1
|
Krone M, Gray S, Abad R, Skoczyńska A, Stefanelli P, van der Ende A, Tzanakaki G, Mölling P, João Simões M, Křížová P, Emonet S, Caugant DA, Toropainen M, Vazquez J, Waśko I, Knol MJ, Jacobsson S, Rodrigues Bettencourt C, Musilek M, Born R, Vogel U, Borrow R. Increase of invasive meningococcal serogroup W disease in Europe, 2013 to 2017. ACTA ACUST UNITED AC 2020; 24. [PMID: 30968827 PMCID: PMC6462787 DOI: 10.2807/1560-7917.es.2019.24.14.1800245] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BackgroundThe total incidence of invasive meningococcal disease (IMD) in Europe has been declining in recent years; however, a rising incidence due to serogroup W (MenW), predominantly sequence type 11 (ST-11), clonal complex 11 (cc11), was reported in some European countries.AimThe aim of this study was to compile the most recent laboratory surveillance data on MenW IMD from several European countries to assess recent trends in Europe.MethodsIn this observational, retrospective study, IMD surveillance data collected from 2013-17 by national reference laboratories and surveillance units from 13 European countries were analysed using descriptive statistics.ResultsThe overall incidence of IMD has been stable during the study period. Incidence of MenW IMD per 100,000 population (2013: 0.03; 2014: 0.05; 2015: 0.08; 2016: 0.11; 2017: 0.11) and the proportion of this serogroup among all invasive cases (2013: 5% (116/2,216); 2014: 9% (161/1,761); 2015: 13% (271/2,074); 2016: 17% (388/2,222); 2017: 19% (393/2,112)) continuously increased. The most affected countries were England, the Netherlands, Switzerland and Sweden. MenW was more frequent in older age groups (≥ 45 years), while the proportion in children (< 15 years) was lower than in other age groups. Of the culture-confirmed MenW IMD cases, 80% (615/767) were caused by hypervirulent cc11.ConclusionDuring the years 2013-17, an increase in MenW IMD, mainly caused by MenW cc11, was observed in the majority of European countries. Given the unpredictable nature of meningococcal spread and the epidemiological potential of cc11, European countries may consider preventive strategies adapted to their contexts.
Collapse
Affiliation(s)
- Manuel Krone
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Steve Gray
- Meningococcal Reference Unit, Public Health England, Manchester, United Kingdom
| | - Raquel Abad
- Spanish Reference Laboratory for Meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Skoczyńska
- National Reference Centre for Bacterial Meningitis, National Medicines Institute, Warsaw, Poland
| | - Paola Stefanelli
- Dept. of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Arie van der Ende
- The Netherlands Reference Laboratory for Bacterial Meningitis, Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
| | - Georgina Tzanakaki
- National Meningitis Reference Laboratory, National School of Public Health, Athens, Greece
| | - Paula Mölling
- National Reference Laboratory for Neisseria meningitidis, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maria João Simões
- Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - Pavla Křížová
- National Reference Laboratory for Meningococcal Infections, National Institute of Public Health, Prague, Czech Republic
| | - Stéphane Emonet
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maija Toropainen
- Department of Health Security, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Julio Vazquez
- Spanish Reference Laboratory for Meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Izabela Waśko
- National Reference Centre for Bacterial Meningitis, National Medicines Institute, Warsaw, Poland
| | - Mirjam J Knol
- Department of Epidemiology and Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Susanne Jacobsson
- National Reference Laboratory for Neisseria meningitidis, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Martin Musilek
- National Reference Laboratory for Meningococcal Infections, National Institute of Public Health, Prague, Czech Republic
| | - Rita Born
- Division of Communicable Diseases, Federal Office of Public Health (FOPH), Bern, Switzerland
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester, United Kingdom
| |
Collapse
|
2
|
