1
|
Lin B, Chung CH, Sun CA, Chen CL, Chien WC. Increased Risk of Glaucoma in Patients with Sjögren's Syndrome: A Nationwide Population-Based Cohort Study. Ophthalmic Epidemiol 2024; 31:134-144. [PMID: 37183436 DOI: 10.1080/09286586.2023.2213766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
PURPOSE The risk of glaucoma in patients suffering from Sjögren's syndrome has not been elucidated. We aimed for evaluating the absolute incidence as well as the relative risk of glaucoma in patients with SS at the level of the whole country population. METHODS We conducted a retrospective cohort study using a national health insurance database in Taiwan from 2000 to 2013. We used International Classification of Diseases, Ninth Revision, to categorise medical conditions for study group and comparison group. We used Cox proportional hazard regression analysis to determine adjusted hazard ratios (aHRs) of glaucoma between study and comparison group after adjusting for sex, age, and comorbidities. RESULTS Among 17,398 patients with primary Sjögren's syndrome, 133 patients were diagnosis with glaucoma during follow-up. Of the 69,592 non-primary Sjögren's syndrome patients, 429 patients developed glaucoma. Glaucoma risk was elevated in patients with primary Sjögren's syndrome than in the non-Sjögren's syndrome group (adjusted hazard ratio [HR] 2.274, 95% in the confidence interval [95% CI] 1.847-2.800; P < .001). CONCLUSIONS The risk of glaucoma among the population having Sjögren's syndrome was higher than those did not have Sjögren's syndrome. It indicated the necessity of regular examination for glaucoma in patients with Sjögren's syndrome.
Collapse
Affiliation(s)
- Bingsian Lin
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Taiwanese Injury Prevention and Safety Promotion Association (TIPSPA), Taipei, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei, Taiwan
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Ching-Long Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Taiwanese Injury Prevention and Safety Promotion Association (TIPSPA), Taipei, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Triggianese P, Di Marino M, Nesi C, Greco E, Modica S, Chimenti MS, Conigliaro P, Mancino R, Nucci C, Cesareo M. Subclinical Signs of Retinal Involvement in Hereditary Angioedema. J Clin Med 2021; 10:jcm10225415. [PMID: 34830697 PMCID: PMC8618365 DOI: 10.3390/jcm10225415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
To explore retinal abnormalities using spectral domain optical coherence tomography (SD-OCT) and OCT-angiography (OCT-A) in a highly selective cohort of patients with type I hereditary angioedema (HAE). This prospective case-control study included 40 type I HAE patients and 40 age-/sex-matched healthy subjects (HC). All participants underwent SD-OCT-scanning of retinal posterior pole (PP), peripapillary retinal nerve fiber layer (pRNFL), and optic nerve head (ONH). Superficial/deep capillary density was analyzed by OCT-A. A total of 80 eyes from 40 HAE and 40 eyes from HC were evaluated. The pRNFL was thicker in HAE than in HC in nasal superior (p < 0.0001) and temporal quadrants (p = 0.0005 left, p = 0.003 right). The ONH thickness in HAE patients was greater than in HC in the nasal (p = 0.008 left, p = 0.01 right), temporal (p = 0.0005 left, p = 0.003 right), temporal inferior (p = 0.007 left, p = 0.0008 right), and global (p = 0.005 left, p = 0.007 right) scans. Compared to HC, HAE showed a lower capillary density in both superficial (p = 0.001 left, p = 0.006 right) and deep (p = 0.008 left, p = 0.004 right) whole images, and superficial (p = 0.03 left) and deep parafoveal (p = 0.007 left, p = 0.005 right) areas. Our findings documented subclinical retinal abnormalities in type I HAE, supporting a potential role of the retinal assessment by SD-OCT/OCT-A as a useful tool in the comprehensive care of HAE patients.
Collapse
Affiliation(s)
- Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00173 Rome, Italy; (P.T.); (E.G.); (S.M.); (M.S.C.); (P.C.)
| | - Matteo Di Marino
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (C.N.); (R.M.); (C.N.); (M.C.)
