1
|
Ye P, Shi J, Guo Z, Yang X, Li Q, Chen K, Zhao F, Zhou H, Zhang Y, van den Anker J, Song L, Zhao W. Piperacillin/tazobactam treatment in children: evidence of subtherapeutic concentrations. Front Pharmacol 2024; 15:1254005. [PMID: 39027331 PMCID: PMC11255394 DOI: 10.3389/fphar.2024.1254005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Objective Piperacillin/tazobactam (PIP/TAZ) is used for the treatment of lower respiratory tract bacterial infections in children. This study was performed to evaluate if the current dosing regimen results in therapeutic drug concentrations. Patients and methods Patients suspected or proven to have lower respiratory tract bacterial infection and administrated PIP/TAZ intravenously for a duration of no less than 0.5 h, q6h-q12h daily, were enrolled. Blood samples were collected, and PIP concentrations were determined by high-performance liquid chromatography. The individual predicted concentration of PIP was evaluated using the individual empirical Bayesian estimate method. The evaluated PK/PD targets included (1) 70% time when the predicted free drug concentration exceeds the minimum inhibitory concentration (fT > MIC) and (2) 50% fT > 4× MIC. Probability of target attainment (PTA) was assessed by the proportion of patients who reached the PK/PD targets. The PIP concentrations between different groups of patients were compared. Results A total of 57 samples were collected from 57 patients with a median age of 2.26 years (0.17-12.58). For the PK/PD targets of 70% fT > MIC and 50% fT > 4× MIC for Pseudomonas aeruginosa and Klebsiella pneumoniae, the PTA was all 0. The median Cmin of PIP was significantly higher in infants than in children, and the median Cmin after administration in q8h was significantly higher than that after administration in q12h. Conclusion The current dose regimen of PIP/TAZ leads to extremely low plasma concentrations in most children with lower respiratory tract bacterial infections. More optimized dosing regimens or better alternative therapies need to be further explored.
Collapse
Affiliation(s)
- Panpan Ye
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Jinyi Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Zixuan Guo
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Xinmei Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Qian Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Keguang Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Furong Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Haiyan Zhou
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Yehui Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children’s National Hospital, Washington, DC, United States
- Departments of Pediatrics, Pharmacology and Physiology, Genomics and Precision Medicine, the George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Department of Paediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Linlin Song
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Imburgia TA, Kussin ML. A Review of Extended and Continuous Infusion Beta-Lactams in Pediatric Patients. J Pediatr Pharmacol Ther 2022; 27:214-227. [PMID: 35350159 DOI: 10.5863/1551-6776-27.3.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/29/2021] [Indexed: 11/11/2022]
Abstract
Intravenous beta-lactam antibiotics are the most prescribed antibiotic class in US hospitalized patients of all ages; therefore, optimizing their dosing is crucial. Bactericidal killing is best predicted by the time in which beta-lactam drug concentrations are maintained above the organism's minimum inhibitory concentration (MIC), rather than achievement of a high peak concentration. As such, administration of beta-lactam antibiotics via extended or continuous infusions over a minimum of 3 hours, rather than standard infusions over approximately 30 minutes, has been associated with improved achievement of pharmacodynamic targets and improved clinical outcomes in adult medical literature. This review summarizes the pediatric medical literature. Applicable studies include pharmacodynamic models, case series, retrospective analyses, and prospective studies on the use of extended infusion and continuous infusion penicillins, cephalosporins, carbapenems, and monobactams in neonates, infants, children, and adolescents. Specialized patient populations with unique pharmacokinetics and high-risk infections (neonates, critically ill, febrile neutropenia, cystic fibrosis) are also reviewed. While more studies are needed to confirm prospective clinical outcomes, the current body of evidence suggests extended and continuous infusions of beta-lactam antibiotics are well tolerated in children and improve achievement of pharmacokineticpharmacodynamic targets with similar or superior clinical outcomes, particularly in infections associated with high MICs.