van Ravenhorst MB, van der Klis FRM, van Rooijen DM, Sanders EAM, Berbers GAM. Adolescent meningococcal serogroup A, W and Y immune responses following immunization with quadrivalent meningococcal A, C, W and Y conjugate vaccine: Optimal age for vaccination. Vaccine 2017. [PMID: 28647167 DOI: 10.1016/j.vaccine.2017.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recently the incidence of meningococcal serogroup Y (MenY) and in particular serogroup W (MenW) invasive disease has risen in several European countries, including the Netherlands. Adolescents are a target group for primary prevention through vaccination to protect against disease and reduce carriage and induce herd protection in the population. The present study assessed MenA, MenW and MenY antibody levels in adolescents up to one year following primary vaccination with quadrivalent MenACWY-PS conjugated to tetanus toxoid (MenACWY-TT). METHODS In this phase IV, open-label study, healthy 10-, 12- and 15-year-olds received the MenACWY-TT vaccine. Blood samples were collected before, 1month and 1year after the vaccination. Functional antibody levels against MenA, MenW and MenY were measured with serum bactericidal assay using baby rabbit complement (rSBA). MenA-, MenW-, and MenY-PS specific IgG, IgG1 and IgG2 levels were measured using fluorescent-bead-based multiplex immunoassay. RESULTS The quadrivalent MenACWY-TT vaccine elicited robust antibody responses against MenA, MenW and MenY, and the majority (94%) of the participants maintained rSBA titers ≥128 one year after the vaccination against all three serogroups. After one year, higher MenW rSBA GMTs were observed in the 12- and 15-year-olds compared to the 10-year-olds, while rSBA GMTs against MenA and MenY were similar between age groups. Furthermore, those participant who showed SBA titer ≥8 at baseline, also had higher antibody levels one year after vaccination as compared to participants with rSBA titer <8 at baseline. CONCLUSION The MenACWY-TT vaccine induces robust protective primary immune responses up to one year after vaccination. Our results suggest that persistence of individual protection increases with the age at which a primary quadrivalent MenACWY-TT vaccination is administered. Our results indicate that 12 or 15years seems a more optimal age for a primary quadrivalent MenACWY-TT vaccination to protect against the rapid increase of MenW disease.
Collapse
Affiliation(s)
- Mariëtte B van Ravenhorst
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands.
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debbie M van Rooijen
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Guy A M Berbers
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
3
|
van Ravenhorst MB, Marinovic AB, van der Klis FRM, van Rooijen DM, van Maurik M, Stoof SP, Sanders EAM, Berbers GAM. Long-term persistence of protective antibodies in Dutch adolescents following a meningococcal serogroup C tetanus booster vaccination. Vaccine 2016; 34:6309-6315. [PMID: 27817957 DOI: 10.1016/j.vaccine.2016.10.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Due to waning immunity, infant vaccination with meningococcal serogroup C conjugated (MenCC) vaccines is insufficient to maintain long-term individual protection. Adolescent booster vaccination is thought to offer direct protection against invasive meningococcal disease (IMD) but also to reduce meningococcal carriage and transmission and in this way establish herd protection in the population. Previously, we studied antibody levels after adolescent MenCC booster vaccination. In the present study, the adolescent vaccinees were revisited after three years to determine antibody persistence and to predict long-term protection. METHODS Meningococcal serogroup C tetanus toxoid conjugated (MenC-TT) vaccine was administered to 10-, 12- and 15-year old participants who had been primed nine years earlier with a single dose of MenC-TT vaccine. Blood samples were collected before, 1month, 1year and 3years after the adolescent booster vaccination. Functional antibody levels were measured with serum bactericidal assay using rabbit complement (rSBA). Meningococcal serogroup C polysaccharide and tetanus toxoid specific antibody levels were measured using fluorescent-bead-based multiplex immunoassay. Long-term protection was estimated using longitudinal multilevel antibody decay modeling. RESULTS Of the original 268 participants, 201 (75%) were revisited after 3years. All participants still had an rSBA titer above the protective threshold of ⩾8 and 98% ⩾128. The 15-year-olds showed the highest antibody titers. Using a bi-exponential decay model, the median time to fall below the protection threshold (rSBA titer <8) was 16.3years, 45.9years and around 270years following the booster for the 10-, 12- and 15-year-olds, respectively. CONCLUSIONS After a first steep decline in antibody levels in the first year after the booster, antibody levels slowly declined between one and three years post-booster. A routine MenC-TT booster vaccination for adolescents in the Netherlands will likely provide long-term individual protection and potentially reduce the risk of resurgence of MenC disease in the general population.