- Correspondence: ; Tel.: +39-389-11-24-316
| | - Carolina Nesi
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (C.N.); (R.M.); (C.N.); (M.C.)
| | - Elisabetta Greco
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00173 Rome, Italy; (P.T.); (E.G.); (S.M.); (M.S.C.); (P.C.)
| | - Stella Modica
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00173 Rome, Italy; (P.T.); (E.G.); (S.M.); (M.S.C.); (P.C.)
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00173 Rome, Italy; (P.T.); (E.G.); (S.M.); (M.S.C.); (P.C.)
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00173 Rome, Italy; (P.T.); (E.G.); (S.M.); (M.S.C.); (P.C.)
| | - Raffaele Mancino
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (C.N.); (R.M.); (C.N.); (M.C.)
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (C.N.); (R.M.); (C.N.); (M.C.)
| | - Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (C.N.); (R.M.); (C.N.); (M.C.)
| |
Collapse
|
3
|
Kang TG, Bae H, Kang MJ, Choi S. Decreased Retinal Nerve Fiber Thickness in Asymptomatic Carotid Stenosis. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2021. [DOI: 10.3341/jkos.2021.62.2.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Wild JM, Aljarudi S, Smith PEM, Knupp C. The Topographical Relationship between Visual Field Loss and Peripapillary Retinal Nerve Fibre Layer Thinning Arising from Long-Term Exposure to Vigabatrin. CNS Drugs 2019; 33:161-173. [PMID: 30637668 DOI: 10.1007/s40263-018-0583-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The antiepileptic drug vigabatrin is associated with characteristic visual field loss (VAVFL) and thinning of the peripapillary retinal nerve fibre layer (PPRNFL); however, the relationship is equivocal. OBJECTIVE The aim of this study was to determine the function-structure relationship associated with long-term exposure to vigabatrin, thereby improving the risk/benefit analysis of the drug. METHODS A cross-sectional observational design identified 40 adults who had received long-term vigabatrin for refractory seizures, who had no evidence of co-existing retino-geniculo-cortical visual pathway abnormality, and who had undergone a standardized protocol of perimetry and of optical coherence tomography (OCT) of the PPRNFL. Vigabatrin toxicity was defined as the presence of VAVFL. The function-structure relationship for the superior and inferior retinal quadrants was evaluated by two established models applicable to other optic neuropathies. RESULTS The function-structure relationship for each model was consistent with an optic neuropathy. PPRNFL thinning, expressed in micrometres, asymptoted at an equivalent visual field loss of worse than approximately - 10.0 dB, thereby preventing assessment of more substantial thinning. Transformation of the outcomes to retinal ganglion cell soma and axon estimates, respectively, resulted in a linear relationship. CONCLUSIONS Functional and structural abnormality is strongly related in individuals with vigabatrin toxicity and no evidence of visual pathway comorbidity, thereby implicating retinal ganglion cell dysfunction. OCT affords a limited measurement range compared with perimetry: severity cannot be directly assessed when the PPRNFL quadrant thickness is less than approximately 65 µm, depending on the tomographer. This limitation can be overcome by transformation of thickness to remaining axons, an outcome requiring input from perimetry.