Collapse
Affiliation(s)
- Taylor A Imburgia
- Department of Pharmacy (TAI), WVU Medicine Children's, Morgantown, WV
| | - Michelle L Kussin
- Department of Pharmacy (MLK), Riley Hospital for Children at Indiana University Health and Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
3
|
Maarbjerg SF, Thorsted A, Friberg LE, Nielsen EI, Wang M, Schrøder H, Albertsen BK. Continuous infusion of piperacillin-tazobactam significantly improves target attainment in children with cancer and fever. Cancer Rep (Hoboken) 2021; 5:e1585. [PMID: 34796702 PMCID: PMC9575485 DOI: 10.1002/cnr2.1585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022] Open
Abstract
Background Children with febrile neutropenia commonly exhibit alterations of pharmacokinetic (PK) parameters, leading to decreased β‐lactam concentrations. Aims This study evaluated piperacillin PK and probability of target attainment (PTA) with continuous infusion of piperacillin‐tazobactam, in order to optimize the dosing regimen. Methods This prospective PK study included children with cancer, aged 1–17 years, who were treated with piperacillin‐tazobactam for suspected or verified infection. A piperacillin‐tazobactam loading dose (100 mg/kg) was administered followed by continuous infusion (300 mg/kg/day). The unbound fraction of piperacillin was quantified by high‐performance liquid chromatography and PK were described using population PK modeling. PK data was used to update and extend a previous PK model built on data following intermittent administration. Monte Carlo simulations were performed to assess PTA for targets of 100% time above the minimum inhibitory concentration (100% fT > MIC) and 50% fT > 4xMIC. Results We included 68 fever episodes among 38 children with a median (IQR) age of 6.5 years and body weight of 27.4 kg (15.1–54.0). A three‐compartment model adequately described the concentration‐time data. Median (95% confidence interval) estimates for clearance and piperacillin concentration at steady state were 14.2 L/h/70 kg (13.0; 15.3) and 47.6 mg/L (17.2; 129.5), respectively. Body weight or lean body weight was significantly associated with the PK parameters, and body weight was integrated in the final PK model. Based on piperacillin exposure, continuous infusion was the only dosing regimen to achieve optimal PTA for the P. aeruginosa breakpoint (16 mg/L) with the target of 100% fT > MIC, and a daily dose of 300 mg/kg reached optimal PTA. The strict target of 50% fT > 4xMIC (64 mg/L) was not feasibly attained by any dosing regimen at recommended doses. Conclusion Unlike conventional piperacillin intermittent administration and extended infusion regimens, continuous infusion allows the target of 100% fT > MIC to be reached for children with febrile neutropenia.
Collapse
Affiliation(s)
- Sabine F Maarbjerg
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Mikala Wang
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Schrøder
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte K Albertsen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Costenaro P, Minotti C, Cuppini E, Barbieri E, Giaquinto C, Donà D. Optimizing Antibiotic Treatment Strategies for Neonates and Children: Does Implementing Extended or Prolonged Infusion Provide any Advantage? Antibiotics (Basel) 2020; 9:antibiotics9060329. [PMID: 32560411 PMCID: PMC7344997 DOI: 10.3390/antibiotics9060329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Optimizing the use of antibiotics has become mandatory, particularly for the pediatric population where limited options are currently available. Selecting the dosing strategy may improve overall outcomes and limit the further development of antimicrobial resistance. Time-dependent antibiotics optimize their free concentration above the minimal inhibitory concentration (MIC) when administered by continuous infusion, however evidences from literature are still insufficient to recommend its widespread adoption. The aim of this review is to assess the state-of-the-art of intermittent versus prolonged intravenous administration of antibiotics in children and neonates with bacterial infections. We identified and reviewed relevant literature by searching PubMed, from 1 January 1 2000 to 15 April 2020. We included studies comparing intermittent versus prolonged/continuous antibiotic infusion, among the pediatric population. Nine relevant articles were selected, including RCTs, prospective and retrospective studies focusing on different infusion strategies of vancomycin, piperacillin/tazobactam, ceftazidime, cefepime and meropenem in the pediatric population. Prolonged and continuous infusions of antibiotics showed a greater probability of target attainment as compared to intermittent infusion regimens, with generally good clinical outcomes and safety profiles, however its impact in terms on efficacy, feasibility and toxicity is still open, with few studies led on children and adult data not being fully extendable.
