1
|
Chen RB, Li XT, Huang X. Topological Organization of the Brain Network in Patients with Primary Angle-closure Glaucoma Through Graph Theory Analysis. Brain Topogr 2024; 37:1171-1185. [PMID: 38822211 DOI: 10.1007/s10548-024-01060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Primary angle-closure glaucoma (PACG) is a sight-threatening eye condition that leads to irreversible blindness. While past neuroimaging research has identified abnormal brain function in PACG patients, the relationship between PACG and alterations in brain functional networks has yet to be explored. This study seeks to examine the influence of PACG on brain networks, aiming to advance knowledge of its neurobiological processes for better diagnostic and therapeutic approaches utilizing graph theory analysis. A cohort of 44 primary angle-closure glaucoma (PACG) patients and 44 healthy controls participated in this study. Functional brain networks were constructed using fMRI data and the Automated Anatomical Labeling 90 template. Subsequently, graph theory analysis was employed to evaluate global metrics, nodal metrics, modular organization, and network-based statistics (NBS), enabling a comparative analysis between PACG patients and the control group. The analysis of global metrics, including small-worldness and network efficiency, did not exhibit significant differences between the two groups. However, PACG patients displayed elevated nodal metrics, such as centrality and efficiency, in the left frontal superior medial, right frontal superior medial, and right posterior central brain regions, along with reduced values in the right temporal superior gyrus region compared to healthy controls. Furthermore, Module 5 showed notable disparities in intra-module connectivity, while Module 1 demonstrated substantial differences in inter-module connectivity with both Module 7 and Module 8. Noteworthy, the NBS analysis unveiled a significantly altered network when comparing the PACG and healthy control groups. The study proposes that PACG patients demonstrate variations in nodal metrics and modularity within functional brain networks, particularly affecting the prefrontal, occipital, and temporal lobes, along with cerebellar regions. However, an analysis of global metrics suggests that the overall connectivity patterns of the entire brain network remain unaltered in PACG patients. These results have the potential to serve as early diagnostic and differential markers for PACG, and interventions focusing on brain regions with high degree centrality and nodal efficiency could aid in optimizing therapeutic approaches.
Collapse
Affiliation(s)
- Ri-Bo Chen
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Xiao-Tong Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No 152, Ai Guo Road, Dong Hu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Chen J, Zhou X, Yuan XL, Xu J, Zhang X, Duan X. Causal association among glaucoma, cerebral cortical structures, and Alzheimer's disease: insights from genetic correlation and Mendelian randomization. Cereb Cortex 2024; 34:bhae385. [PMID: 39323397 DOI: 10.1093/cercor/bhae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
Glaucoma and Alzheimer's disease are critical degenerative neuropathies with global impact. Previous studies have indicated that glaucomatous damage could extend beyond ocular structures, leading to brain alterations potentially associated with Alzheimer's disease risk. This study aimed to explore the causal associations among glaucoma, brain alterations, and Alzheimer's disease. We conducted a comprehensive investigation into the genetic correlation and causality between glaucoma, glaucoma endophenotypes, cerebral cortical surficial area and thickness, and Alzheimer's disease (including late-onset Alzheimer's disease, cognitive performance, and reaction time) using linkage disequilibrium score regression and Mendelian randomization. This study showed suggestive genetic correlations between glaucoma, cortical structures, and Alzheimer's disease. The genetically predicted all-caused glaucoma was nominally associated with a decreased risk of Alzheimer's disease (OR = 0.96, 95% CI: 0.93-0.99, P = 0.013). We found evidence for suggestive causality between glaucoma (endophenotypes) and 20 cortical regions and between 29 cortical regions and Alzheimer's disease (endophenotypes). Four cortical regions were causally associated with cognitive performance or reaction time at a significant threshold (P < 6.2E-04). Thirteen shared cortical regions between glaucoma (endophenotypes) and Alzheimer's disease (endophenotypes) were identified. Our findings complex causal relationships among glaucoma, cerebral cortical structures, and Alzheimer's disease. More studies are required to clarify the mediation effect of cortical alterations in the relationship between glaucoma and Alzheimer's disease.
Collapse
Affiliation(s)
- Jiawei Chen
- Aier Academy of Ophthalmology, Central South University, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Xiaoyu Zhou
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Xiang-Ling Yuan
- Aier Academy of Ophthalmology, Central South University, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Eye Institute, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Jiahao Xu
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Xinyue Zhang
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Xuanchu Duan
- Aier Academy of Ophthalmology, Central South University, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| |
Collapse
|
3
|
Kang L, Wan C. Application of advanced magnetic resonance imaging in glaucoma: a narrative review. Quant Imaging Med Surg 2022; 12:2106-2128. [PMID: 35284278 PMCID: PMC8899967 DOI: 10.21037/qims-21-790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/26/2021] [Indexed: 04/02/2024]
Abstract
Glaucoma is a group of eye diseases characterized by progressive degeneration of the optic nerve head and retinal ganglion cells and corresponding visual field defects. In recent years, mounting evidence has shown that glaucoma-related damage may not be limited to the degeneration of retinal ganglion cells or the optic nerve head. The entire structure of the visual pathway may be degraded, and the degradation may even extend to some non-visual brain regions. We know that advanced morphological, functional, and metabolic magnetic resonance technologies provide a means to observe quantitatively and in real time the state of brain function. Advanced magnetic resonance imaging (MRI) techniques provide additional diagnostic markers for glaucoma, which are related to known potential histopathological changes. Many researchers in China and globally have conducted clinical and imaging studies on glaucoma. However, they are scattered, and we still need to systematically sort out the advanced MRI related to glaucoma. We reviewed literature published in any language and included all studies that were able to be translated into English from 1 January 1980 to 31 July 2021. Our literature search focused on emerging magnetic resonance neuroimaging techniques for the study of glaucoma. We then identified each functional area of the brain of glaucoma patients through the integration of anatomy, image, and function. The aim was to provide more information about the occurrence and development of glaucoma diseases. From the perspective of neuroimaging, our study provides a research basis to explain the possible mechanism of the occurrence and development of glaucoma. This knowledge gained from these techniques enables us to more clearly observe the damage glaucoma causes to the whole visual pathway. Our study provides new insights into glaucoma-induced changes to the brain. Our findings may enable the progress of these changes to be analyzed and inspire new neuroprotective therapeutic strategies for patients with glaucoma in the future.