Collapse
Affiliation(s)
- Mariëtte B van Ravenhorst
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands.
| | - Axel Bonacic Marinovic
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debbie M van Rooijen
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marjan van Maurik
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Susanne P Stoof
- Department of Medical Microbiology and Infection Control, VU University Medical Center, The Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Guy A M Berbers
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
4
|
Drysdale SB, Pollard AJ. Group B meningococcal vaccine science and policy. J Infect 2015; 71 Suppl 1:S15-20. [PMID: 25917798 DOI: 10.1016/j.jinf.2015.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
Capsular group B Neisseria meningitidis is one of the leading causes of death in developed countries. A new vaccine (4CMenB) has recently been developed which was found to have an acceptable safety profile in clinical studies and to be immunogenic. This review examines the evidence supporting the licensure of the 4CMenB vaccine and discusses recommendations for its use.
Collapse
Affiliation(s)
- Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom; NIHR Oxford Biomedical Research Centre, Level 2, Children's Hospital, Oxford OX3 9DU, United Kingdom.
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom; NIHR Oxford Biomedical Research Centre, Level 2, Children's Hospital, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
5
|
Stoof SP, van der Klis FRM, van Rooijen DM, Knol MJ, Sanders EAM, Berbers GAM. Timing of an adolescent booster after single primary meningococcal serogroup C conjugate immunization at young age; an intervention study among Dutch teenagers. PLoS One 2014; 9:e100651. [PMID: 24963638 PMCID: PMC4070982 DOI: 10.1371/journal.pone.0100651] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/23/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Meningococcal serogroup C (MenC) specific antibody levels decline rapidly after a single primary MenC conjugate (MenCC) vaccination in preschool children. A second MenCC vaccination during (pre)adolescence might attain longer lasting individual and herd protection. We aimed to establish an appropriate age for a (pre)adolescent MenCC booster vaccination. METHODS A phase-IV trial with healthy 10-year-olds (n = 91), 12-year-olds (n = 91) and 15-year-olds (n = 86) who were primed with a MenCC vaccine nine years earlier. All participants received a booster vaccination with the same vaccine. Serum bactericidal antibody assay titers (SBA, using baby rabbit complement), MenC-polysaccharide (MenC-PS) specific IgG, IgG subclass and avidity and tetanus-specific IgG levels were measured prior to (T0) and 1 month (T1) and 1 year (T2) after the booster. An SBA titer ≥8 was the correlate of protection. RESULTS 258 (96.3%) participants completed all three study visits. At T0, 19% of the 10-year-olds still had an SBA titer ≥8, compared to 34% of the 12-year-olds (P = 0.057) and 45% of the 15-year-olds (P<0.001). All participants developed high SBA titers (GMTs>30,000 in all age groups) and MenC-PS specific IgG levels at T1. IgG levels mainly consisted of IgG1, but the contribution of IgG2 increased with age. At T2, 100% of participants still had an SBA titer ≥8, but the 15-year-olds showed the highest protective antibody levels and the lowest decay. CONCLUSION Nine years after primary MenCC vaccination adolescents develop high protective antibody levels in response to a booster and are still sufficiently protected one year later. Our results suggest that persistence of individual--and herd--protection increases with the age at which an adolescent booster is administered. TRIAL REGISTRATION EU Clinical Trials Database 2011-000375-13 Dutch Trial Register NTR3521.