Collapse
Affiliation(s)
- Paola Costenaro
- Division of Paediatric Infectious Diseases, Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
| | - Chiara Minotti
- Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
| | - Elena Cuppini
- Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
| | - Elisa Barbieri
- Division of Paediatric Infectious Diseases, Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
| | - Carlo Giaquinto
- Division of Paediatric Infectious Diseases, Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
- Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
- Paediatric Network for Treatment of AIDS (Penta) Foundation, 35128 Padua, Italy
| | - Daniele Donà
- Division of Paediatric Infectious Diseases, Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
5
|
Population Pharmacokinetics and Safety of Piperacillin-Tazobactam Extended Infusions in Infants and Children. Antimicrob Agents Chemother 2019; 63:AAC.01260-19. [PMID: 31427292 DOI: 10.1128/aac.01260-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/09/2019] [Indexed: 11/20/2022] Open
Abstract
Piperacillin-tazobactam (TZP) is frequently used to treat severe hospital-acquired infections in children. We performed a single-center, pharmacokinetic (PK) trial of TZP in children ranging in age from 2 months to 6 years from various clinical subpopulations. Children who were on TZP per the standard of care were prospectively included and assigned to receive a dose of 80 mg/kg of body weight every 6 h infused over 2 h (ages 2 to 5 months) or a dose of 90 mg/kg every 8 h infused over 4 h (ages 6 months to 6 years). Separate population PK models were developed for piperacillin and tazobactam using nonlinear mixed-effects modeling. Optimal dosing was judged based on the ability to maintain free piperacillin concentrations above the piperacillin MIC for enterobacteria and Pseudomonas aeruginosa for ≥50% of the dosing interval. Any untoward event occurring during treatment was collected as an adverse event. A total of 79 children contributed 174 PK samples. The median (range) age and weight were 1.7 years (2 months to 6 years) and 11.4 kg (3.8 to 27.6 kg), respectively. A 2-compartment model with first-order elimination best described the piperacillin and tazobactam data. Both final population PK models included weight and concomitant furosemide administration on clearance and weight on the volume of distribution of the central compartment. The optimal dosing regimens in children with normal renal function, based on the piperacillin component, were 75 mg/kg/dose every 4 h infused over 0.5 h in infants ages 2 to ≤6 months and 130 mg/kg/dose every 8 h infused over 4 h in children ages >6 months to 6 years against bacteria with MICs up to 16 mg/liter. A total of 44 children (49%) had ≥1 adverse event, with 3 of these (site infiltrations) considered definitely associated with the extended infusions.
Collapse
|
6
|
Le J, Bradley JS. Optimizing Antibiotic Drug Therapy in Pediatrics: Current State and Future Needs. J Clin Pharmacol 2019; 58 Suppl 10:S108-S122. [PMID: 30248202 DOI: 10.1002/jcph.1128] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022]
Abstract
The selection of the right antibiotic and right dose necessitates clinicians understand the contribution of pharmacokinetic variability stemming from age-related physiologic maturation and the pharmacodynamics to optimize drug exposure for clinical response. The complexity of selecting the right dose arises from the multiplicity of pediatric age groups, from premature neonates to adolescents. Body size and age (which relate to organ function) must be incorporated to optimize antibiotic dosing in this vulnerable population. In the effort to optimize and individualize drug dosing regimens, clinical pharmacometrics that incorporate population-based pharmacokinetic modeling, Bayesian estimation, and Monte Carlo simulations are utilized as a quantitative approach to understanding and predicting the pharmacology and clinical and microbiologic efficacy of antibiotics. In addition, opportunistic study designs and alternative blood sampling strategies can serve as practical approaches to ensure successful conduct of pediatric studies. This review article examines relevant literature on optimization of antibiotic pharmacotherapy in pediatric populations published within the last decade. Specific pediatric antibiotic data, including beta-lactam antibiotics, aminoglycosides, and vancomycin, are critically evaluated.
Collapse
Affiliation(s)
- Jennifer Le
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - John S Bradley
- Department of Pediatrics, Division of Infectious Diseases, University of California at San Diego, La Jolla, CA, USA.,Rady Children's Hospital San Diego, San Diego, CA, USA
| |
Collapse
|
7
|
Saffioti C, Mesini A, Barco S, Cangemi G, Bandettini R, Castagnola E. Piperacillin-tazobactam concentration target attainment in children with cancer. Pediatr Blood Cancer 2019; 66:e27882. [PMID: 31222911 DOI: 10.1002/pbc.27882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/08/2022]
|
8
|
Maarbjerg SF, Thorsted A, Kristoffersson A, Friberg LE, Nielsen EI, Wang M, Brock B, Schrøder H. Piperacillin pharmacokinetics and target attainment in children with cancer and fever: Can we optimize our dosing strategy? Pediatr Blood Cancer 2019; 66:e27654. [PMID: 30740885 DOI: 10.1002/pbc.27654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Data on piperacillin-tazobactam pharmacokinetics and optimal dosing in children with cancer and fever are limited. Our objective was to investigate piperacillin pharmacokinetics and the probability of target attainment (PTA) with standard intermittent administration (IA), and to simulate PTA in other dosing regimens. PROCEDURE This prospective pharmacokinetic study was conducted from April 2016 to January 2018. Children with cancer receiving empiric piperacillin-tazobactam to treat infections were included. Piperacillin-tazobactam 100 mg/kg was infused over 5 min every 8 hours (IA). An optimized sample schedule provided six blood samples per subject for piperacillin concentration determination. The evaluated targets included: (1) 100% time of free piperacillin concentration above the minimum inhibitory concentration (fT > MIC) and (2) 50% fT > 4× MIC. MIC50 and MIC90 were defined based on an intrainstitutional MIC range. RESULTS A total of 482 piperacillin concentrations were obtained from 43 children (aged 1-18 years) during 89 fever episodes. Standard IA resulted in insufficient target attainment, with significant differences in piperacillin pharmacokinetics for different body weights. Median fT > MIC was 61.2%, 53.5%, and 36.3% for MIC50 (2.0 mg/L), MIC90 (4.0 mg/L), and breakpoint for Pseudomonas aeruginosa (16.0 mg/L), respectively. Correspondingly, the median fT > 4× MIC was 43%, 36.3%, and 20.1%. Simulations showed that only continuous infusion reached a PTA of 95% for MIC = 16.0 mg/L, while extended infusion lasting half of the dosing interval reached a PTA of 95% for MIC ≤ 8 mg/L. CONCLUSIONS Our data revealed insufficient PTA with standard IA of piperacillin-tazobactam in children with cancer and fever. Alternative dosing strategies, preferably continuous infusion, are required to ensure adequate PTA.
