implant surfaces are modified with metals because of their excellent mechanical properties and significant functions. Metal surface modification is divided into metal ions and nanoparticle surface modification. These two methods function by adding a finishing metal to the surface of the implant, and both play a role in promoting osteogenic, angiogenic, and antibacterial properties. Based on this, the nanostructural surface changes confer stronger antibacterial and cellular affinity to the implant surface. The current paper reviews the forms, mechanisms, and applications of nanoparticles and metal ion modifications to provide a foundation for the surface modification of implants.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
kang B, Lan D, Yao C, Liu P, Chen X, Qi S. Evaluation of antibacterial property and biocompatibility of Cu doped TiO2 coated implant prepared by micro-arc oxidation. Front Bioeng Biotechnol 2022; 10:941109. [PMID: 36118563 PMCID: PMC9479446 DOI: 10.3389/fbioe.2022.941109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
In order to enhance osteogenic differentiation and antibacterial property of dental implants, volcano-shaped microporous TiO2 coatings doped with Cu were fabricated via micro-arc oxidation (MAO) on Ti. Cu-doped coating with different mass ratios of Cu were obtained by changing the concentration of copper acetate in the electrolyte. The structure of Cu-TiO2 coatings were systematically investigated. Element Copper was uniformly distributed throughout the coating. Compared with TiO2 coating, the Cu-doped can further improved proliferation of bone mesenchymal stem cells (BMSCs), facilitated osteogenic differentiation. The bacteriostasis experiments demonstrated that Cu-doped TiO2 coating possess excellent antibacterial property against Staphylococcus aureus (S. aureus) and Porphyromonas gingivalis (P. gingivalis).
Collapse
Affiliation(s)
- Binbin kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongmei Lan
- Medical College, Anhui University of Science and Technology, Huainan, China
| | - Chao Yao
- Medical College, Anhui University of Science and Technology, Huainan, China
| | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
- *Correspondence: Xiaohong Chen, ; Shengcai Qi,
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxill of Acial Development and Diseases, Fudan University, Shanghai, China
- *Correspondence: Xiaohong Chen, ; Shengcai Qi,
| |
Collapse
|
4
|
Barker E, Shepherd J, Asencio IO. The Use of Cerium Compounds as Antimicrobials for Biomedical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092678. [PMID: 35566026 PMCID: PMC9104093 DOI: 10.3390/molecules27092678] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 12/05/2022]
Abstract
Cerium and its derivatives have been used as remedies for wounds since the early 20th century. Cerium nitrate has attracted most attention in the treatment of deep burns, followed later by reports of its antimicrobial properties. Its ability to mimic and replace calcium is presumed to be a major mechanism of its beneficial action. However, despite some encouraging results, the overall data are somewhat confusing with seemingly the same compounds yielding opposing results. Despite this, cerium nitrate is currently used in wound treatment in combination with silver sulfadiazine as Flammacérium. Cerium oxide, especially in nanoparticle form (Nanoceria), has lately captured much interest due to its antibacterial properties mediated via oxidative stress, leading to an increase of published reports. The properties of Nanoceria depend on the synthesis method, their shape and size. Recently, the green synthesis route has gained a lot of interest as an alternative environmentally friendly method, resulting in production of effective antimicrobial and antifungal nanoparticles. Unfortunately, as is the case with antibiotics, emerging bacterial resistance against cerium-derived nanoparticles is a growing concern, especially in the case of bacterial biofilm. However, diverse strategies resulting from better understanding of the biology of cerium are promising. The aim of this paper is to present the progress to date in the use of cerium compounds as antimicrobials in clinical applications (in particular wound healing) and to provide an overview of the mechanisms of action of cerium at both the cellular and molecular level.
