1
|
Zhang FX, Chen X, Niu DC, Cheng L, Huang CS, Liao M, Xue Y, Shi XL, Mo ZN. Chronic prostatitis/chronic pelvic pain syndrome induces metabolomic changes in expressed prostatic secretions and plasma. Asian J Androl 2025; 27:101-112. [PMID: 39119639 PMCID: PMC11784958 DOI: 10.4103/aja202434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/10/2024] [Indexed: 08/10/2024] Open
Abstract
ABSTRACT Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a complex disease that is often accompanied by mental health disorders. However, the potential mechanisms underlying the heterogeneous clinical presentation of CP/CPPS remain uncertain. This study analyzed widely targeted metabolomic data of expressed prostatic secretions (EPS) and plasma to reveal the underlying pathological mechanisms of CP/CPPS. A total of 24 CP/CPPS patients from The Second Nanning People's Hospital (Nanning, China), and 35 asymptomatic control individuals from First Affiliated Hospital of Guangxi Medical University (Nanning, China) were enrolled. The indicators related to CP/CPPS and psychiatric symptoms were recorded. Differential analysis, coexpression network analysis, and correlation analysis were performed to identify metabolites that were specifically altered in patients and associated with various phenotypes of CP/CPPS. The crucial links between EPS and plasma were further investigated. The metabolomic data of EPS from CP/CPPS patients were significantly different from those from control individuals. Pathway analysis revealed dysregulation of amino acid metabolism, lipid metabolism, and the citrate cycle in EPS. The tryptophan metabolic pathway was found to be the most significantly altered pathway associated with distinct CP/CPPS phenotypes. Moreover, the dysregulation of tryptophan and tyrosine metabolism and elevation of oxidative stress-related metabolites in plasma were found to effectively elucidate the development of depression in CP/CPPS. Overall, metabolomic alterations in the EPS and plasma of patients were primarily associated with oxidative damage, energy metabolism abnormalities, neurological impairment, and immune dysregulation. These alterations may be associated with chronic pain, voiding symptoms, reduced fertility, and depression in CP/CPPS. This study provides a local-global perspective for understanding the pathological mechanisms of CP/CPPS and offers potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Fang-Xing Zhang
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xi Chen
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| | - De-Cao Niu
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| | - Lang Cheng
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| | - Cai-Sheng Huang
- Department of Urology, The Second Nanning People’s Hospital, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ming Liao
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yu Xue
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiao-Lei Shi
- Department of Urology, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Zeng-Nan Mo
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
2
|
Coelho DRA, Gersten M, Jimenez AS, Fregni F, Cassano P, Vieira WF. Treating neuropathic pain and comorbid affective disorders: Preclinical and clinical evidence. Pain Pract 2024; 24:937-955. [PMID: 38572653 DOI: 10.1111/papr.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Neuropathic pain (NP) significantly impacts quality of life and often coexists with affective disorders such as anxiety and depression. Addressing both NP and its psychiatric manifestations requires a comprehensive understanding of therapeutic options. This study aimed to review the main pharmacological and non-pharmacological treatments for NP and comorbid affective disorders to describe their mechanisms of action and how they are commonly used in clinical practice. METHODS A review was conducted across five electronic databases, focusing on pharmacological and non-pharmacological treatments for NP and its associated affective disorders. The following combination of MeSH and title/abstract keywords were used: "neuropathic pain," "affective disorders," "depression," "anxiety," "treatment," and "therapy." Both animal and human studies were included to discuss the underlying therapeutic mechanisms of these interventions. RESULTS Pharmacological interventions, including antidepressants, anticonvulsants, and opioids, modulate neural synaptic transmission to alleviate NP. Topical agents, such as capsaicin, lidocaine patches, and botulinum toxin A, offer localized relief by desensitizing pain pathways. Some of these drugs, especially antidepressants, also treat comorbid affective disorders. Non-pharmacological techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and photobiomodulation therapy, modulate cortical activity and have shown promise for NP and mood disorders. CONCLUSIONS The interconnection between NP and comorbid affective disorders necessitates holistic therapeutic strategies. Some pharmacological treatments can be used for both conditions, and non-pharmacological interventions have emerged as promising complementary approaches. Future research should explore novel molecular pathways to enhance treatment options for these interrelated conditions.
Collapse
Affiliation(s)
- David Richer Araujo Coelho
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maia Gersten
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Felipe Fregni
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Willians Fernando Vieira
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Chen X, Zhu Z, Zhang X, Chen L, Gu Q, Li P. Lactobacillus paracasei ZFM54 alters the metabolomic profiles of yogurt and the co-fermented yogurt improves the gut microecology of human adults. J Dairy Sci 2024; 107:5280-5300. [PMID: 38460876 DOI: 10.3168/jds.2023-24332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/02/2024] [Indexed: 03/11/2024]
Abstract
Gut microbiota imbalance could lead to various diseases, making it important to optimize the structure of the gut flora in adults. Lactobacillus paracasei ZFM54 is a bacteriocin- and folic acid-producing Lactobacillus strain. Herein, L. paracasei ZFM54 was used as the potentially probiotic bacterium to ferment milk together with a yogurt starter. We optimized the fermentation conditions, and the obtained yogurts were then subjected to volatile and nonvolatile metabolome analysis, showing that L. paracasei ZFM54 can not only improve the acidity, water holding capacity and live lactic acid bacteria counts, but also improve many volatile acid contents and increase some beneficial nonvolatile metabolites, such as N-ethyl glycine and l-lysine, endowing the yogurt with more flavor and better function. The regulatory effects of the co-fermented yogurt on the intestinal microecology of volunteers were investigated by 16S rRNA sequencing and short-chain fatty acid (SCFA) analysis after consuming the yogurt for a 2-wk period, showing a better effect to increase the relative abundance of beneficial bacteria such as Ruminococcus and Alistipes, decrease harmful bacteria (Escherichia-Shigella and Enterobacter), and enhance the production of SCFA (acetate, propionate, and butyric acid) compared with the control yogurt. We found that L. paracasei ZFM54 can significantly improve the health benefits of yogurt, laying the foundation for its commercial application in improving gut microbiota.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Zichun Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Xin Zhang
- College of Forest and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Lin Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
4
|
Raiteri L. Interactions Involving Glycine and Other Amino Acid Neurotransmitters: Focus on Transporter-Mediated Regulation of Release and Glycine-Glutamate Crosstalk. Biomedicines 2024; 12:1518. [PMID: 39062091 PMCID: PMC11275102 DOI: 10.3390/biomedicines12071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Glycine plays a pivotal role in the Central Nervous System (CNS), being a major inhibitory neurotransmitter as well as a co-agonist of Glutamate at excitatory NMDA receptors. Interactions involving Glycine and other neurotransmitters are the subject of different studies. Functional interactions among neurotransmitters include the modulation of release through release-regulating receptors but also through transporter-mediated mechanisms. Many transporter-mediated interactions involve the amino acid transmitters Glycine, Glutamate, and GABA. Different studies published during the last two decades investigated a number of transporter-mediated interactions in depth involving amino acid transmitters at the nerve terminal level in different CNS areas, providing details of mechanisms involved and suggesting pathophysiological significances. Here, this evidence is reviewed also considering additional recent information available in the literature, with a special (but not exclusive) focus on glycinergic neurotransmission and Glycine-Glutamate interactions. Some possible pharmacological implications, although partly speculative, are also discussed. Dysregulations in glycinergic and glutamatergic transmission are involved in relevant CNS pathologies. Pharmacological interventions on glycinergic targets (including receptors and transporters) are under study to develop novel therapies against serious CNS pathological states including pain, schizophrenia, epilepsy, and neurodegenerative diseases. Although with limitations, it is hoped to possibly contribute to a better understanding of the complex interactions between glycine-mediated neurotransmission and other major amino acid transmitters, also in view of the current interest in potential drugs acting on "glycinergic" targets.