Collapse
Affiliation(s)
- John M Wild
- College of Biomedical Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Saleh Aljarudi
- College of Biomedical Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.,Dhahran Eye Specialist Hospital, Dhahran, 7500, Saudi Arabia
| | - Philip E M Smith
- Alan Richens Unit, Welsh Epilepsy Centre, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW, UK
| | - Carlo Knupp
- College of Biomedical Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
5
|
Lee EJ, Kim SJ, Han JC, Eo DR, Lee MG, Ham DI, Kang SW, Kee C, Lee J, Cha HS, Koh EM. Peripapillary Retinal Nerve Fiber Layer Thicknesses Did Not Change in Long-term Hydroxychloroquine Users. KOREAN JOURNAL OF OPHTHALMOLOGY 2019; 32:459-469. [PMID: 30549469 PMCID: PMC6288022 DOI: 10.3341/kjo.2018.0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/20/2018] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate changes in the peripapillary retinal nerve fiber layer (RNFL) thicknesses using spectral-domain optical coherence tomography (SD-OCT) in hydroxychloroquine (HCQ) users. Methods The medical records of HCQ users were retrospectively reviewed. In these HCQ users, an automated perimetry, fundus autofluorescence photography, and SD-OCT with peripapillary RNFL thickness measurements were performed. The peripapillary RNFL thicknesses were compared between the HCQ users and the control groups. The relationships between the RNFL thicknesses and the duration or cumulative dosage of HCQ use were analyzed. Results This study included 77 HCQ users and 20 normal controls. The mean duration of HCQ usage was 63.6 ± 38.4 months, and the cumulative dose of HCQ was 528.1 ± 3.44 g. Six patients developed HCQ retinopathy. Global and six sectoral RNFL thicknesses of the HCQ users did not significantly decrease compared to those of the normal controls. No significant correlation was found between the RNFL thickness and the duration of use or cumulative dose. The eyes of those with HCQ retinopathy had temporal peripapillary RNFL thicknesses significantly greater than that of normal controls. Conclusions The peripapillary RNFL thicknesses did not change in the HCQ users and did not correlate with the duration of HCQ use or cumulative doses of HCQ. RNFL thickness is not a useful biomarker for the early detection of HCQ retinal toxicity.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Doo Ri Eo
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min Gyu Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Don Il Ham
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Woong Kang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jaejoon Lee
- Division of Rheumatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hoon Suk Cha
- Division of Rheumatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Mi Koh
- Division of Rheumatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Sakamoto M, Mori S, Ueda K, Akashi A, Inoue Y, Kurimoto T, Kanamori A, Yamada Y, Nakamura M. Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients. Jpn J Ophthalmol 2017; 62:31-40. [PMID: 29027590 DOI: 10.1007/s10384-017-0540-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE To assess the combined estimate of retinal ganglion cell (RGC) count developed by Medeiros et al. as a tool for diagnosis of glaucoma in Japanese patients. STUDY DESIGN Cross-sectional study. METHODS Thirty-one eyes of 19 healthy controls and 106 eyes of 70 glaucoma patients underwent standard automated perimetry (SAP) and three types of spectral domain optical coherence tomography (SD-OCT) imaging using the Cirrus, RTVue, and 3D-OCT instruments. RGC counts derived from SAP and SD-OCT data were estimated using the Harwerth model (SAPrgc and OCTrgc, respectively), from which the combined RGC count estimates (CRGC) were calculated using the formula developed by Medeiros et al. Receiver operating characteristic curve (ROC) analyses were conducted for mean deviation (MD), retinal nerve fiber layer thickness (RNFLT), and CRGC. RESULTS The mean OCTrgc derived from the Cirrus, RTVue, and 3D-OCT instruments were 1150, 1245, and 1316 (× 1000 cells), respectively, for the control group and 463, 519, and 516 (× 1000 cells), respectively, for the patient group. SAPrgc of the controls' group was 1526 and the patients' group, 731 (× 1000 cells), and were consistently greater than OCTrgc in both groups (a generalized estimating equation model, p < 0.001). Partial area under the curve (pAUC) of MD was 0.178, and that of RNFLT and CRGC for the three OCT instruments were 0.185, 0.18, 0.189 and 0.196, 0.196, 0.197, respectively. CRGC had larger pAUC than MD, whereas there was no or marginal difference in pAUC between CRGC and cpRNFLT, irrespective of OCT device used or glaucoma severity. CONCLUSION CRGC proved well suited to discriminate glaucoma patients from controls. However, its clinical utility did not seem to overwhelm isolated structural measures in the tested Japanese patients.