Collapse
Affiliation(s)
- Sabine F Maarbjerg
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Thorsted
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Lena E Friberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Elisabet I Nielsen
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mikala Wang
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Henrik Schrøder
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Piperacillin Population Pharmacokinetics and Dosing Regimen Optimization in Critically Ill Children with Normal and Augmented Renal Clearance. Clin Pharmacokinet 2018; 58:223-233. [DOI: 10.1007/s40262-018-0682-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
De Cock PAJG, van Dijkman SC, de Jaeger A, Willems J, Carlier M, Verstraete AG, Delanghe JR, Robays H, Vande Walle J, Della Pasqua OE, De Paepe P. Dose optimization of piperacillin/tazobactam in critically ill children. J Antimicrob Chemother 2017; 72:2002-2011. [DOI: 10.1093/jac/dkx093] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/27/2017] [Indexed: 01/26/2023] Open
|
11
|
Population Pharmacokinetics and Pharmacodynamics of Extended-Infusion Piperacillin and Tazobactam in Critically Ill Children. Antimicrob Agents Chemother 2015; 60:522-31. [PMID: 26552978 DOI: 10.1128/aac.02089-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/01/2015] [Indexed: 12/19/2022] Open
Abstract
The study objective was to evaluate the population pharmacokinetics and pharmacodynamics of extended-infusion piperacillin-tazobactam in children hospitalized in an intensive care unit. Seventy-two serum samples were collected at steady state from 12 patients who received piperacillin-tazobactam at 100/12.5 mg/kg of body weight every 8 h infused over 4 h. Population pharmacokinetic analyses were performed using NONMEM, and Monte Carlo simulations were performed to estimate the piperacillin pharmacokinetic profiles for dosing regimens of 80 to 100 mg/kg of the piperacillin component given every 6 to 8 h and infused over 0.5, 3, or 4 h. The probability of target attainment (PTA) for a cumulative percentage of the dosing interval that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (TMIC) of ≥50% was calculated at MICs ranging from 0.25 to 64 mg/liter. The mean ± standard deviation (SD) age, weight, and estimated glomerular filtration rate were 5 ± 3 years, 17 ± 6.2 kg, and 118 ± 41 ml/min/1.73 m(2), respectively. A one-compartment model with zero-order input and first-order elimination best fit the pharmacokinetic data for both drugs. Weight was significantly associated with piperacillin clearance, and weight and sex were significantly associated with tazobactam clearance. Pharmacokinetic parameters (mean ± SD) for piperacillin and tazobactam were as follows: clearance, 0.22 ± 0.07 and 0.19 ± 0.07 liter/h/kg, respectively; volume of distribution, 0.43 ± 0.16 and 0.37 ± 0.14 liter/kg, respectively. All extended-infusion regimens achieved PTAs of >90% at MICs of ≤16 mg/liter. Only the 3-h infusion regimens given every 6 h achieved PTAs of >90% at an MIC of 32 mg/liter. For susceptible bacterial pathogens, piperacillin-tazobactam doses of ≥80/10 mg/kg given every 8 h and infused over 4 h achieve adequate pharmacodynamic exposures in critically ill children.