Collapse
Affiliation(s)
- Luca Raiteri
- Pharmacology and Toxicology Section, Department of Pharmacy (DIFAR), University of Genoa, 16148 Genoa, Italy;
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy
| |
Collapse
|
5
|
Mullins CF, Fuccaro M, Pang D, Min L, Andreou AP, Lambru G. A single infusion of intravenous lidocaine for primary headaches and trigeminal neuralgia: a retrospective analysis. Front Neurol 2023; 14:1202426. [PMID: 37638187 PMCID: PMC10448809 DOI: 10.3389/fneur.2023.1202426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Intravenous (IV) lidocaine has been used as a transitional treatment in headache and facial pain conditions, typically as an inpatient infusion over several days, which is costly and may increase the risk of adverse effects. Here we report on our experience using a single one-hour IV lidocaine infusion in an outpatient day-case setting for the management of refractory primary headache disorders with facial pain and trigeminal neuralgia. Methods This is a retrospective, single-center analysis on patients with medically refractory headache with facial pain and trigeminal neuralgia who were treated with IV lidocaine between March 2018 and July 2022. Lidocaine 5 mg.kg-1 in 60 mL saline was administered over 1 h, followed by an observation period of 30 min. Patients were considered responders if they reported reduction in pain intensity and/or headache frequency of 50% or greater. Duration of response was defined as short-term (< 2 weeks), medium-term (2-4 weeks) and long-term (> 4 weeks). Results Forty infusions were administered to 15 patients with trigeminal autonomic cephalalgias (n = 9), chronic migraine (n = 3) and trigeminal neuralgia (n = 3). Twelve patients were considered responders (80%), eight of whom were complete responders (100% pain freedom). The average duration of the treatment effect for each participant was 9.5 weeks (range 1-22 weeks). Six out of 15 patients reported mild and self-limiting side effects (40%). Conclusion A single infusion of IV lidocaine might be an effective and safe transitional treatment in refractory headache conditions with facial pain and trigeminal neuralgia. The sustained effect of repeated treatment cycles in some patients may suggest a role as long-term preventive therapy in some patients.
Collapse
Affiliation(s)
- C. F. Mullins
- The Headache and Facial Pain Service, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Pain Management and Neuromodulation Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - M. Fuccaro
- The Headache and Facial Pain Service, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - D. Pang
- Pain Management and Neuromodulation Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - L. Min
- Pain Management and Neuromodulation Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - A. P. Andreou
- The Headache and Facial Pain Service, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - G. Lambru
- The Headache and Facial Pain Service, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| |
Collapse
|
6
|
Lidocaine Ameliorates Diabetic Peripheral Neuropathy in Streptozotocin-Induced Diabetic Rats through Modulating the c-Jun Signaling Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1888153. [PMID: 36072636 PMCID: PMC9402326 DOI: 10.1155/2022/1888153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
As one of the common complications of diabetes mellitus (DM), Diabetic Peripheral Neuropathy (DPN) threatens human lives seriously. Emerging evidences have confirmed the protective effects of lidocaine on DPN. However, the possible role and underlying mechanisms of lidocaine in DPN have not been clarified. In this study, the potential role of lidocaine in DPN is explored, and the possible mechanisms are investigated. The rat DPN model is constructed through administration of streptozotocin (STZ, 60 mg/kg). All rats are randomly divided into four groups, including the control group, DPN group, lidocaine (3.78 mg/time) group, and lidocaine combined with the SP600125 (15 mg/kg) group. Mechanical threshold, thermal latency, and blood glucose of rats before and after treatment are detected, and Nerve Conduction Velocity (NCV) is assessed. Moreover, qRT-PCR and western blot assays are carried out to determine the expressions of the c-Jun signaling pathway. The experimental results demonstrate that lidocaine remarkably downregulates the mRNA and protein expressions of the c-Jun signaling pathway in serum and DRGs induced with DPN. Besides, lidocaine combined with SP600125 can obtain better effects than lidocaine alone. It is clearly evident that lidocaine has a certain therapeutic effect on DPN.
Collapse
|
7
|
Peiser-Oliver JM, Evans S, Adams DJ, Christie MJ, Vandenberg RJ, Mohammadi SA. Glycinergic Modulation of Pain in Behavioral Animal Models. Front Pharmacol 2022; 13:860903. [PMID: 35694265 PMCID: PMC9174897 DOI: 10.3389/fphar.2022.860903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Animal models of human pain conditions allow for detailed interrogation of known and hypothesized mechanisms of pain physiology in awake, behaving organisms. The importance of the glycinergic system for pain modulation is well known; however, manipulation of this system to treat and alleviate pain has not yet reached the sophistication required for the clinic. Here, we review the current literature on what animal behavioral studies have allowed us to elucidate about glycinergic pain modulation, and the progress toward clinical treatments so far. First, we outline the animal pain models that have been used, such as nerve injury models for neuropathic pain, chemogenic pain models for acute and inflammatory pain, and other models that mimic painful human pathologies such as diabetic neuropathy. We then discuss the genetic approaches to animal models that have identified the crucial glycinergic machinery involved in neuropathic and inflammatory pain. Specifically, two glycine receptor (GlyR) subtypes, GlyRα1(β) and GlyRα3(β), and the two glycine transporters (GlyT), GlyT1 and GlyT2. Finally, we review the different pharmacological approaches to manipulating the glycinergic system for pain management in animal models, such as partial vs. full agonism, reversibility, and multi-target approaches. We discuss the benefits and pitfalls of using animal models in drug development broadly, as well as the progress of glycinergic treatments from preclinical to clinical trials.
Collapse
Affiliation(s)
| | - Sally Evans
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | | | | | - Sarasa A. Mohammadi
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Sarasa A. Mohammadi,
| |
Collapse
|
8
|
Ray JC, Cheng S, Tsan K, Hussain H, Stark RJ, Matharu MS, Hutton E. Intravenous Lidocaine and Ketamine Infusions for Headache Disorders: A Retrospective Cohort Study. Front Neurol 2022; 13:842082. [PMID: 35356451 PMCID: PMC8959588 DOI: 10.3389/fneur.2022.842082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The use of lidocaine (lignocaine) and ketamine infusion in the inpatient treatment of patients with headache disorders is supported by small case series. We undertook a retrospective cohort study in order to assess the efficacy, duration and safety of lidocaine and ketamine infusions. Methods Patients admitted between 01/01/2018 and 31/07/2021 were identified by ICD code and electronic prescription. Efficacy of infusion was determined by reduction in visual analog score (VAS), and patient demographics were collected from review of the hospital electronic medical record. Results Through the study period, 83 infusions (50 lidocaine, 33 ketamine) were initiated for a headache disorder (77 migraine, three NDPH, two SUNCT, one cluster headache). In migraine, lidocaine infusion achieved a ≥50% reduction in pain in 51.1% over a mean 6.2 days (SD 2.4). Ketamine infusion was associated with a ≥50% reduction in pain in 34.4% over a mean 5.1 days (SD 1.5). Side effects were observed in 32 and 42.4% respectively. Infusion for medication overuse headache (MOH) led to successful withdrawal of analgesia in 61.1% of lidocaine, and 41.7% of ketamine infusions. Conclusion Lidocaine and ketamine infusions are an efficacious inpatient treatment for headache disorders, however associated with prolonged length-of-stay and possible side-effects.
Collapse
Affiliation(s)
- Jason C. Ray
- Department of Neurology, Austin Health, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- *Correspondence: Jason C. Ray
| | - Shuli Cheng
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| | - Kirsten Tsan
- School of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Hassan Hussain
- School of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Richard J. Stark
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Manjit S. Matharu
- Headache and Facial Pain Group, University College London Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
- Headache and Facial Pain Group, University College London, London, United Kingdom
| | - Elspeth Hutton
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Eulenburg V, Hülsmann S. Synergistic Control of Transmitter Turnover at Glycinergic Synapses by GlyT1, GlyT2, and ASC-1. Int J Mol Sci 2022; 23:ijms23052561. [PMID: 35269698 PMCID: PMC8909939 DOI: 10.3390/ijms23052561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
In addition to being involved in protein biosynthesis and metabolism, the amino acid glycine is the most important inhibitory neurotransmitter in caudal regions of the brain. These functions require a tight regulation of glycine concentration not only in the synaptic cleft, but also in various intracellular and extracellular compartments. This is achieved not only by confining the synthesis and degradation of glycine predominantly to the mitochondria, but also by the action of high-affinity large-capacity glycine transporters that mediate the transport of glycine across the membranes of presynaptic terminals or glial cells surrounding the synapses. Although most cells at glycine-dependent synapses express more than one transporter with high affinity for glycine, their synergistic functional interaction is only poorly understood. In this review, we summarize our current knowledge of the two high-affinity transporters for glycine, the sodium-dependent glycine transporters 1 (GlyT1; SLC6A9) and 2 (GlyT2; SLC6A5) and the alanine–serine–cysteine-1 transporter (Asc-1; SLC7A10).