Collapse
Affiliation(s)
- Mari Sakamoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kaori Ueda
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Azusa Akashi
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yukako Inoue
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takuji Kurimoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Akiyasu Kanamori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuko Yamada
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
7
|
Kim EK, Park HYL, Park CK. Segmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: Dendritic degeneration of retinal ganglion cell. PLoS One 2017; 12:e0182404. [PMID: 28771565 PMCID: PMC5542626 DOI: 10.1371/journal.pone.0182404] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/16/2017] [Indexed: 11/19/2022] Open
Abstract
Purpose To evaluate the changes of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and ganglion cell-inner plexiform layer (GCIPL) thicknesses and compare structure-function relationships of 4 retinal layers using spectral-domain optical coherence tomography (SD-OCT) in macular region of glaucoma patients. Methods In cross-sectional study, a total of 85 eyes with pre-perimetric to advanced glaucoma and 26 normal controls were enrolled. The glaucomatous eyes were subdivided into three groups according to the severity of visual field defect: a preperimetric glaucoma group, an early glaucoma group, and a moderate to advanced glaucoma group. RNFL, GCL, IPL, and GCIPL thicknesses were measured at the level of the macula by the Spectralis (Heidelberg Engineering, Heidelberg, Germany) SD-OCT with automated segmentation software. For functional evaluation, corresponding mean sensitivity (MS) values were measured using 24–2 standard automated perimetry (SAP). Results RNFL, GCL, IPL, and GCIPL thicknesses were significantly different among 4 groups (P < .001). Macular structure losses were positively correlated with the MS values of the 24–2 SAP for RNFL, GCL, IPL, and GCIPL (R = 0.553, 0.636, 0.648 and 0.646, respectively, P < .001). In regression analysis, IPL and GCIPL thicknesses showed stronger association with the corresponding MS values of 24–2 SAP compared with RNFL and GCL thicknesses (R2 = 0.420, P < .001 for IPL; R2 = 0.417, P< .001 for GCIPL thickness). Conclusions Segmented IPL thickness was significantly associated with the degree of glaucoma. Segmental analysis of the inner retinal layer including the IPL in macular region may provide valuable information for evaluating glaucoma.
Collapse
Affiliation(s)
- Eun Kyoung Kim
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Seoul St. Mary’s Hospital, Seoul, South Korea
| | - Hae-Young Lopilly Park
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Seoul St. Mary’s Hospital, Seoul, South Korea
| | - Chan Kee Park
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Seoul St. Mary’s Hospital, Seoul, South Korea
- * E-mail:
| |
Collapse
|
8
|
Abe RY, Diniz-Filho A, Zangwill LM, Gracitelli CPB, Marvasti AH, Weinreb RN, Baig S, Medeiros FA. The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma. Invest Ophthalmol Vis Sci 2017; 57:OCT421-8. [PMID: 27409501 PMCID: PMC4968922 DOI: 10.1167/iovs.15-18940] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the effect of disease severity and number of tests acquired during follow-up on the relative odds of identifying progression by structural or functional tests in glaucoma. METHODS This was an observational cohort study involving 462 eyes of 305 patients with glaucoma and 62 eyes of 49 healthy subjects. Glaucoma patients and healthy subjects were followed for an average of 3.6 ± 0.9 and 3.8 ± 0.9 years, with a median (interquantile range) of 8 (6-9) and 7 (6-8) visits, respectively. At each visit, subjects underwent visual field assessment with standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) evaluation by spectral-domain optical coherence tomography (SD-OCT). Slopes of change in SAP mean sensitivity and OCT RNFL thickness over time were estimated by linear regression using progressively cumulative visits over time. Cutoff values for age-related expected rates of change for each test were obtained from the healthy group. Progression by SD-OCT and/or SAP was determined if the slope of change was statistically significant and also lower (faster) than the fifth percentile cutoff calculated from the healthy group. A generalized estimating equation logistic regression model was used to evaluate the relative odds of progressing by OCT versus SAP in glaucoma eyes. RESULTS Eyes with less severe disease at baseline had a higher chance of being detected as progressing by SD-OCT but not by SAP, whereas an increase in disease severity at baseline increased the chance that the eye would be detected as progressing by SAP but not SD-OCT. Each 1 dB higher MD was associated with a 5% increase in the odds of detecting progression by SD-OCT versus SAP (odds ratio = 1.05 per 1 dB; 95% confidence interval: 1.01-1.09; P = 0.005). CONCLUSIONS The ability to detect glaucoma progression by SAP versus SD-OCT is significantly influenced by the stage of disease. Our results may provide useful information for guiding clinicians on the relative utility of these tests for detecting change throughout the disease continuum.