Collapse
|
5
|
Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioeng Transl Med 2022; 7:e10262. [PMID: 35111954 PMCID: PMC8780931 DOI: 10.1002/btm2.10262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bone grafts or prosthetic implant designing for clinical application is challenging due to the complexity of integrated physiological processes. The revolutionary advances of nanotechnology in the biomaterial field expedite and endorse the current unresolved complexity in functional bone graft and implant design. Rare earth (RE) materials are emerging biomaterials in tissue engineering due to their unique biocompatibility, fluorescence upconversion, antimicrobial, antioxidants, and anti-inflammatory properties. Researchers have developed various RE smart nano-biomaterials for bone tissue engineering and implantology applications in the past two decades. Furthermore, researchers have explored the molecular mechanisms of RE material-mediated tissue regeneration. Recent advances in biomedical applications of micro or nano-scale RE materials have provided a foundation for developing novel, cost-effective bone tissue engineering strategies. This review attempted to provide an overview of RE nanomaterials' technological innovations in bone tissue engineering and implantology and summarized the osteogenic, angiogenic, immunomodulatory, antioxidant, in vivo bone tissue imaging, and antimicrobial properties of various RE nanomaterials, as well as the molecular mechanisms involved in these biological events. Further, we extend to discuss the challenges and prospects of RE smart nano-biomaterials in the field of bone tissue engineering and implantology.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Liping Wang
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Linhu Ge
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Janak Lal Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
6
|
Wychowański P, Starzyńska A, Adamska P, Słupecka-Ziemilska M, Sobocki BK, Chmielewska A, Wysocki B, Alterio D, Marvaso G, Jereczek-Fossa BA, Kowalski J. Methods of Topical Administration of Drugs and Biological Active Substances for Dental Implants-A Narrative Review. Antibiotics (Basel) 2021; 10:919. [PMID: 34438969 PMCID: PMC8388631 DOI: 10.3390/antibiotics10080919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Dental implants are, nowadays, established surgical devices for the restoration of lost teeth. Considered as an alternative for traditional prosthetic appliances, dental implants surpass them in reliability and patient feedback. Local drug delivery around the implants promotes osseointegration and reduces peri-implantitis. However, there are currently no methods of a multiple, precise topical administration of drugs to the implant area. Engineering coatings on the implants, drug application on carriers during implantation, or gingival pockets do not meet all requirements of dental surgeons. Therefore, there is a need to create porous implants and other medical devices that will allow a multiple drug delivery at a controlled dose and release profile without traumatic treatment. Due to the growing demand for the use of biologically active agents to support dental implant treatment at its various stages (implant placement, long-term use of dental superstructures, treatment of the peri-implant conditions) and due to the proven effectiveness of the topical application of pharmacological biologically active agents to the implant area, the authors would like to present a review and show the methods and devices that can be used by clinicians for local drug administration to facilitate dental implant treatment. Our review concludes that there is a need for research in the field of inventions such as new medical devices or implants with gradient solid-porous structures. These devices, in the future, will enable to perform repeatable, controllable, atraumatic, and repeatable injections of active factors that may affect the improvement of osteointegration and the longer survival of implants, as well as the treatment of peri-implantitis.
Collapse
Affiliation(s)
- Piotr Wychowański
- Department of Oral Surgery, Medical University of Warsaw, 6 St. Binieckiego Street, 02-097 Warsaw, Poland;
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (P.A.); (B.K.S.)
| | - Paulina Adamska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (P.A.); (B.K.S.)
| | - Monika Słupecka-Ziemilska
- Department of Human Epigenetics, Mossakowski Medical Research Center, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| | - Bartosz Kamil Sobocki
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (P.A.); (B.K.S.)
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdańsk, 3a Marii Skłodowskiej-Curie Street, 80-210 Gdańsk, Poland
| | - Agnieszka Chmielewska
- Faculty of Material Science and Engineering, Warsaw University of Technology, 141 Wołoska Street, 02-507 Warsaw, Poland;
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH 43210, USA
| | - Bartłomiej Wysocki
- Center of Digital Science and Technology, Cardinal Stefan Wyszyński University in Warsaw, Woycickiego 1/3 Street, 01-938 Warsaw, Poland;
- Additive Manufacturing Research Center, College of Engineering, Youngstown State University, Youngstown, OH 44555, USA
| | - Daniela Alterio
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20141 Milan, Italy; (D.A.); (G.M.); (B.A.J.-F.)
| | - Giulia Marvaso
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20141 Milan, Italy; (D.A.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20112 Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20141 Milan, Italy; (D.A.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20112 Milan, Italy
| | - Jan Kowalski
- Department of Periodontology and Oral Medicine, Medical University of Warsaw, 6 St. Binieckiego Street, 02-097 Warsaw, Poland;
| |
Collapse
|
7
|
Abstract
Dental implants are widely used in the field of oral restoration, but there are still problems leading to implant failures in clinical application, such as failed osseointegration, marginal bone resorption, and peri-implantitis, which restrict the success rate of dental implants and patient satisfaction. Poor osseointegration and bacterial infection are the most essential reasons resulting in implant failure. To improve the clinical outcomes of implants, many scholars devoted to modifying the surface of implants, especially to preparing different physical and chemical modifications to improve the osseointegration between alveolar bone and implant surface. Besides, the bioactive-coatings to promote the adhesion and colonization of ossteointegration-related proteins and cells also aim to improve the osseointegration. Meanwhile, improving the anti-bacterial performance of the implant surface can obstruct the adhesion and activity of bacteria, avoiding the occurrence of inflammation related to implants. Therefore, this review comprehensively investigates and summarizes the modifying or coating methods of implant surfaces, and analyzes the ossteointegration ability and anti-bacterial characteristics of emerging functional coatings in published references.
Collapse
|