Collapse
|
12
|
Perez M, Décaudin B, Abou Chahla W, Nelken B, Barthélémy C, Lebuffe G, Odou P. In vitro analysis of overall particulate contamination exposure during multidrug IV therapy: impact of infusion sets. Pediatr Blood Cancer 2015; 62:1042-7. [PMID: 25755136 DOI: 10.1002/pbc.25442] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/02/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Drug incompatibilities, recognizable through precipitate, may have clinical consequences for patients, especially during multidrug IV therapies, where vancomycin and piperacillin are present. Drug concentration and infusion set influence the overall particulate contamination of pediatric infusion protocols. The use of multi-lumen infusion sets could prevent such incompatibilities. Our goal was to define and assess a new way to infuse these drugs during leukemia treatment in children. PROCEDURES This in vitro study focused on a pediatric multidrug protocol for patients diagnosed with lymphoblastic leukemia and receiving allogeneic transplantation. Different vancomycin concentrations were tested to infuse incompatible drugs simultaneously without any particle formation (optimized multidrug protocol). A dynamic particle count test was used over 24 hr to evaluate the overall particulate contamination of our standard and optimized multidrug protocols, using both a standard and a multi-lumen infusion set. RESULTS No visible particles were detected on a decreased vancomycin concentration compared to the standard dose. For the optimized multidrug protocol, the use of a multi-lumen infusion set reduced overall particulate contamination by 68%, compared to the standard infusion set (P = 0.002). Large-sized particles were significantly reduced when using the multi-lumen infusion set approximately 60% (P = 0.027) and 90% (P = 0.009) for particle sizes ≥10 μm and 25 μm, respectively. CONCLUSIONS This study demonstrates that a large number of particles can be administered during parenteral multidrug infusion. The choice of drug concentration and/or the type of infusion set may reduce this. Further studies are required to evaluate adverse clinical effects.
Collapse
Affiliation(s)
- Maxime Perez
- EA GRITA, University Lille Nord de France, Lille, France; Institute of Pharmacy, Lille University Hospital, Lille, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Cies JJ, Jain J, Kuti JL. Population pharmacokinetics of the piperacillin component of piperacillin/tazobactam in pediatric oncology patients with fever and neutropenia. Pediatr Blood Cancer 2015; 62:477-82. [PMID: 25328131 DOI: 10.1002/pbc.25287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/05/2014] [Indexed: 11/05/2022]
Abstract
BACKGROUND To describe the population pharmacokinetics of the piperacillin component of piperacillin/tazobactam. PROCEDURE This pharmacokinetic study included 21 pediatric (age 3-10 years) patients receiving piperacillin/tazobactam to treat fever with neutropenia. Each patient contributed 1-3 blood samples for piperacillin concentration determination. Population pharmacokinetic analyses were conducted using Pmetrics software. A 5,000 patient Monte Carlo simulation was performed to determine the probability of target attainment (PTA) for multiple dosing regimens, using 50% of free drug time above the minimum inhibitory concentration (MIC) as the primary pharmacodynamic threshold. RESULTS Mean ± SD body weight was 28.5 ± 9.7 kg. Piperacillin concentration data best fit a two-compartment model with linear clearance, using total body weight as a covariate for clearance (CLθ ) and volume of the central compartment (Vcθ ). Population estimates for CLθ , Vcθ , and intercompartment transfer constants were 0.204 ± 0.076 L/h/kg, 0.199 ± 0.107 L/kg, 0.897 ± 1.050 h(-1) , and 1.427 ± 1.609 h(-1) , respectively. R(2) , bias, and precision for the Bayesian fit were 0.998, -0.032, and 2.2 µg/ml, respectively. At the MIC breakpoint of 16 µg/ml for Pseudomonas aeruginosa, PTAs for 50 mg/kg q4h as a 0.5 hr infusion was 93.9%; for 100 mg/kg q8h as 0.5 and 4 hr infusion: 64.6% and 100%; for 100 mg/kg q6h as 0.5 and 3 hr infusion: 86.5% and 100%; and for 400 mg/kg continuous infusion: 100%, respectively. CONCLUSIONS In children with fever and neutropenia, piperacillin/tazobactam dosing regimens that are administered every 4 hr or that employ prolonged or continuous infusions should be considered to optimize pharmacodynamic exposure.
Collapse
Affiliation(s)
- Jeffrey J Cies
- St. Christopher's Hospital for Children, Philadelphia, Pennsylvania; Drexel University College of Medicine, Philadelphia, Pennsylvania; Alfred I duPont Hospital for Children, Wilmington, Delaware
| | | | | |
Collapse
|