Collapse
|
9
|
Lee JY, Cho K, Park KA, Oh SY. Analysis of Retinal Layer Thicknesses and Their Clinical Correlation in Patients with Traumatic Optic Neuropathy. PLoS One 2016; 11:e0157388. [PMID: 27295139 PMCID: PMC4905630 DOI: 10.1371/journal.pone.0157388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/27/2016] [Indexed: 11/18/2022] Open
Abstract
The aims of this study were 1) To evaluate retinal nerve fiber layer (fRNFL) thickness and ganglion cell layer plus inner plexiform layer (GCIPL) thickness at the fovea in eyes affected with traumatic optic neuropathy (TON) compared with contralateral normal eyes, 2) to further evaluate these thicknesses within 3 weeks following trauma (defined as “early TON”), and 3) to investigate the relationship between these retinal layer thicknesses and visual function in TON eyes. Twenty-nine patients with unilateral TON were included. Horizontal and vertical spectral-domain optical coherence tomography (SD-OCT) scans of the fovea were taken in patients with unilateral TON. The main outcome measure was thickness of the entire retina, fRNFL, and GCIPL in eight areas. Thickness of each retinal layer was compared between affected and unaffected eyes. The correlation between the thickness of each retinal layer and visual function parameters, including best corrected visual acuity, color vision, P100 latency, and P100 amplitude in visual evoked potential (VEP), mean deviation (MD) and visual field index (VFI) in Humphrey visual field analysis in TON eyes was analyzed. Thicknesses of the entire retina, fRNFL, and GCIPL in SD-OCT were significantly thinner (3–36%) in all measurement areas of TON eyes compared to those in healthy eyes (all p<0.05). Whereas, only GCIPL in the outer nasal, superior, and inferior areas was significantly thinner (5–10%) in the early TON eyes than that in the control eyes (all p<0.01). A significant correlation was detected between retinal layer thicknesses and visual function parameters including color vision, P100 latency and P100 amplitude in VEP, MD, and VFI (particularly P100 latency, MD, and VFI) (r = -0.70 to 0.84). Among the retinal layers analyzed in this study, GCIPL (particularly in the superior and inferior areas) was most correlated with these five visual function parameters (r = -0.70 to 0.71). Therefore, evaluation of morphological change of each retinal layer using SD-OCT can help in understanding TON pathophysiology and indirectly assessing visual function. Moreover, evaluation of the morphological change of the GCIPL in TON eyes may be useful to assess visual function in patients with early TON.
Collapse
Affiliation(s)
- Ju-Yeun Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyuyeon Cho
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sei Yeul Oh
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
10
|
Raza AS, Hood DC. Evaluation of the Structure-Function Relationship in Glaucoma Using a Novel Method for Estimating the Number of Retinal Ganglion Cells in the Human Retina. Invest Ophthalmol Vis Sci 2015; 56:5548-56. [PMID: 26305526 DOI: 10.1167/iovs.14-16366] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We developed a simple method for estimating the number of retinal ganglion cells (RGCs) in the human retina using optical coherence tomography (OCT), compared it to a previous approach, and demonstrated its potential for furthering our understanding of the structure-function relationship in glaucoma. METHODS Swept-source (ss) OCT data and 10-2 visual fields (VFs) were obtained from 43 eyes of 36 healthy controls, and 50 eyes of 50 glaucoma patients and suspects. Using estimates of RGC density from the literature and relatively few assumptions, estimates of the number of RGCs in the macula were obtained based on ssOCT-derived RGC layer thickness measurements. RESULTS The RGC estimates were in general agreement with previously published values derived from histology, whereas a prior method based on VF sensitivity did not agree as well with histological data and had significantly higher (P = 0.001) and more variable (P < 0.001) RGC estimates than the new method based on ssOCT. However, the RGC estimates of the new approach were not zero for extreme VF losses, suggesting that a residual, non-RGC contribution needs to be added. Finally, the new ssOCT-derived RGC estimates were significantly (P < 0.001 to P = 0.018) related to VF sensitivity (Spearman's ρ = 0.26-0.47), and, in contrast to claims made in prior studies, statistically significant RGC loss did not occur more often than statistically significant visual loss. CONCLUSIONS The novel method for estimating RGCs yields values that are closer to histological estimates than prior methods, while relying on considerably fewer assumptions. Although the value added for clinical applications is yet to be determined, this approach is useful for assessing the structure-function relationship in glaucoma.
