1
|
Achiron A, Trivizki O, Knyazer B, Elbaz U, Hecht I, Jeon S, Kanclerz P, Tuuminen R. The Effect of Blue-light Filtering Intraocular Lenses on the Development and Progression of Macular Atrophy in Eyes With Neovascular Age-related Macular Degeneration. Am J Ophthalmol 2024; 266:135-143. [PMID: 38692502 DOI: 10.1016/j.ajo.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE To assess the effect of blue-light filtering (BLF) intraocular lenses (IOLs) on the development and progression of macular atrophy (MA) in eyes with neovascular age-related macular degeneration (nAMD). DESIGN Retrospective, clinical cohort study. METHODS The study included patients with nAMD with anti-vascular endothelial growth factor (VEGF) injections who underwent uneventful cataract surgery between 2007 and 2018 with follow-up until June 2023. Subsequent MA rates were compared between subjects who received a BLF IOL or a non-BLF IOL. All optical coherence tomography scans were manually reviewed in a masked manner regarding patient baseline variables and IOL status by an experienced research technician. By using Heidelberg software, the area of MA was manually evaluated and calculated (mm2) by the program. The overall risk of developing new-onset MA and the effect of IOL type on disease progression were assessed. Death was included as a censoring event. RESULTS Included were 373 eyes of 373 patients (mean age, 78.6 ± 6.7 years at surgery; 67.4% were female). BLF IOLs were implanted in 206 eyes, and non-BLF IOLs were implanted in 167 eyes with comparable follow-up times (3164 ± 1420 days vs 3180 ± 1403 days, respectively, P = .908) and other baseline parameters (age, gender, corrected distance visual acuity, macular thickness, cumulative number of anti-VEGF injections). Nine preexisting and 77 new-onset MA cases were detected, with similar distribution between BLF and non-BLF eyes (P = .598 and P = .399, respectively). Both univariate Kaplan-Meier (P = .366) and multivariate Cox regression analyses adjusted for age and gender showed that BLF-IOLs were comparable to non-BLF IOLs regarding hazard for new-onset MA (hazard ratio [HR], 1.236; 95% CI, 0.784-1.949; P = .363). Final MA area at the last visit was 5.14 ± 4.71 mm2 for BLF IOLs and 8.56 ± 9.17 mm2 for non-BLF IOLs (P = .028), with the mean annual MA area increase of 0.78 ± 0.84 mm2 and 1.26 ± 1.32 mm2, respectively (P = .042). CONCLUSIONS BLF IOLs did not show added benefit over non-BLF IOLs in terms of MA-free survival but were associated with less progression over time in a cohort of patients with nAMD.
Collapse
Affiliation(s)
- Asaf Achiron
- School of Medicine, Tel Aviv University, (A.A., O.T., U.E., I.H.) Tel Aviv, Israel; Department of Ophthalmology, Tel Aviv Medical Center, (A.A., O.T.) Tel Aviv, Israel
| | - Omer Trivizki
- School of Medicine, Tel Aviv University, (A.A., O.T., U.E., I.H.) Tel Aviv, Israel; Department of Ophthalmology, Tel Aviv Medical Center, (A.A., O.T.) Tel Aviv, Israel
| | - Boris Knyazer
- Faculty of Health Sciences, Ben-Gurion University of the Negev, (B.K., R.T.) Beer-Sheva, Israel; Department of Ophthalmology, Soroka University Medical Center, (B.K.) Beer-Sheva, Israel
| | - Uri Elbaz
- School of Medicine, Tel Aviv University, (A.A., O.T., U.E., I.H.) Tel Aviv, Israel; Department of Ophthalmology, Rabin Medical Center, Petach-Tikva, (U.E.) Tel Aviv, Israel
| | - Idan Hecht
- School of Medicine, Tel Aviv University, (A.A., O.T., U.E., I.H.) Tel Aviv, Israel; Department of Ophthalmology, Shamir Medical Center, (I.H.) Tel Aviv, Israel; Helsinki Retina Research Group, Faculty of Medicine, University of Helsinki, (I.H., P.K., R.T.) Helsinki, Finland
| | - Sohee Jeon
- Keye Eye Center, (S.J.) Gangnam-gu, Seoul, South Korea
| | - Piotr Kanclerz
- Helsinki Retina Research Group, Faculty of Medicine, University of Helsinki, (I.H., P.K., R.T.) Helsinki, Finland; Hygeia Clinic, (P.K.) Gdańsk, Poland
| | - Raimo Tuuminen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, (B.K., R.T.) Beer-Sheva, Israel; Helsinki Retina Research Group, Faculty of Medicine, University of Helsinki, (I.H., P.K., R.T.) Helsinki, Finland; Department of Ophthalmology, Kymenlaakso Central Hospital, (R.T.) Kotka, Finland.