Collapse
Affiliation(s)
- Volker Eulenburg
- Department for Anesthesiology and Intensive Care, Faculty of Medicine, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany
- Correspondence: (V.E.); (S.H.)
| | - Swen Hülsmann
- Department for Anesthesiology, University Medical Center, Georg-August University, Humboldtallee 23, D-37073 Göttingen, Germany
- Correspondence: (V.E.); (S.H.)
| |
Collapse
|
10
|
Bupivacaine reduces GlyT1 expression by potentiating the p-AMPKα/BDNF signalling pathway in spinal astrocytes of rats. Sci Rep 2022; 12:1378. [PMID: 35082359 PMCID: PMC8792009 DOI: 10.1038/s41598-022-05478-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Bupivacaine, a local anaesthetic, is widely applied in the epidural or subarachnoid space to clinically manage acute and chronic pain. However, the underlying mechanisms are complex and unclear. Glycine transporter 1 (GlyT1) in the spinal cord plays a critical role in various pathologic pain conditions. Therefore, we sought to determine whether bupivacaine exerts its analgesic effect by regulating GlyT1 expression and to determine the underlying mechanisms of regulation. Primary astrocytes prepared from the spinal cord of rats were treated with bupivacaine. The protein levels of GlyT1, brain-derived neurotrophic factor (BDNF) and phosphorylated adenosine 5′-monophosphate (AMP)-activated protein kinase α (p-AMPKα) were measured by western blotting or immunofluorescence. In addition, 7,8-dihydroxyflavone (7,8-DHF, BDNF receptor agonist) and AMPK shRNA were applied to verify the relationship between the regulation of GlyT1 by bupivacaine and the p-AMPKα/BDNF signalling pathway. After treatment with bupivacaine, GlyT1 expression was diminished in a concentration-dependent manner, while the expression of BDNF and p-AMPK was increased. Moreover, 7,8-DHF decreased GlyT1 expression, and AMPK knockdown suppressed the upregulation of BDNF expression by bupivacaine. Finally, we concluded that bupivacaine reduced GlyT1 expression in spinal astrocytes by activating the p-AMPKα/BDNF signalling pathway. These results provide a new mechanism for the analgesic effect of intrathecal bupivacaine in the treatment of acute and chronic pain.
Collapse
|
11
|
Todorovic MS, Frey K, Swarm RA, Bottros M, Rao L, Tallchief D, Kraus K, Meacham K, Bakos K, Zang X, Lee JB, Kagan L, Haroutounian S. Prediction of Individual Analgesic Response to Intravenous Lidocaine in Painful Diabetic Peripheral Neuropathy: A Randomized, Placebo-controlled, Crossover Trial. Clin J Pain 2021; 38:65-76. [PMID: 34723864 PMCID: PMC8727500 DOI: 10.1097/ajp.0000000000001001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Intravenous lidocaine can alleviate painful diabetic peripheral neuropathy (DPN) in some patients. Whether quantitative sensory testing (QST) can identify treatment responders has not been prospectively tested. MATERIALS AND METHODS This was a prospective, randomized, double-blind, crossover, placebo-controlled trial comparing intravenous lidocaine to normal saline (placebo) for painful DPN. Thirty-four participants with painful DPN were enrolled and administered intravenous lidocaine (5 mg/kg ideal body weight) or placebo as a 40-minute infusion, after a battery of QST parameters were tested on the dorsal foot, with a 3-week washout period between infusions. RESULTS Thirty-one participants completed both study sessions and were included in the final analysis. Lidocaine resulted in a 51% pain reduction 60 to 120 minutes after infusion initiation, as assessed on a 0 to 10 numerical rating scale, while placebo resulted in a 33.5% pain reduction (difference=17.6%, 95% confidence interval [CI], 1.9%-33.3%, P=0.03). Neither mechanical pain threshold, heat pain threshold, or any of the other measured QST parameters predicted the response to treatment. Lidocaine administration reduced mean Neuropathic Pain Symptom Inventory paresthesia/dysesthesia scores when compared with placebo by 1.29 points (95% CI, -2.03 to -0.55, P=0.001), and paroxysmal pain scores by 0.84 points (95% CI, -1.62 to -0.56, P=0.04), without significant changes in burning, pressing or evoked pain subscores. DISCUSSION While some participants reported therapeutic benefit from lidocaine administration, QST measures alone were not predictive of response to treatment. Further studies, powered to test more complex phenotypic interactions, are required to identify reliable predictors of response to pharmacotherapy in patients with DPN.
Collapse
Affiliation(s)
| | - Karen Frey
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA, 63110
| | - Robert A. Swarm
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA, 63110
- Washington University Pain Center, St Louis, MO, USA, 63110
| | - Michael Bottros
- Department of Anesthesiology, Keck School of Medicine of USC, Los Angeles, CA, 90033
| | - Lesley Rao
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA, 63110
- Washington University Pain Center, St Louis, MO, USA, 63110
| | - Danielle Tallchief
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA, 63110
| | - Kristin Kraus
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA, 63110
| | - Kathleen Meacham
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA, 63110
- Washington University Pain Center, St Louis, MO, USA, 63110
| | - Kristopher Bakos
- Investigational Drug Service, Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO, USA
| | - Xiaowei Zang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA, 08854
| | - Jong Bong Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA, 08854
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA, 08854
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA, 08854
| | - Simon Haroutounian
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA, 63110
- Washington University Pain Center, St Louis, MO, USA, 63110
| |
Collapse
|
12
|
Vušak D, Smrečki N, Muratović S, Žilić D, Prugovečki B, Matković-Čalogović D. Structural diversity in the coordination compounds of cobalt, nickel and copper with N-alkylglycinates: crystallographic and ESR study in the solid state. RSC Adv 2021; 11:23779-23790. [PMID: 35479809 PMCID: PMC9036651 DOI: 10.1039/d1ra04219j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022] Open
Abstract
Reactions of N-methylglycine (HMeGly), N-ethylglycine-hydrochloride (H2EtGlyCl) and N-propylglycine-hydrochloride (H2PrGlyCl) with cobalt(ii), nickel(ii) and copper(ii) ions in aqueous solutions resulted in ten new coordination compounds [Co(MeGly)2(H2O)2] (1), [{Co(MeGly)2}2(μ-OH)2]·2H2O (1d), [Cu(MeGly)2(H2O)2] (2α), [Co(EtGly)2(H2O)2] (3), [Ni(EtGly)2(H2O)2] (4), [Cu(μ-EtGly)2] n (5p), [Co(PrGly)2(H2O)2] (6), [Ni(PrGly)2(H2O)2] (7), and two polymorphs of [Cu(PrGly)2(H2O)2] (8α and 8β). Compounds were characterized by single-crystal and powder X-ray diffraction, infrared spectroscopy, thermal analysis and X-band electron spin resonance (ESR) spectroscopy. These studies revealed a wide range of structural types including monomeric, dimeric and polymeric architectures, as well as different polymorphs. In all monomeric compounds, except 2α, and in the coordination polymer 5p hydrogen bonds interconnect the molecules into 2D layers with the alkyl chain pointing outward of the layer. In 2α and in the dimeric compound 1d hydrogen bonds link the molecules into 3D structures. 1d with cobalt(iii), and 4 and 7 with nickel(ii) are ESR silent. The ESR spectra of 1, 3 and 6 are characteristic for paramagnetic high-spin cobalt(ii). The ESR spectra of all copper(ii) coordination compounds show that the unpaired copper electron is located in the d x 2-y 2 orbital, being in agreement with the elongated octahedral geometry.