Collapse
Affiliation(s)
- Ali S Raza
- Department of Psychology, Columbia University, New York, New York, United States 2Department of Neurobiology and Behavior, Columbia University, New York, New York, United States
| | - Donald C Hood
- Department of Psychology, Columbia University, New York, New York, United States 3Department of Ophthalmology, Columbia University, New York, New York, United States
| |
Collapse
|
11
|
Raza AS, Hood DC. Evaluation of a Method for Estimating Retinal Ganglion Cell Counts Using Visual Fields and Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2015; 56:2254-68. [PMID: 25604684 DOI: 10.1167/iovs.14-15952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate the accuracy and generalizability of a published model that derives estimates of retinal ganglion cell (RGC) counts and relates structural and functional changes due to glaucoma. METHODS Both the Harwerth et al. nonlinear model (H-NLM) and the Hood and Kardon linear model (HK-LM) were applied to an independent dataset of frequency-domain optical coherence tomography and visual fields, consisting of 48 eyes of 48 healthy controls, 100 eyes of 77 glaucoma patients and suspects, and 18 eyes of 14 nonarteritic anterior ischemic optic neuropathy (ION) patients with severe vision loss. Using the coefficient of determination R2, the models were compared while keeping constant the topographic maps, specifically a map by Garway-Heath et al. and a separate map by Harwerth et al., which relate sensitivity test stimulus locations to corresponding regions around the optic disc. Additionally, simulations were used to evaluate the assumptions of the H-NLM. RESULTS Although the predictions of the HK-LM with the anatomically-derived Garway-Heath et al. map were reasonably good (R2 = 0.31-0.64), the predictions of the H-NLM were poor (R2 < 0) regardless of the map used. Furthermore, simulations of the H-NLM yielded results that differed substantially from RGC estimates based on histology from human subjects. Finally, the value-added of factors increasing the relative complexity of the H-NLM, such as assumptions regarding age- and stage-dependent corrections to structural measures, was unclear. CONCLUSIONS Several of the assumptions underlying the H-NLM should be revisited. Studies and models relying on the RGC estimates of the H-NLM should be interpreted with caution.
Collapse
Affiliation(s)
- Ali S Raza
- Department of Psychology, Columbia University, New York, New York, United States 2Department of Neurobiology and Behavior, Columbia University, New York, New York, United States
| | - Donald C Hood
- Department of Psychology, Columbia University, New York, New York, United States 3Department of Ophthalmology, Columbia University, New York, New York, United States
| |
Collapse
|
12
|
Khanal S, Thapa M, Racette L, Johnson R, Davey PG, Joshi MR, Shrestha GS. Retinal nerve fiber layer thickness in glaucomatous Nepalese eyes and its relation with visual field sensitivity. JOURNAL OF OPTOMETRY 2014; 7:217-224. [PMID: 25323643 PMCID: PMC4213835 DOI: 10.1016/j.optom.2014.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND To evaluate peripapillary retinal nerve fiber layer (RNFL) thickness in glaucomatous Nepalese eyes using spectral domain optical coherence tomography (SD-OCT) and study its relationship with visual field sensitivity. METHODS A total of 120 eyes comprising primary open angle glaucoma (POAG), glaucoma suspects (GS), normal tension glaucoma (NTG) and healthy subjects (n=30 cases in each group) underwent a complete ophthalmic examination, including optic nerve head (ONH) evaluation and standard automated perimetry (SAP). RNFL thickness measurements around the optic disk were taken with circular spectral domain optical coherence tomography (SD-OCT) scans. Analysis of variance (ANOVA) was used for comparison of RNFL parameters among various study groups. The relationship of RNFL parameters with visual field (VF) global indices was evaluated with regression analysis. RESULTS The mean pRNFL thickness was significantly less in the POAG (64.30±14.45μm, p<0.01), NTG (85.43±9.79μm, p<0.001) and GS (102.0±9.37μm, p<0.001) groups than in the healthy group (109.8±8.32μm). The RNFL was significantly thinner across all quadrants in all study group pairs (p<0.05) except for normal vs. GS (only superior and inferior quadrant, significant). Linear regression plots with RNFL thickness as a predictor of MD and LV demonstrated a strong and statistically significant degree of determination in the POAG group (R(2)=0.203 and 0.175, p=0.013 and 0.021). CONCLUSION The RNFL thickness measurements with SD-OCT are lower in glaucomatous eyes as compared to age-matched GS and normal eyes in the Nepalese population. A high resolution SD-OCT could aid significantly in the early diagnosis of glaucoma in Nepal.
