1
|
MRI-based diagnosis and treatment of pediatric brain tumors: is tissue sample always needed? Childs Nerv Syst 2021; 37:1449-1459. [PMID: 33821340 PMCID: PMC8084800 DOI: 10.1007/s00381-021-05148-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 11/23/2022]
Abstract
Traditional management of newly diagnosed pediatric brain tumors (PBTs) consists of cranial imaging, typically magnetic resonance imaging (MRI), and is frequently followed by tissue diagnosis, through either surgical biopsy or tumor resection. Therapy regimes are typically dependent on histological diagnosis. To date, many treatment regimens are based on molecular biology. The scope of this article is to discuss the role of diagnosis and further treatment of PBTs based solely on MRI features, in light of the latest treatment protocols. Typical MRI findings and indications for surgical biopsy of these lesions are described.
Collapse
|
2
|
Melloni G, Eoli M, Cesaretti C, Bianchessi D, Ibba MC, Esposito S, Scuvera G, Morcaldi G, Micheli R, Piozzi E, Avignone S, Chiapparini L, Pantaleoni C, Natacci F, Finocchiaro G, Saletti V. Risk of Optic Pathway Glioma in Neurofibromatosis Type 1: No Evidence of Genotype-Phenotype Correlations in A Large Independent Cohort. Cancers (Basel) 2019; 11:cancers11121838. [PMID: 31766501 PMCID: PMC6966666 DOI: 10.3390/cancers11121838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022] Open
Abstract
The occurrence of optic pathway gliomas (OPGs) in children with neurofibromatosis type 1 (NF1) still raises many questions regarding screening and surveillance because of the lack of robust prognostic factors. Recent studies of an overall cohort of 381 patients have suggested that the genotype may be the main determinant of the development of OPG, with the risk being higher in patients harbouring NF1 mutations in the 5’ tertile and the cysteine/serine-rich domain. In an attempt to confirm this hypothesis, we used strict criteria to select a large independent cohort of 309 NF1 patients with defined constitutional NF1 mutations and appropriate brain images (255 directly enrolled and 54 as a result of a literature search). One hundred and thirty-two patients had OPG and 177 did not. The association of the position (tertiles and functional domains) and type of NF1 mutation with the development of OPG was analysed using the χ2 test and Fisher’s exact probability test; odds ratios (ORs) with 95% confidence intervals were calculated, and Bonferroni’s correction for multiple comparisons was applied; multiple logistic regression was also used to study genotype–phenotype associations further. Our findings show no significant correlation between the site/type of NF1 mutation and the risk of OPG, and thus do not support the hypothesis that certain constitutional mutations provide prognostic information in this regard. In addition, we combined our cohort with a previously described cohort of 381 patients for a total of 690 patients and statistically re-analysed the results. The re-analysis confirmed that there were no correlations between the site (tertile and domain) and the risk of OPG, thus further strengthening our conclusions.
Collapse
Affiliation(s)
- Giulia Melloni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (G.M.); (S.E.); (C.P.)
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (M.E.); (D.B.); (M.C.I.); (G.F.)
| | - Claudia Cesaretti
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy; (C.C.); (F.N.)
| | - Donatella Bianchessi
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (M.E.); (D.B.); (M.C.I.); (G.F.)
| | - Maria Cristina Ibba
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (M.E.); (D.B.); (M.C.I.); (G.F.)
| | - Silvia Esposito
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (G.M.); (S.E.); (C.P.)
| | - Giulietta Scuvera
- Department of Pathophysiology and Transplantation, Pediatric Highly Intensive Care Unit, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy;
| | - Guido Morcaldi
- Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy;
| | - Roberto Micheli
- Pediatric Neuropsychiatry, Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25125 Brescia, Italy;
| | - Elena Piozzi
- Pediatric Department, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milan, Italy;
| | - Sabrina Avignone
- Neuroradiology Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 28, 20122 Milan, Italy;
| | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy;
| | - Chiara Pantaleoni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (G.M.); (S.E.); (C.P.)
| | - Federica Natacci
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy; (C.C.); (F.N.)
| | - Gaetano Finocchiaro
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (M.E.); (D.B.); (M.C.I.); (G.F.)
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (G.M.); (S.E.); (C.P.)
- Correspondence:
| |
Collapse
|
3
|
Optic Pathway Glioma in Type 1 Neurofibromatosis: Review of Its Pathogenesis, Diagnostic Assessment, and Treatment Recommendations. Cancers (Basel) 2019; 11:cancers11111790. [PMID: 31739524 PMCID: PMC6896195 DOI: 10.3390/cancers11111790] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Type 1 neurofibromatosis (NF1) is a dominantly inherited condition predisposing to tumor development. Optic pathway glioma (OPG) is the most frequent central nervous system tumor in children with NF1, affecting approximately 15-20% of patients. The lack of well-established prognostic markers and the wide clinical variability with respect to tumor progression and visual outcome make the clinical management of these tumors challenging, with significant differences among distinct centers. We reviewed published articles on OPG diagnostic protocol, follow-up and treatment in NF1. Cohorts of NF1 children with OPG reported in the literature and patients prospectively collected in our center were analyzed with regard to clinical data, tumor anatomical site, diagnostic workflow, treatment and outcome. In addition, we discussed the recent findings on the pathophysiology of OPG development in NF1. This review provides a comprehensive overview about the clinical management of NF1-associated OPG, focusing on the most recent advances from preclinical studies with genetically engineered models and the ongoing clinical trials.
Collapse
|