Collapse
Affiliation(s)
- Darko Vušak
- Department of Chemistry, Faculty of Science, University of Zagreb Horvatovac 102a HR-10000 Zagreb Croatia
| | - Neven Smrečki
- Department of Chemistry, Faculty of Science, University of Zagreb Horvatovac 102a HR-10000 Zagreb Croatia
| | - Senada Muratović
- Laboratory for Magnetic Resonances, Division of Physical Chemistry, Ruđer Bošković Institute Bijenička 54 HR-10000 Zagreb Croatia
| | - Dijana Žilić
- Laboratory for Magnetic Resonances, Division of Physical Chemistry, Ruđer Bošković Institute Bijenička 54 HR-10000 Zagreb Croatia
| | - Biserka Prugovečki
- Department of Chemistry, Faculty of Science, University of Zagreb Horvatovac 102a HR-10000 Zagreb Croatia
| | | |
Collapse
|
13
|
Inhibition of Glycine Re-Uptake: A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling. Biomolecules 2021; 11:biom11060864. [PMID: 34200954 PMCID: PMC8230656 DOI: 10.3390/biom11060864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Among the myriad of cellular and molecular processes identified as contributing to pathological pain, disinhibition of spinal cord nociceptive signaling to higher cortical centers plays a critical role. Importantly, evidence suggests that impaired glycinergic neurotransmission develops in the dorsal horn of the spinal cord in inflammatory and neuropathic pain models and is a key maladaptive mechanism causing mechanical hyperalgesia and allodynia. Thus, it has been hypothesized that pharmacological agents capable of augmenting glycinergic tone within the dorsal horn may be able to blunt or block aberrant nociceptor signaling to the brain and serve as a novel class of analgesics for various pathological pain states. Indeed, drugs that enhance dysfunctional glycinergic transmission, and in particular inhibitors of the glycine transporters (GlyT1 and GlyT2), are generating widespread interest as a potential class of novel analgesics. The GlyTs are Na+/Cl−-dependent transporters of the solute carrier 6 (SLC6) family and it has been proposed that the inhibition of them presents a possible mechanism by which to increase spinal extracellular glycine concentrations and enhance GlyR-mediated inhibitory neurotransmission in the dorsal horn. Various inhibitors of both GlyT1 and GlyT2 have demonstrated broad analgesic efficacy in several preclinical models of acute and chronic pain, providing promise for the approach to deliver a first-in-class non-opioid analgesic with a mechanism of action differentiated from current standard of care. This review will highlight the therapeutic potential of GlyT inhibitors as a novel class of analgesics, present recent advances reported for the field, and discuss the key challenges associated with the development of a GlyT inhibitor into a safe and effective agent to treat pain.
Collapse
|
14
|
Boswell MR, Moman RN, Burtoft M, Gerdes H, Martinez J, Gerberi DJ, Wittwer E, Murad MH, Hooten WM. Lidocaine for postoperative pain after cardiac surgery: a systematic review. J Cardiothorac Surg 2021; 16:157. [PMID: 34059093 PMCID: PMC8166031 DOI: 10.1186/s13019-021-01549-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Lidocaine is one of the most widely used local anesthetics with well-known pharmacological properties. The purpose of this systematic review is to investigate the effects of lidocaine on postoperative pain scores and recovery after cardiac surgery. METHODS A comprehensive database search was conducted by a reference librarian for randomized clinical trials (RCT) from January 1, 1980 to September 1, 2019. Eligible study designs included randomized controlled trials of lidocaine for postoperative pain management in adults undergoing cardiac surgery. After removal of duplicates, 947 records were screened for eligibility and 3 RCTs met inclusion criteria. RESULTS Sources of bias were identified in 2 of 3 RCTs. Lidocaine was administered intravenously, topically, and intrapleurally. Key findings included [1] 2% lidocaine placed topically on chest tube prior to intraoperative insertion was associated with significantly lower pain scores and lower cumulative doses of fentanyl; and [2] 2% lidocaine administered intrapleurally was associated with significantly lower pain scores and significant improvements in pulmonary mechanics. Lidocaine infusions were not associated with significant changes in pain scores or measures of recovery. No significant associations were observed between lidocaine and overall mortality, hospital length of stay or ICU length of stay. No data were reported for postoperative nausea and vomiting or arrhythmias. CONCLUSIONS Due to the favorable risk profile of topical lidocaine and the need for further advancements in the postoperative care of adults after cardiac surgery, topically administered lidocaine could be considered for incorporation into established postoperative recovery protocols.
Collapse
Affiliation(s)
- Michael R Boswell
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Rajat N Moman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Melissa Burtoft
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Harrison Gerdes
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Jacob Martinez
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | | | - Erica Wittwer
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - M Hassan Murad
- Division of Preventative Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - W Michael Hooten
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA. .,Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Topical Treatments and Their Molecular/Cellular Mechanisms in Patients with Peripheral Neuropathic Pain-Narrative Review. Pharmaceutics 2021; 13:pharmaceutics13040450. [PMID: 33810493 PMCID: PMC8067282 DOI: 10.3390/pharmaceutics13040450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain in humans results from an injury or disease of the somatosensory nervous system at the peripheral or central level. Despite the considerable progress in pain management methods made to date, peripheral neuropathic pain significantly impacts patients' quality of life, as pharmacological and non-pharmacological methods often fail or induce side effects. Topical treatments are gaining popularity in the management of peripheral neuropathic pain, due to excellent safety profiles and preferences. Moreover, topical treatments applied locally may target the underlying mechanisms of peripheral sensitization and pain. Recent studies showed that peripheral sensitization results from interactions between neuronal and non-neuronal cells, with numerous signaling molecules and molecular/cellular targets involved. This narrative review discusses the molecular/cellular mechanisms of drugs available in topical formulations utilized in clinical practice and their effectiveness in clinical studies in patients with peripheral neuropathic pain. We searched PubMed for papers published from 1 January 1995 to 30 November 2020. The key search phrases for identifying potentially relevant articles were "topical AND pain", "topical AND neuropathic", "topical AND treatment", "topical AND mechanism", "peripheral neuropathic", and "mechanism". The result of our search was 23 randomized controlled trials (RCT), 9 open-label studies, 16 retrospective studies, 20 case (series) reports, 8 systematic reviews, 66 narrative reviews, and 140 experimental studies. The data from preclinical studies revealed that active compounds of topical treatments exert multiple mechanisms of action, directly or indirectly modulating ion channels, receptors, proteins, and enzymes expressed by neuronal and non-neuronal cells, and thus contributing to antinociception. However, which mechanisms and the extent to which the mechanisms contribute to pain relief observed in humans remain unclear. The evidence from RCTs and reviews supports 5% lidocaine patches, 8% capsaicin patches, and botulinum toxin A injections as effective treatments in patients with peripheral neuropathic pain. In turn, single RCTs support evidence of doxepin, funapide, diclofenac, baclofen, clonidine, loperamide, and cannabidiol in neuropathic pain states. Topical administration of phenytoin, ambroxol, and prazosin is supported by observational clinical studies. For topical amitriptyline, menthol, and gabapentin, evidence comes from case reports and case series. For topical ketamine and baclofen, data supporting their effectiveness are provided by both single RCTs and case series. The discussed data from clinical studies and observations support the usefulness of topical treatments in neuropathic pain management. This review may help clinicians in making decisions regarding whether and which topical treatment may be a beneficial option, particularly in frail patients not tolerating systemic pharmacotherapy.
Collapse
|
16
|
Barsch L, Werdehausen R, Leffler A, Eulenburg V. Modulation of Glycinergic Neurotransmission may Contribute to the Analgesic Effects of Propacetamol. Biomolecules 2021; 11:biom11040493. [PMID: 33805979 PMCID: PMC8064320 DOI: 10.3390/biom11040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
Treating neuropathic pain remains challenging, and therefore new pharmacological strategies are urgently required. Here, the enhancement of glycinergic neurotransmission by either facilitating glycine receptors (GlyR) or inhibiting glycine transporter (GlyT) function to increase extracellular glycine concentration appears promising. Propacetamol is a N,N-diethylester of acetaminophen, a non-opioid analgesic used to treat mild pain conditions. In vivo, it is hydrolysed into N,N-diethylglycine (DEG) and acetaminophen. DEG has structural similarities to known alternative GlyT1 substrates. In this study, we analyzed possible effects of propacetamol, or its metabolite N,N-diethylglycine (DEG), on GlyRs or GlyTs function by using a two-electrode voltage clamp approach in Xenopus laevis oocytes. Our data demonstrate that, although propacetamol or acetaminophen had no effect on the function of the analysed glycine-responsive proteins, the propacetamol metabolite DEG acted as a low-affine substrate for both GlyT1 (EC50 > 7.6 mM) and GlyT2 (EC50 > 5.2 mM). It also acted as a mild positive allosteric modulator of GlyRα1 function at intermediate concentrations. Taken together, our data show that DEG influences both glycine transporter and receptor function, and therefore could facilitate glycinergic neurotransmission in a multimodal manner.
Collapse
Affiliation(s)
- Lukas Barsch
- Department of Anaesthesiology and Intensive Care, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (L.B.); (R.W.)
| | - Robert Werdehausen
- Department of Anaesthesiology and Intensive Care, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (L.B.); (R.W.)
| | - Andreas Leffler
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Volker Eulenburg
- Department of Anaesthesiology and Intensive Care, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (L.B.); (R.W.)