Collapse
Affiliation(s)
- Longdan Kang
- Department of Ophthalmology, the First Hospital of China Medical University, Shenyang, China
| | | |
Collapse
|
4
|
Brain Functional Network Analysis of Patients with Primary Angle-Closure Glaucoma. DISEASE MARKERS 2022; 2022:2731007. [PMID: 35035609 PMCID: PMC8758296 DOI: 10.1155/2022/2731007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Objectives. Recent resting-state functional magnetic resonance imaging (fMRI) studies have focused on glaucoma-related neuronal degeneration in structural and spontaneous functional brain activity. However, there are limited studies regarding the differences in the topological organization of the functional brain network in patients with glaucoma. In this study, we aimed to assess both potential alterations and the network efficiency in the functional brain networks of patients with primary angle-closure glaucoma (PACG). Methods. We applied resting-state fMRI data to construct the functional connectivity network of 33 patients with PACG (
) and 33 gender- and age-matched healthy controls (
). The differences in the global and regional topological brain network properties between the two groups were assessed using graph theoretical analysis. Partial correlations between the altered regional values and clinical parameters were computed for patients with PACG. Results. No significant differences in global topological measures were identified between the two groups. However, significant regional alterations were identified in the patients with PACG, including differences within visual and nonvisual (somatomotor and cognition-emotion) regions. The normalized clustering coefficient and normalized local efficiency of the right superior parietal gyrus were significantly correlated with the retinal fiber layer thickness (RNFLT) and the vertical cup to disk ratio (V C/D). In addition, the normalized node betweenness of the left middle frontal gyrus (orbital portion) was significantly correlated with the V C/D in the patients with PACG. Conclusions. Our results suggest that regional inefficiency with decrease and compensatory increase in local functional properties of visual and nonvisual nodes preserved the brain network of the PACG at the global level.
Collapse
|
5
|
Wang Q, Qu X, Chen W, Wang H, Huang C, Li T, Wang N, Xian J. Altered coupling of cerebral blood flow and functional connectivity strength in visual and higher order cognitive cortices in primary open angle glaucoma. J Cereb Blood Flow Metab 2021; 41:901-913. [PMID: 32580669 PMCID: PMC7983497 DOI: 10.1177/0271678x20935274] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
Primary open-angle glaucoma (POAG) has been suggested to be a neurodegenerative disease associated with altered cerebral vascular hemodynamics and widespread disruption of neuronal activity within the visual, working memory, attention and executive networks. We hypothesized that disturbed neurovascular coupling in visual and higher order cognitive cortices exists in POAG patients and correlates with glaucoma stage and visual field defects. Through multimodal magnetic resonance imaging, we evaluated the cerebral blood flow (CBF)-functional connectivity strength (FCS) correlations of the whole gray matter and CBF/FCS ratio per voxel for all subjects. Compared with normal controls, POAG patients showed reduced global CBF-FCS coupling and altered CBF/FCS ratios, predominantly in regions in the visual cortex, salience network, default mode network, and dorsal attentional network. The CBF/FCS ratio was negatively correlated with glaucoma stage, and positively correlated with visual field defects in the lingual gyrus in POAG patients. Moreover, early brain changes were detected in early POAG. These findings indicate neurovascular coupling dysfunction might exist in the visual and higher order cognitive cortices in POAG patients and its clinical relevance. The results may contribute to the monitoring of POAG progression and provide insight into the pathophysiology of the neurodegenerative process in POAG.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Weiwei Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University
| | - Huaizhou Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University
| | - Caiyun Huang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ting Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Martucci A, Cesareo M, Toschi N, Garaci F, Bagetta G, Nucci C. Brain networks reorganization and functional disability in glaucoma. PROGRESS IN BRAIN RESEARCH 2020; 257:65-76. [PMID: 32988473 DOI: 10.1016/bs.pbr.2020.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glaucoma is an optic neuropathy characterized by progressive loss of retinal ganglion cells with associated structural and functional changes of the optic nerve head and retinal nerve fiber layer. However, recent studies employing advanced neuroimaging techniques confirmed that glaucomatous damage is not limited to the eye but extends to the brain, affecting it also beyond the central visual pathways and disrupting brain network organization. We therefore posit that, while visual field changes play an important role in glaucoma-induced disability, central nervous pathways and mechanisms may play an important role in sustaining functional and daily living disability caused by the disease. Here we to summarize the current state of the art on the involvement of central brain circuits and possibly related disabilities in patients with glaucoma.
Collapse
Affiliation(s)
- Alessio Martucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; San Raffaele Cassino, Frosinone, Cassino, Italy
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Rende, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
7
|
Abstract
The damage caused by glaucoma has been extensively evaluated at the level of the retina and optic nerve head. Many advances have been shown in this field in the last decades. Recent studies have also proved degenerative changes in the brain involving the intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Moreover, these brain abnormalities are also correlated with clinical, optic nerve head, and visual field findings. In this review, we critically evaluate the existing literature studying the use of magnetic resonance imaging in glaucoma, and we discuss issues related to how magnetic resonance imaging results should be incorporated into our clinical practice.
Collapse
|