Collapse
Affiliation(s)
- Safal Khanal
- B.P. Koirala Lions Center for Ophthalmic Studies, Institute of Medicine, Nepal.
| | - Madhu Thapa
- B.P. Koirala Lions Center for Ophthalmic Studies, Institute of Medicine, Nepal
| | - Lyne Racette
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | |
Collapse
|
13
|
Rao A. Comparison of relation between visual function index and retinal nerve fiber layer structure by optical coherence tomography among primary open angle glaucoma and primary angle closure glaucoma eyes. Oman J Ophthalmol 2014; 7:9-12. [PMID: 24799794 PMCID: PMC4008907 DOI: 10.4103/0974-620x.127911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose: To compare the visual field index (VFI) in primary open angle glaucoma (POAG) and primary angle closure glaucoma (PACG) eyes, and to study the correlation with disc variables on optical coherence tomography (OCT) in all stages of severity. Materials and Methods: Thirty POAG and PACG underwent Humphrey visual field 24-2 along with detailed examination. They also underwent stratus OCT imaging of the optic nerve and retinal nerve fiber layer (RNFL). The correlation of VFI with RNFL thickness was compared in POAG and PACG. Results: The VFI significantly differed between POAG and PACG, with POAG eyes apparently having a better VFI at all severities of glaucoma. There were statistically significant differences in the superior max (Smax) and inferior max (Imax) in early and moderate POAG and PACG eyes. In early and moderate glaucoma, multivariate regression showed that maximum correlation of the VFI was seen with the mean deviation (b = 1.7, P < 0.001), average and superior RNFL thickness (b = 2.1, P < 0.001 and b = 1.8, P = 0.03, respectively), and age (b = 0.7, P = 0.04); while no correlation was seen with intraocular pressure (IOP), axial length, sex, or other clinical variables. VFI did not correlate well with RNFL thickness or other disc variables on OCT in severe glaucoma. Conclusion: VFI may not serve as a useful indicator of visual function in severe glaucoma. More useful indicators are required to monitor glaucoma patients with severe damage.
Collapse
Affiliation(s)
- Aparna Rao
- Department of Glaucoma Services Head Glaucoma Services, Lakshmi Varaprasada Rao Prasad Eye Institute, Patia, Bhubaneswar, Orissa, India
| |
Collapse
|
14
|
Chang DS, Boland MV, Arora KS, Supakontanasan W, Chen BB, Friedman DS. Symmetry of the pupillary light reflex and its relationship to retinal nerve fiber layer thickness and visual field defect. Invest Ophthalmol Vis Sci 2013; 54:5596-601. [PMID: 23860751 DOI: 10.1167/iovs.13-12142] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To assess the relationship between the pupillary light reflex (PLR) and visual field (VF) mean deviation (MD) and retinal nerve fiber layer (RNFL) thickness. METHODS A total of 148 patients with glaucoma (mean age 67 ± 11, 49% female) and 71 controls (mean age 60 ± 10, 69% female) were included in this study. Using a pupillometer, we recorded and analyzed pupillary responses at varied stimulus patterns (full field, superonasal and inferonasal quadrant arcs). We compared the responses between the two eyes, compared responses to stimuli in the superonasal and inferonasal fields within each eye, and calculated the absolute PLR value of each individual eye. We assessed the relationship among PLR, MD, and RNFL thickness using the Pearson correlation coefficient. For analyses performed at the level of individual eyes, we used multilevel modeling to account for between-eye correlations within individuals. RESULTS For every 0.3 log unit difference in between-eye asymmetry of PLR, there was an average 2.6-dB difference in visual field MD (correlation coefficient R = 0.83, P < 0.001) and a 3.2-μm difference in RNFL thickness between the two eyes (R = 0.67, P < 0.001). Greater VF damage and thinner RNFL for each individual eye were associated with smaller response amplitude, slower velocity, and longer time to peak constriction and dilation after adjusting for age and sex (all P < 0.001). However, within-eye asymmetry of PLR between superonasal and inferonasal stimulation was not associated with corresponding within-eye differences in VF or RNFL. CONCLUSIONS As measured by this particular device, the PLR is strongly correlated with VF functional testing and measurements of RNFL thickness.