- Correspondence: ; Tel.: +49-341-9710598
| |
Collapse
|
17
|
Cheong Y, Kim M, Kim N, Hwang B. Effect of two-week continuous epidural administration of 2% lidocaine on mechanical allodynia induced by spinal nerve ligation in rats. Anesth Pain Med (Seoul) 2020; 15:334-343. [PMID: 33329833 PMCID: PMC7713833 DOI: 10.17085/apm.20033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background Lidocaine is an effective against certain types of neuropathic pain. This study aimed to investigate whether timing of initiating continuous epidural infusion of lidocaine affected the glial activation and development of neuropathic pain induced by L5/6 spinal nerve ligation (SNL) in rats. Methods Following L5/6 SNL, rats were epidurally infused 2% lidocaine (drug infusion initiated on days 1, and 7 post SNL model establishment) or saline (saline infusion initiated on day 1 post SNL model establishment) continuously for 14 days. Mechanical allodynia of the hind paw to von Frey filament stimuli was determined prior to surgery, postoperative day 3, and once weekly after SNL model establishment. At 7 days after the infusion of saline or lidocaine ended, spinal activation of proinflammatory cytokines and astrocytes was evaluated immunohistochemically, using antibodies to interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP). Results Continuous epidural administration of 2% lidocaine for 14 days increased the mechanical withdrawal threshold regardless of the difference in timing of initiating lidocaine administration. Epidurally infusing 2% lidocaine inhibited nerve ligation-induced IL-6 and GFAP activation. In the 2% lidocaine infusion group, rats maintained the increased mechanical withdrawal threshold even at 7 days after the discontinuation of 2% lidocaine infusion. Conclusions Continuous epidural administration of 2% lidocaine inhibited the development of SNL-induced mechanical allodynia and suppressed IL-6 and GFAP activation regardless of the difference in timing of initiating lidocaine administration.
Collapse
Affiliation(s)
- Yuseon Cheong
- Department of Anesthesiology and Pain Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Minsoo Kim
- Department of Anesthesiology and Pain Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Namyoong Kim
- Department of Anesthesiology and Pain Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Byeongmun Hwang
- Department of Anesthesiology and Pain Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
18
|
Abstract
Lidocaine, as the only local anesthetic approved for intravenous administration in the clinic, can relieve neuropathic pain, hyperalgesia, and complex regional pain syndrome. Intravenous injection of lidocaine during surgery is considered as an effective strategy to control postoperative pain, but the mechanism of its analgesic effect has not been fully elucidated. This paper intends to review recent studies on the mechanism of the analgesic effect of lidocaine. To the end, we conducted an electronic search of the PubMed database. The search period was from 5 years before June 2019. Lidocaine was used as the search term. A total of 659 documents were obtained, we included 17 articles. These articles combined with the 34 articles found by hand searching made up the 51 articles that were ultimately included. We reviewed the analgesic mechanism of lidocaine in the central nervous system.
Collapse
Affiliation(s)
- Xi Yang
- Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
| | - Xinchuan Wei
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
| | - Yi Mu
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Li
- Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University
| | - Jin Liu
- Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University
| |
Collapse
|
19
|
Gradwell MA, Callister RJ, Graham BA. Reviewing the case for compromised spinal inhibition in neuropathic pain. J Neural Transm (Vienna) 2019; 127:481-503. [PMID: 31641856 DOI: 10.1007/s00702-019-02090-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
A striking and debilitating property of the nervous system is that damage to this tissue can cause chronic intractable pain, which persists long after resolution of the initial insult. This neuropathic form of pain can arise from trauma to peripheral nerves, the spinal cord, or brain. It can also result from neuropathies associated with disease states such as diabetes, human immunodeficiency virus/AIDS, herpes, multiple sclerosis, cancer, and chemotherapy. Regardless of the origin, treatments for neuropathic pain remain inadequate. This continues to drive research into the underlying mechanisms. While the literature shows that dysfunction in numerous loci throughout the CNS can contribute to chronic pain, the spinal cord and in particular inhibitory signalling in this region have remained major research areas. This review focuses on local spinal inhibition provided by dorsal horn interneurons, and how such inhibition is disrupted during the development and maintenance of neuropathic pain.
Collapse
Affiliation(s)
- M A Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - R J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia.
| |
Collapse
|
20
|
Mindt M, Hannibal S, Heuser M, Risse JM, Sasikumar K, Nampoothiri KM, Wendisch VF. Fermentative Production of N-Alkylated Glycine Derivatives by Recombinant Corynebacterium glutamicum Using a Mutant of Imine Reductase DpkA From Pseudomonas putida. Front Bioeng Biotechnol 2019; 7:232. [PMID: 31616665 PMCID: PMC6775277 DOI: 10.3389/fbioe.2019.00232] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
Sarcosine, an N-methylated amino acid, shows potential as antipsychotic, and serves as building block for peptide-based drugs, and acts as detergent when acetylated. N-methylated amino acids are mainly produced chemically or by biocatalysis, with either low yields or high costs for co-factor regeneration. Corynebacterium glutamicum, which is used for the industrial production of amino acids for decades, has recently been engineered for production of N-methyl-L-alanine and sarcosine. Heterologous expression of dpkA in a C. glutamicum strain engineered for glyoxylate overproduction enabled fermentative production of sarcosine from sugars and monomethylamine. Here, mutation of an amino acyl residue in the substrate binding site of DpkA (DpkAF117L) led to an increased specific activity for reductive alkylamination of glyoxylate using monomethylamine and monoethylamine as substrates. Introduction of DpkAF117L into the production strain accelerated the production of sarcosine and a volumetric productivity of 0.16 g L-1 h-1 could be attained. Using monoethylamine as substrate, we demonstrated N-ethylglycine production with a volumetric productivity of 0.11 g L-1 h-1, which to the best of our knowledge is the first report of its fermentative production. Subsequently, the feasibility of using rice straw hydrolysate as alternative carbon source was tested and production of N-ethylglycine to a titer of 1.6 g L-1 after 60 h of fed-batch bioreactor cultivation could be attained.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Silvin Hannibal
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Maria Heuser
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Joe Max Risse
- Fermentation Technology, Technical Faculty and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Keerthi Sasikumar
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific & Industrial Research, Trivandrum, India
| | - K. Madhavan Nampoothiri
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific & Industrial Research, Trivandrum, India
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
21
|
Hermanns H, Hollmann MW, Stevens MF, Lirk P, Brandenburger T, Piegeler T, Werdehausen R. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review. Br J Anaesth 2019; 123:335-349. [DOI: 10.1016/j.bja.2019.06.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
|
22
|
Tan X, Ma L, Yuan J, Zhang D, Wang J, Zhou W, Cao S. Intravenous infusion of lidocaine enhances the efficacy of conventional treatment of postherpetic neuralgia. J Pain Res 2019; 12:2537-2545. [PMID: 31686896 PMCID: PMC6709377 DOI: 10.2147/jpr.s213128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/06/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Postherpetic neuralgia (PHN) is one kind of severe neuropathic pain which currently cannot be effectively cured. Recent researches suggest that intravenous infusion of lidocaine has a therapeutic effect on neuropathic pain such as PHN; however, the optimal dose and frequency of lidocaine infusion and the effectiveness and safety of this treatment in PHN patients still needs more clinical research. The aim of this study was to evaluate the therapeutic effects of daily intravenous lidocaine infusion on the outcome of the routine treatment of PHN. METHODS Sixty PHN patients were randomly divided into two groups: 1) control group (Control), treated with conventional therapies, such as antiepileptic pills, analgesics, neurotrophic medicines, paravertebral spinal nerve block and physiotherapy; 2) lidocaine group (Lido) received daily infusion of lidocaine (4 mg/kg) besides the conventional treatments. If the pain is not controlled sufficiently, additional tramadol is given and the average consumption of tramadol is calculated. Pain intensity was assessed before and after each infusion, and the number of breakthrough pain in the last 24 hrs were recorded. The incidence of adverse reactions related to intravenous lidocaine infusion was recorded. RESULTS For five consecutive days, numeric rating scale (NRS) scores were significantly decreased after 1 hr of intravenous infusion of lidocaine. Compared with Control, the NRS scores and the frequency of breakthrough pain in the Lido were significantly reduced. In addition, the extra tramadol consumption in the Lido was significantly lower than that in the Control, and the average hospital stay of patients in Lido was decreased. However, anxiety and depression scores showed no difference between Lido and Control. CONCLUSION Daily intravenous lidocaine (4 mg/kg for 5 days) enhanced the outcome of PHN treatment, reduced the amount of analgesic medicine and shortened the length of hospital stay with no obvious adverse side effects.