| |
Collapse
|
2
|
Barrau C, Marie M, Ehrismann C, Gondouin P, Sahel JA, Villette T, Picaud S. Prevention of Sunlight-Induced Cell Damage by Selective Blue-Violet-Light-Filtering Lenses in A2E-Loaded Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2024; 13:1195. [PMID: 39456449 PMCID: PMC11504362 DOI: 10.3390/antiox13101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Blue light accelerates retinal aging. Previous studies have indicated that wavelengths between 400 and 455 nm are most harmful to aging retinal pigment epithelia (RPE). This study explored whether filtering these wavelengths can protect cells exposed to broad sunlight. Primary porcine RPE cells loaded with 20 µM A2E were exposed to emulated sunlight filtered through eye media at 1.8 mW/cm2 for 18 h. Filters selectively filtering out light over 400-455 nm and a dark-yellow filter were interposed. Cell damage was measured by apoptosis, hydrogen peroxide (H2O2) production, and mitochondrial membrane potential (MMP). Sunlight exposure increased apoptosis by 2.7-fold and H2O2 by 4.8-fold, and halved MMP compared to darkness. Eye Protect SystemTM (EPS) technology, filtering out 25% of wavelengths over 400-455 nm, reduced apoptosis by 44% and H2O2 by 29%. The Multilayer Optical Film (MOF), at 80% of light filtered, reduced apoptosis by 91% and H2O2 by 69%, and increased MMP by 73%, overpassing the dark-yellow filter. Photoprotection increased almost linearly with blue-violet light filtering (400-455 nm) but not with total blue filtering (400-500 nm). Selective filters filtering out 25% (EPS) to 80% (MOF) of blue-violet light offer substantial protection without affecting perception or non-visual functions, making them promising for preventing light-induced retinal damage with aesthetic acceptance for permanent wear.
Collapse
Affiliation(s)
- Coralie Barrau
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Mélanie Marie
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| | - Camille Ehrismann
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Pauline Gondouin
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| | - José-Alain Sahel
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
- Quinze-Vingts National Ophthalmology Hospital, French National Institute of Health and Medical Research (INSERM)-DGOS Clinical Investigation Center 1423, 28 Rue de Charenton, 75012 Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine and Medical Center, Pittsburgh, PA 15213, USA
| | - Thierry Villette
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Serge Picaud
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| |
Collapse
|
3
|
Kohnen T, Hammond BR. Blue Light Filtration in Intraocular Lenses: Effects on Visual Function and Systemic Health. Clin Ophthalmol 2024; 18:1575-1586. [PMID: 38835885 PMCID: PMC11149638 DOI: 10.2147/opth.s448426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Blue light-filtering (BLF) intraocular lenses (IOLs) are designed to mimic the healthy natural adult crystalline lens. Studies that evaluated the relative merit of ultraviolet-only IOL design (ie, blocking wavelengths <400 nm) versus BLF IOL design (ie, filtering wavelengths ~400-475 nm in addition to blocking wavelengths <400 nm) on protection and function of the visual system suggest that neither design had a deleterious impact on visual acuity or contrast sensitivity. A BLF design may reduce some aspects of glare, such as veiling and photostress. BLF has been shown in many contexts to improve visual performance under conditions that are stressed by blue light, such as distance vision impaired by short-wave dominant haze. Furthermore, some data (mostly inferential) support the notion that BLF IOLs reduce actinic stress. Biomimetic BLF IOLs represent a conservative approach to IOL design that provides no harm for visual acuity, contrast sensitivity, or color vision while improving vision under certain circumstances (eg, glare).
Collapse
Affiliation(s)
- Thomas Kohnen
- Department of Ophthalmology, Goethe University, Frankfurt, Germany
| | - Billy R Hammond
- Vision Sciences Laboratory, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Kitnarong N, Udomwech L, Chongthurakit N, Phongsuphan T, Petchyim S. Effects of blue-light-filtering intraocular lenses on contrast sensitivity in patients with glaucoma. Medicine (Baltimore) 2023; 102:e36821. [PMID: 38206685 PMCID: PMC10754553 DOI: 10.1097/md.0000000000036821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Abstract
To compare the effects of blue-light-filtering intraocular lenses (BF-IOLs) and conventional ultraviolet-blocking intraocular lenses (UVB-IOLs) on contrast sensitivity in patients with concurrent cataracts and glaucoma. This prospective randomized comparative interventional study enrolled glaucomatous patients with concurrent cataracts scheduled for cataract surgery with IOL implantation at Siriraj Hospital, Bangkok, Thailand, between October 2016 and March 2018. The patients were randomly assigned to receive BF-IOLs or UVB-IOLs. A functional vision analyzer measured contrast sensitivity at spatial frequencies of 1.5, 3.0, 6.0, 12.0, and 18.0 cycles per degree (CPD). The contrast sensitivity values of the 2 patient groups were compared at 2 months postoperatively. The study enrolled 42 eyes (21 with primary angle-closure glaucoma and 21 with primary open-angle glaucoma) of 32 patients. Twenty eyes received BF-IOLs, and 22 received UVB-IOLs. Postoperative logarithmic contrast sensitivity (log contrast sensitivity) significantly improved at each spatial frequency in both groups, except for 1.5 CPD. The median postoperative log contrast sensitivity values for the spatial frequencies of 1.5, 3.0, 6.0, 12.0, and 18.0 CPD for the BF-IOL group were 1.6, 1.9, 1.8, 1.4, and 0.6, respectively, compared to 1.4, 1.8, 1.7, 1.2, and 0.8 for the UVB-IOL group. However, the 2 groups had no significant differences in log contrast sensitivity values at each spatial frequency (P = .20, .37, .30, .28, and .68, respectively). Cataract surgery with IOL implantation improved contrast sensitivity in glaucomatous patients. The BF-IOLs and UVB-IOLs showed no statistically significant difference in the postoperative contrast sensitivity achieved at each spatial frequency.
Collapse
Affiliation(s)
- Naris Kitnarong
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Lunla Udomwech
- Department of Clinical Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nisarate Chongthurakit
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Theerajate Phongsuphan
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Sakaorat Petchyim
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| |
Collapse
|