Collapse
Affiliation(s)
- Dolly S Chang
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Banitt MR, Ventura LM, Feuer WJ, Savatovsky E, Luna G, Shif O, Bosse B, Porciatti V. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci 2013; 54:2346-52. [PMID: 23412088 DOI: 10.1167/iovs.12-11026] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE We determined the time lag between loss of retinal ganglion cell function and retinal nerve fiber layer (RNFL) thickness. METHODS Glaucoma suspects were followed for at least four years. Patients underwent pattern electroretinography (PERG), optical coherence tomography (OCT) of the RNFL, and standard automated perimetry testing at 6-month intervals. Comparisons were made between changes in all testing modalities. To compare PERG and OCT measurements on a normalized scale, we calculated the dynamic range of PERG amplitude and RNFL thickness. The time lag between function and structure was defined as the difference in time-to-criterion loss between PERG amplitude and RNFL thickness. RESULTS For PERG (P < 0.001) and RNFL (P = 0.030), there was a statistically significant difference between the slopes corresponding to the lowest baseline PERG amplitude stratum (≤50%) and the reference stratum (>90%). Post hoc comparisons demonstrated highly significant differences between RNFL thicknesses of eyes in the stratum with most severely affected PERG (≤50%) and the two strata with least affected PERG (>70%). Estimates suggested that the PERG amplitude takes 1.9 to 2.5 years to lose 10% of its initial amplitude, whereas the RNFL thickness takes 9.9 to 10.4 years to lose 10% of its initial thickness. Thus, the time lag between PERG amplitude and RNFL thickness to lose 10% of their initial values is on the order of 8 years. CONCLUSIONS In patients who are glaucoma suspects, PERG signal anticipates an equivalent loss of OCT signal by several years.
Collapse
Affiliation(s)
- Michael R Banitt
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT. Optom Vis Sci 2012; 89:E652-66. [PMID: 22105330 DOI: 10.1097/opx.0b013e318238c34e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE An assessment of the retinal nerve fiber layer (RNFL) provides important information on the health of the optic nerve. There are several non-invasive technologies, including spectral domain optical coherence tomography (SD OCT), that can be used for in vivo imaging and quantification of the RNFL, but often there is disagreement in RNFL thickness between clinical instruments. The purpose of this study was to investigate the influence of scan centration, ocular magnification, and segmentation on the degree of agreement of RNFL thickness measures by two SD OCT instruments. METHODS RNFL scans were acquired from 45 normal eyes using two commercially available SD OCT systems. Agreement between RNFL thickness measures was determined using each instrument's algorithm for segmentation and a custom algorithm for segmentation. The custom algorithm included ocular biometry measures to compute the transverse scaling for each eye. Major retinal vessels were identified and removed from RNFL measures in 1:1 scaled images. Transverse scaling was also used to compute the RNFL area for each scan. RESULTS Instrument-derived global RNFL thickness measured from the two instruments correlated well (R(2) = 0.70, p < 0.01) but with significant differences between instruments (mean of 6.7 μm; 95% limits of agreement of 16.0 μm to -2.5 μm, intraclass correlation coefficient = 0.62). For recentered scans with custom RNFL segmentation, the mean difference was reduced to 0.1 μm (95% limits of agreement 6.1 to -5.8 μm, intraclass correlation coefficient = 0.92). Global RNFL thickness was related to axial length (R = 0.24, p < 0.01), whereas global RNFL area measures were not (R(2) = 0.004, p = 0.66). Major retinal vasculature accounted for 11.3 ± 1.6% (Cirrus) or 11.8 ± 1.4% (Spectralis) of the RNFL thickness/area measures. CONCLUSIONS Sources of disagreement in RNFL measures between SD-OCT instruments can be attributed to the location of the scan path and differences in their retinal layer segmentation algorithms. In normal eyes, the major retinal vasculature accounts for a significant percentage of the RNFL and is similar between instruments. With incorporation of an individual's ocular biometry, RNFL area measures are independent of axial length, with either instrument.
Collapse
|