Collapse
Affiliation(s)
- Xinran Tan
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Lulin Ma
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Jie Yuan
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi563000, People’s Republic of China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Dexin Zhang
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Jie Wang
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Wenjing Zhou
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi563000, People’s Republic of China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi563000, People’s Republic of China
| |
Collapse
|
23
|
Al-Khrasani M, Mohammadzadeh A, Balogh M, Király K, Barsi S, Hajnal B, Köles L, Zádori ZS, Harsing LG. Glycine transporter inhibitors: A new avenue for managing neuropathic pain. Brain Res Bull 2019; 152:143-158. [PMID: 31302238 DOI: 10.1016/j.brainresbull.2019.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Interneurons operating with glycine neurotransmitter are involved in the regulation of pain transmission in the dorsal horn of the spinal cord. In addition to interneurons, glycine release also occurs from glial cells neighboring glutamatergic synapses in the spinal cord. Neuronal and glial release of glycine is controlled by glycine transporters (GlyTs). Inhibitors of the two isoforms of GlyTs, the astrocytic type-1 (GlyT-1) and the neuronal type-2 (GlyT-2), decrease pain sensation evoked by injuries of peripheral sensory neurons or inflammation. The function of dorsal horn glycinergic interneurons has been suggested to be reduced in neuropathic pain, which can be reversed by GlyT-2 inhibitors (Org-25543, ALX1393). Several lines of evidence also support that peripheral nerve damage or inflammation may shift glutamatergic neurochemical transmission from N-methyl-D aspartate (NMDA) NR1/NR2A receptor- to NR1/NR2B receptor-mediated events (subunit switch). This pathological overactivation of NR1/NR2B receptors can be reduced by GlyT-1 inhibitors (NFPS, Org-25935), which decrease excessive glycine release from astroglial cells or by selective antagonists of NR2B subunits (ifenprodil, Ro 25-6981). Although several experiments suggest that GlyT inhibitors may represent a novel strategy in the control of neuropathic pain, proving this concept in human beings is hampered by lack of clinically applicable GlyT inhibitors. We also suggest that drugs inhibiting both GlyT-1 and GlyT-2 non-selectively and reversibly, may favorably target neuropathic pain. In this paper we overview inhibitors of the two isoforms of GlyTs as well as the effects of these drugs in experimental models of neuropathic pain. In addition, the possible mechanisms of action of the GlyT inhibitors, i.e. how they affect the neurochemical and pain transmission in the spinal cord, are also discussed. The growing evidence for the possible therapeutic intervention of neuropathic pain by GlyT inhibitors further urges development of drugable compounds, which may beneficially restore impaired pain transmission in various neuropathic conditions.
Collapse
Affiliation(s)
- Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary.
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Szilvia Barsi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Benjamin Hajnal
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Laszlo G Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| |
Collapse
|
24
|
Zou YX, Feng X, Chu ZY, Liu WH, Zhang XD, Ba JB. Preclinical safety assessment of antipyrine combined with lidocaine hydrochloride as ear drops. Regul Toxicol Pharmacol 2019; 103:34-40. [PMID: 30634025 DOI: 10.1016/j.yrtph.2019.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/14/2023]
Abstract
This study was designed to assess the preclinical toxicity of antipyrine combined with lidocaine hydrochloride ear drops (ALED) and support the clinical trials of ALED in clinical settings in China. All the experiments including acute toxicity in rodents, skin sensitization toxicity in guinea pigs, skin irritation toxicity in rabbits and chronic toxicity in rats were performed according to China Food and Drug Administration guidelines. The maximum tolerated dose (MTD) of ALED administration for mice and rats was over (400 g antipyrine plus 100 g lidocaine hydrochloride)/kg and (240 g andtipyrine plus 60 g lidocaine hydrochloride)/kg, respectively. No obvious skin sensitization toxicity and skin irritation toxicity were observed. The main changes concentrated in chronic toxicity study in rats. For the chronic toxicity, rats were administrated once a day for 28 consecutive days, and a 14-day recovery period was followed. The side effects of ALED included decreased dietary intake in male rats, increased proportion of reticulocytes, decreased or even inversed granulocyte:erythrocyte ratio, fluctuated alanine aminotransferase and aspartate aminotransferase, and slightly increased relative weight of liver. Conclusively, blood system (especially erythrocyte system) and digestive system, including liver and gastrointestinal tract, might be the toxic targets of ALED.
Collapse
Affiliation(s)
- Ying-Xin Zou
- Naval Medical Research Institute, Second Military Medical University, 880 Xiangyin Road, Shanghai, 200433, China
| | - Xu Feng
- Naval Medical Research Institute, Second Military Medical University, 880 Xiangyin Road, Shanghai, 200433, China
| | - Zhi-Yong Chu
- Naval Medical Research Institute, Second Military Medical University, 880 Xiangyin Road, Shanghai, 200433, China
| | - Wei-Hong Liu
- Naval Medical Research Institute, Second Military Medical University, 880 Xiangyin Road, Shanghai, 200433, China
| | - Xiao-Dong Zhang
- College of Naval Medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Jian-Bo Ba
- Naval Medical Research Institute, Second Military Medical University, 880 Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
25
|
Zafra F, Ibáñez I, Bartolomé-Martín D, Piniella D, Arribas-Blázquez M, Giménez C. Glycine Transporters and Its Coupling with NMDA Receptors. ADVANCES IN NEUROBIOLOGY 2018; 16:55-83. [PMID: 28828606 DOI: 10.1007/978-3-319-55769-4_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycine plays two roles in neurotransmission. In caudal areas like the spinal cord and the brainstem, it acts as an inhibitory neurotransmitter, but in all regions of the CNS, it also works as a co-agonist with L-glutamate at N-methyl-D-aspartate receptors (NMDARs). The glycine fluxes in the CNS are regulated by two specific transporters for glycine, GlyT1 and GlyT2, perhaps with the cooperation of diverse neutral amino acid transporters like Asc-1 or SNAT5/SN2. While GlyT2 and Asc-1 are neuronal proteins, GlyT1 and SNAT5 are mainly astrocytic, although neuronal forms of GlyT1 also exist. GlyT1 has attracted considerable interest from the medical community and the pharmaceutical industry since compelling evidence indicates a clear association with the functioning of NMDARs, whose activity is decreased in various psychiatric illnesses. By controlling extracellular glycine, transporter inhibitors might potentiate the activity of NMDARs without activating excitotoxic processes. Physiologically, GlyT1 is a central actor in the cross talk between glutamatergic, glycinergic, dopaminergic, and probably other neurotransmitter systems. Many of these relationships begin to be unraveled by studies performed in recent years using genetic and pharmacological models. These studies are also clarifying the interactions between glycine, glycine transporters, and other co-agonists of the glycine site of NMDARs like D-serine. These findings are also relevant to understand the pathophysiology of devastating diseases like schizophrenia, depression, anxiety, epilepsy, stroke, and chronic pain.
Collapse
Affiliation(s)
- Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ignacio Ibáñez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - David Bartolomé-Martín
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Arribas-Blázquez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilio Giménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera, 1, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras and IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Piraccini E, Biondi G, Byrne H, Calli M, Bellantonio D, Musetti G, Maitan S. Ultrasound Guided Transversus Thoracic Plane block, Parasternal block and fascial planes hydrodissection for internal mammary post thoracotomy pain syndrome. Eur J Pain 2018; 22:1673-1677. [PMID: 29770535 DOI: 10.1002/ejp.1249] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2018] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Pectoral Nerves Block (PECS) and Serratus Plane Block (SPB) have been used to treat persistent post-surgical pain after breast and thoracic surgery; however, they cannot block the internal mammary region, so a residual pain may occur in that region. Parasternal block (PSB) and Thoracic Transversus Plane Block (TTP) anaesthetize the anterior branches of T2-6 intercostal nerves thus they can provide analgesia to the internal mammary region. METHODS We describe a 60-year-old man suffering from right post-thoracotomy pain syndrome with residual pain located in the internal mammary region after a successful treatment with PECS and SPB. We performed a PSB and TTP and hydrodissection of fascial planes with triamcinolone and Ropivacaine. RESULTS Pain disappeared and the result was maintained 3 months later. DISCUSSION This report suggests that PSB and TTP with local anaesthetic and corticosteroid with hydrodissection of fascial planes might be useful to treat a post thoracotomy pain syndrome located in the internal mammary region. SIGNIFICANCE The use of Transversus Thoracic Plane and Parasternal Blocks and fascial planes hydrodissection as a novel therapeutic approach to treat a residual post thoracotomy pain syndrome even when already treated with Pectoral Nerves Block and Serratus Plane Block.