Collapse
Affiliation(s)
- Susanne P. Stoof
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
- * E-mail: (SPS) (SS); (GAMB) (GB)
| | - Fiona R. M. van der Klis
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debbie M. van Rooijen
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mirjam J. Knol
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elisabeth A. M. Sanders
- Department of Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Guy A. M. Berbers
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- * E-mail: (SPS) (SS); (GAMB) (GB)
| |
Collapse
|
6
|
No clinical association of live attenuated influenza virus with nasal carriage of bacteria or acute otitis media. mBio 2014; 5:e01145-14. [PMID: 24825013 PMCID: PMC4030485 DOI: 10.1128/mbio.01145-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
de Whalley PCS, Snape MD, Plested E, Thompson B, Nuthall E, Omar O, Borrow R, Pollard AJ. Long-term seroprotection after an adolescent booster meningococcal serogroup C vaccination. Arch Dis Child 2013; 98:686-91. [PMID: 23853000 DOI: 10.1136/archdischild-2013-303893] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To determine long-term seroprotection after serogroup C meningococcal (MenC) vaccination at the age of 9-12 years, with or without booster vaccination at the age of 13-15 years. DESIGN Observational cohort study; follow-on from randomised study. SETTING Participants were recruited from English secondary schools (in Oxfordshire and Buckinghamshire). PARTICIPANTS AND INTERVENTIONS Participants were primed with MenC CRM-glycoconjugate vaccine at the age of 9-12 years in the UK routine immunisation campaign. In previous studies they were randomised at 13 to 15 years of age to receive a booster dose of MenC-CRM glycoconjugate vaccine (CRM-group) or bivalent meningococcal serogroup A/C polysaccharide vaccine (PS-group), or they received no additional doses of MenC vaccine (control group). In this follow-on study, a blood sample was obtained 11 years after primary immunisation. Of 531 individuals eligible to participate, 134 were enrolled, and 124 were included in the analysis. MAIN OUTCOME MEASURES MenC serum bactericidal antibody (SBA) geometric mean titre; proportion of participants with SBA titre ≥8 (putative protective threshold). RESULTS Median ages at priming, boosting and blood sampling were 10.61, 14.42 and 22.11 years, respectively. Geometric mean titres for MenC SBA were: CRM group 1373 (95% CI 954 to 1977); PS group 1024 (687 to 1526); and controls 284 (167 to 483). SBA titres ≥8 were present in 50/54 (92.6%) controls and 70/70 (100%) boosted individuals. CONCLUSIONS The planned introduction in the UK of an adolescent booster of MenC conjugate vaccine in 2013 is likely to provide sustained protection against MenC disease. TRIAL REGISTRATION Registered on ClinicalTrials.gov (NCT01459432).
Collapse
Affiliation(s)
- Philip C S de Whalley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Pichichero ME. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials. Hum Vaccin Immunother 2013; 9:2505-23. [PMID: 23955057 DOI: 10.4161/hv.26109] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products.
Collapse
|
9
|
Effectiveness of meningococcal serogroup C vaccine programmes. Vaccine 2013; 31:4477-86. [PMID: 23933336 DOI: 10.1016/j.vaccine.2013.07.083] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/02/2013] [Accepted: 07/30/2013] [Indexed: 11/23/2022]
Abstract
Since the introduction of monovalent meningococcal serogroup C (MenC) glycoconjugate (MCC) vaccines and the implementation of national vaccination programmes, the incidence of MenC disease has declined markedly as a result of effective short-term vaccination and reduction in acquisition of MenC carriage leading to herd protection. Monovalent and quadrivalent conjugate vaccines are commonly used vaccines to provide protection against MenC disease worldwide. Studies have demonstrated that MCC vaccination confers protection in infancy (0-12 months) from the first dose but this is only short-term. NeisVac-C(®) has the greatest longevity of the currently licensed MCC vaccines in terms of antibody persistence, however antibody levels have been found to fall rapidly after early infant vaccination with two doses of all MCC vaccines - necessitating a booster at ∼12 months. In toddlers, only one dose of the MCC vaccine is required for routine immunization. If herd protection wanes following catch-up campaigns, many children may become vulnerable to infection. This has led many to question whether an adolescent booster is also required.
Collapse
|
10
|
John TJ, Gupta S, Chitkara A, Dutta AK, Borrow R. An overview of meningococcal disease in India: Knowledge gaps and potential solutions. Vaccine 2013; 31:2731-7. [DOI: 10.1016/j.vaccine.2013.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/13/2013] [Accepted: 04/01/2013] [Indexed: 01/02/2023]
|