Collapse
Affiliation(s)
- E Piraccini
- Department of Surgery, Anesthesia and Intensive, Care Section "G.B. Morgagni-Pierantoni" Hospital, Forlì, Italy
| | - G Biondi
- Anesthesia and Intensive Care, University of Ferrara, Italy
| | - H Byrne
- Medical Diagnostic Department, Kingsbridge Private Hospital, Belfast, UK
| | - M Calli
- Department of Surgery, Anesthesia and Intensive, Care Section "G.B. Morgagni-Pierantoni" Hospital, Forlì, Italy
| | - D Bellantonio
- Department of Surgery, Anesthesia and Intensive, Care Section "G.B. Morgagni-Pierantoni" Hospital, Forlì, Italy
| | - G Musetti
- Department of Emergency, Anesthesia and Intensive Care Section, "M. Bufalini Hospital", Cesena, Italy
| | - S Maitan
- Department of Surgery, Anesthesia and Intensive, Care Section "G.B. Morgagni-Pierantoni" Hospital, Forlì, Italy
| |
Collapse
|
27
|
Piegeler T, Werdehausen R. [Systemic effects of amide-linked local anesthetics : Old drugs, new magic bullets?]. Anaesthesist 2018; 67:525-528. [PMID: 29802438 DOI: 10.1007/s00101-018-0453-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Besides the well-known analgesic effects of amide-linked local anesthetics exerted via the inhibition of the voltage-gated sodium channel, these substances also possess a certain number of properties, which bear the potential to positively influence the outcome after surgery. The results of several experimental as well as clinical studies suggest the possibility of an enhanced recovery after surgery, reduction in the incidence of chronic pain, preservation of endothelial barrier function during acute lung injury and the prevention of metastasis of solid tumors by systemic effects of local anesthetic administration. Mechanistic studies were able to identify several "new targets", such as the inhibition of spinal glycine transporters or of inflammatory signaling as induced by tumor necrosis factor alpha. Further elucidation of these mechanistic pathways as well as the translation of these promising experimental results into clinical practice is a crucial component of research activities in the field of anesthesia.
Collapse
Affiliation(s)
- T Piegeler
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Leipzig (AöR), Liebigstraße 20, 04103, Leipzig, Deutschland.
| | - R Werdehausen
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Leipzig (AöR), Liebigstraße 20, 04103, Leipzig, Deutschland
| |
Collapse
|
28
|
Berk T, Silberstein SD. The Use and Method of Action of Intravenous Lidocaine and Its Metabolite in Headache Disorders. Headache 2018. [DOI: 10.1111/head.13298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Berk
- NYU School of Medicine; New York NY 10016 USA
| | | |
Collapse
|
29
|
Armbruster A, Neumann E, Kötter V, Hermanns H, Werdehausen R, Eulenburg V. The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory Pain. Front Mol Neurosci 2018; 10:438. [PMID: 29375301 PMCID: PMC5767717 DOI: 10.3389/fnmol.2017.00438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/18/2017] [Indexed: 02/05/2023] Open
Abstract
Background: Chronic pain conditions are difficult to treat and the therapeutic outcome is frequently unsatisfactory. Changes in excitation/inhibition balance within the dorsal horn contribute to the establishment and persistence of chronic pain. Thus, facilitation of inhibitory neurotransmission is a promising approach to treat chronic pain pharmacologically. Glycine transporter 1 (GlyT1) plays an important role in regulating extracellular glycine concentrations. Aim of the present study therefore was to investigate whether the specific GlyT1 inhibitor bitopertin (RG1678; RO4917838) might constitute a novel treatment for chronic pain by facilitating glycinergic inhibition. Methods: Mechanical allodynia and thermal hyperalgesia were induced by chronic constriction injury of the sciatic nerve or carrageenan injections into the plantar surface of the hind paw in rodents. The effect of acute and long-term bitopertin application on the reaction threshold to mechanical and thermal stimuli was determined. General activity was determined in open field experiments. The glycine concentration in cerebrospinal fluid and blood was measured by HPLC. Results: Systemic application of bitopertin in chronic pain conditions lead to a significant increase of the reaction thresholds to mechanical and thermal stimuli in a time and dose-dependent manner. Long-term application of bitopertin effectuated stable beneficial effects over 4 weeks. Bitopertin did not alter reaction thresholds to stimuli in control animals and had no effect on general locomotor activity and anxiety but lead to an increased glycine concentration in cerebrospinal fluid. Conclusion: These findings suggest that inhibition of the GlyT1 by bitopertin represents a promising new approach for the treatment of chronic pain.
Collapse
Affiliation(s)
- Anja Armbruster
- Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Elena Neumann
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Valentin Kötter
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Henning Hermanns
- Department of Anesthesiology, Academic Medical Center, Amsterdam, Netherlands
| | - Robert Werdehausen
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Volker Eulenburg
- Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
30
|
Estebe JP. Intravenous lidocaine. Best Pract Res Clin Anaesthesiol 2017; 31:513-521. [DOI: 10.1016/j.bpa.2017.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/13/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022]
|
31
|
Eberhardt M, Stueber T, de la Roche J, Herzog C, Leffler A, Reeh PW, Kistner K. TRPA1 and TRPV1 are required for lidocaine-evoked calcium influx and neuropeptide release but not cytotoxicity in mouse sensory neurons. PLoS One 2017; 12:e0188008. [PMID: 29141003 PMCID: PMC5687772 DOI: 10.1371/journal.pone.0188008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/29/2017] [Indexed: 12/02/2022] Open
Abstract
Background Local anaesthetics (LA) reduce neuronal excitability by inhibiting voltage-gated Na+ channels. When applied at high concentrations in the direct vicinity of nerves, LAs can also induce relevant irritation and neurotoxicity via mechanisms involving an increase of intracellular Ca2+. In the present study we explored the role of the Ca2+-permeable ion channels TRPA1 and TRPV1 for lidocaine-induced Ca2+-influx, neuropeptide release and neurotoxicity in mouse sensory neurons. Methods Cultured dorsal root ganglion (DRG) neurons from wildtype and mutant mice lacking TRPV1, TRPA1 or both channels were explored by means of calcium imaging, whole-cell patch clamp recordings and trypan blue staining for cell death. Release of calcitonin gene-related peptide (CGRP) from isolated mouse peripheral nerves was determined with ELISA. Results Lidocaine up to 10 mM induced a concentration-dependent reversible increase in intracellular Ca2+ in DRG neurons from wildtype and mutant mice lacking one of the two receptors, but not in neurons lacking both TRPA1 and TRPV1. 30 mM lidocaine also released Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. While 10 mM lidocaine evoked an axonal CGRP release requiring expression of either TRPA1 or TRPV1, CGRP release induced by 30 mM lidocaine again mobilized internal Ca2+ stores. Lidocaine-evoked cell death required neither TRPV1 nor TRPA1. Summary Depending on the concentration, lidocaine employs TRPV1, TRPA1 and intracellular Ca2+ stores to induce a Ca2+-dependent release of the neuropeptide CGRP. Lidocaine-evoked cell death does not seem to require Ca2+ influx through TRPV1 or TRPV1.
Collapse
Affiliation(s)
- Mirjam Eberhardt
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
- Department for Anaesthesia and Critical Care Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Stueber
- Department for Anaesthesia and Critical Care Medicine, Hannover Medical School, Hannover, Germany
| | - Jeanne de la Roche
- Department for Anaesthesia and Critical Care Medicine, Hannover Medical School, Hannover, Germany
- Institute of Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Christine Herzog
- Department for Anaesthesia and Critical Care Medicine, Hannover Medical School, Hannover, Germany
| | - Andreas Leffler
- Department for Anaesthesia and Critical Care Medicine, Hannover Medical School, Hannover, Germany
| | - Peter W. Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Katrin Kistner
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
32
|
Cioffi CL. Modulation of Glycine-Mediated Spinal Neurotransmission for the Treatment of Chronic Pain. J Med Chem 2017; 61:2652-2679. [PMID: 28876062 DOI: 10.1021/acs.jmedchem.7b00956] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic pain constitutes a significant and expanding worldwide health crisis. Currently available analgesics poorly serve individuals suffering from chronic pain, and new therapeutic agents that are more effective, safer, and devoid of abuse liabilities are desperately needed. Among the myriad of cellular and molecular processes contributing to chronic pain, spinal disinhibition of pain signaling to higher cortical centers plays a critical role. Accumulating evidence shows that glycinergic inhibitory neurotransmission in the spinal cord dorsal horn gates nociceptive signaling, is essential in maintaining physiological pain sensitivity, and is diminished in pathological pain states. Thus, it is hypothesized that agents capable of enhancing glycinergic tone within the dorsal horn could obtund nociceptor signaling to the brain and serve as analgesics for persistent pain. This Perspective highlights the potential that pharmacotherapies capable of increasing inhibitory spinal glycinergic neurotransmission hold in providing new and transformative analgesic therapies for the treatment of chronic pain.
Collapse
Affiliation(s)
- Christopher L Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences , Albany College of Pharmacy and Health Sciences , 106 New Scotland Avenue , Albany , New York 12208 United States
| |
Collapse
|
33
|
Nedeljkovic SS, Correll DJ, Bao X, Zamor N, Zeballos JL, Zhang Y, Young MJ, Ledley J, Sorace J, Eng K, Hamsher CP, Maniam R, Chin JW, Tsui B, Cho S, Lee DH. Randomised, double-blind, parallel group, placebo-controlled study to evaluate the analgesic efficacy and safety of VVZ-149 injections for postoperative pain following laparoscopic colorectal surgery. BMJ Open 2017; 7:e011035. [PMID: 28213593 PMCID: PMC5318554 DOI: 10.1136/bmjopen-2016-011035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/02/2016] [Accepted: 08/03/2016] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION In spite of advances in understanding and technology, postoperative pain remains poorly treated for a significant number of patients. In colorectal surgery, the need for developing novel analgesics is especially important. Patients after bowel surgery are assessed for rapid return of bowel function and opioids worsen ileus, nausea and constipation. We describe a prospective, double-blind, parallel group, placebo-controlled randomised controlled trial testing the hypothesis that a novel analgesic drug, VVZ -149, is safe and effective in improving pain compared with providing opioid analgesia alone among adults undergoing laparoscopic colorectal surgery. METHODS AND ANALYSIS Based on sample size calculations for primary outcome, we plan to enrol 120 participants. Adult patients without significant medical comorbidities or ongoing opioid use and who are undergoing laparoscopic colorectal surgery will be enrolled. Participants are randomly assigned to receive either VVZ-149 with intravenous (IV) hydromorphone patient-controlled analgesia (PCA) or the control intervention (IV PCA alone) in the postoperative period. The primary outcome is the Sum of Pain Intensity Difference over 8 hours (SPID-8 postdose). Participants receive VVZ-149 for 8 hours postoperatively to the primary study end point, after which they continue to be assessed for up to 24 hours. We measure opioid consumption, record pain intensity and pain relief, and evaluate the number of rescue doses and requests for opioid. To assess safety, we record sedation, nausea and vomiting, respiratory depression, laboratory tests and ECG readings after study drug administration. We evaluate for possible confounders of analgesic response, such as anxiety, depression and catastrophising behaviours. The study will also collect blood sample data and evaluate for pharmacokinetic and pharmacodynamic relationships. ETHICS AND DISSEMINATION Ethical approval of the study protocol has been obtained from Institutional Review Boards at the participating institutions. Trial results will be disseminated through scientific conference presentations and by publication in scientific journals. TRIAL REGISTRATION NUMBER NCT02489526; pre-results.
Collapse
Affiliation(s)
- Srdjan S Nedeljkovic
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Darin J Correll
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xiaodong Bao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natacha Zamor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jose L Zeballos
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark J Young
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Johanna Ledley
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jessica Sorace
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kristen Eng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Carlyle P Hamsher
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rajivan Maniam
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jonathan W Chin
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Becky Tsui
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Doo H Lee
- Vivozon, Inc. Seoul, Seoul, South Korea
| |
Collapse
|
34
|
Liu Y, Chen H, Lu J, Jiang Y, Yang R, Gao S, Dong X, Chen W. Urinary metabolomics of complete Freund's adjuvant-induced hyperalgesia in rats. Biomed Chromatogr 2017; 31. [PMID: 28058725 DOI: 10.1002/bmc.3886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/25/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022]
Abstract
The aim of this study was to demonstrate the differences of metabolomics changes in a hyperalgesia model and find potent biomarkers of hyperalgesia. Seven rats were placed in metabolic cages. An emulsion containing 500 μg of Complete Freund's adjuvant (CFA) was used to induce hyperalgesia. Urine samples were collected prior to the injection of CFA and on post-injection days 1, 3 and 7. Ultraperformance liquid chromatography, coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS), was used for a quantitative analysis of urinary metabolic changes in the CFA-induced hyperalgesia model. Differences between the metabolic profiles of the rats in the four groups were analyzed using partial least squares discriminant analysis. Thirty-four potential urine metabolite biomarkers were identified, which changed in a trend similar to the pain threshold. These potential biomarkers were involved in 11 metabolic pathways, as follows: alanine, aspartate, and glutamate metabolism; ascorbate and aldarate metabolism; glycerolipid metabolism; glycerophospholipid metabolism; histidine metabolism; phenylalanine metabolism; sphingolipid metabolism; tryptophan metabolism; tyrosine metabolism; valine, leucine and isoleucine biosynthesis; and vitamin B6 metabolism. These results may improve our understanding of hyperalgesia and provide a basis for the clinical diagnosis of hyperalgesia.
Collapse
Affiliation(s)
- Yang Liu
- Student Brigade, Second Military Medical University, Shanghai, 200433, China
| | - Hui Chen
- Department of Anesthesiology, Changhai Hospital, Shanghai, 200433, China
| | - Jun Lu
- Department of Anesthesiology, Changhai Hospital, Shanghai, 200433, China
| | - Youshui Jiang
- Department of Anesthesiology, Changhai Hospital, Shanghai, 200433, China
| | - Rui Yang
- Student Brigade, Second Military Medical University, Shanghai, 200433, China
| | - Songyan Gao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Shanghai, 200433, China
| |
Collapse
|
35
|
Przeklasa-Muszyńska A, Kocot-Kępska M, Dobrogowski J, Wiatr M, Mika J. Intravenous lidocaine infusions in a multidirectional model of treatment of neuropathic pain patients. Pharmacol Rep 2016; 68:1069-75. [DOI: 10.1016/j.pharep.2016.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022]
|
36
|
Schillers F, Eberhardt E, Leffler A, Eberhardt M. Propacetamol-Induced Injection Pain Is Associated with Activation of Transient Receptor Potential Vanilloid 1 Channels. J Pharmacol Exp Ther 2016; 359:18-25. [PMID: 27457427 DOI: 10.1124/jpet.116.233452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/22/2016] [Indexed: 01/16/2023] Open
Abstract
Propacetamol (PPCM) is a prodrug of paracetamol (PCM), which was generated to increase water solubility of PCM for intravenous delivery. PPCM is rapidly hydrolyzed by plasma esterases to PCM and diethylglycine and shares some structural and metabolic properties with lidocaine. Although PPCM is considered to be comparable to PCM regarding its analgesic properties, injection pain is a common side effect described for PPCM but not PCM. Injection pain is a frequent and unpleasant side effect of numerous drugs in clinical use, and previous reports have indicated that the ligand gated ion channels transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) can mediate this effect on sensory neurons. This study aimed to investigate molecular mechanisms by which PPCM, in contrast to PCM, causes injection pain. Therefore, human TRPV1 and TRPA1 receptors were expressed in human embryonic kidney 293 cells and investigated by means of whole-cell patch clamp and ratiometric calcium imaging. PPCM (but not PCM) activated TRPV1, sensitized heat-induced currents, and caused an increase in intracellular calcium. In TRPA1-expressing cells however, both PPCM and PCM evoked calcium responses but failed to induce inward currents. Intracutaneous injection of PPCM, but not of PCM, in human volunteers induced an intense and short-lasting pain and an increase in superficial blood flow, indicating activation of nociceptive C fibers and subsequent neuropeptide release. In conclusion, activation of human TRPV1 by PPCM seems to be a relevant mechanism for induction of pain upon intracutaneous injection and thus also for pain reported as an adverse side effect upon intravenous administration.
Collapse
Affiliation(s)
- Florian Schillers
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany (F.S., A.L., M.E.); and Department of Anaesthesiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany (E.E.)
| | - Esther Eberhardt
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany (F.S., A.L., M.E.); and Department of Anaesthesiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany (E.E.)
| | - Andreas Leffler
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany (F.S., A.L., M.E.); and Department of Anaesthesiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany (E.E.)
| | - Mirjam Eberhardt
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany (F.S., A.L., M.E.); and Department of Anaesthesiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany (E.E.)
| |
Collapse
|