1
|
Xu H, Wang Z, Wang Z, Lei Y, Chen J, Zhou H, Li M, Diao J, Bian Y, Zhou B, Zhou Y. Recent trends in Tuina for chronic pain management: A bibliometric analysis and literature review. Complement Ther Med 2024; 84:103068. [PMID: 39004289 DOI: 10.1016/j.ctim.2024.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND The utilization of Tuina as a therapeutic intervention for the management of chronic pain has experienced a gradually increase in its popularity, and the purpose of this bibliometric analysis is to offer a comprehensive understanding of the current state and frontier trends, as well as to provide recommendations for future research directions. METHODS Publications on Tuina for chronic pain published between 2004 and 2023 were retrieved from the Web of Science Core Collection (WoSCC). Microsoft Excel, CiteSpace, VOSViewer, and the R package "bibliometrix" were used to quantitatively analyse the annual publication volume, countries/regions, journals, institutions, cited references, authors, and keywords. RESULTS A total of 287 publications were retrieved. The number of annual publications on the use of Tuina for treating chronic pain has gradually increased. Most publications were published in China and the United States. Notably, the most productive institution and author were identified as Shanghai University of Traditional Chinese Medicine and Min Fang, respectively. Medicine ranked first as the most influential affiliate and most productive journal. These publications came from 1650 authors, among whom Edzard Ernst had the most co-citations. Keyword analysis revealed that the new research frontier was low back pain. CONCLUSION The utilization of Tuina for the treatment of chronic pain has been gaining increasing recognition. Acupuncture, randomised controlled trials, systematic reviews, etc. were the main research subjects. Furthermore, low back pain is the new research frontier. This study provides an in-depth perspective on Tuina for chronic pain, which provides valuable reference material for clinicians with insights of therapeutic strategy, educators with valuable topics, and researchers with new research directions.
Collapse
Affiliation(s)
- Hui Xu
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Zheng Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Zhen Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yang Lei
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Juntao Chen
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Hang Zhou
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Mengmeng Li
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Jieyao Diao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yanqin Bian
- Orthopedic Research Laboratory, University of California, Davis 95616, USA
| | - Bin Zhou
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Tuina Department, Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Yunfeng Zhou
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| |
Collapse
|
2
|
Deng K, Hu DX, Zhang WJ. Application of cell transplantation in the treatment of neuropathic pain. Neuroscience 2024; 554:43-51. [PMID: 38986736 DOI: 10.1016/j.neuroscience.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Nerve injury can not only lead to sensory and motor dysfunction, but also be complicated with neuropathic pain (NPP), which brings great psychosomatic injury to patients. At present, there is no effective treatment for NPP. Based on the functional characteristics of cell transplantation in nerve regeneration and injury repair, cell therapy has been used in the exploratory treatment of NPP and has become a promising treatment of NPP. In this article, we discuss the current mainstream cell types for the treatment of NPP, including Schwann cells, olfactory ensheathing cells, neural stem cells and mesenchymal stem cells in the treatment of NPP. These bioactive cells transplanted into the host have pharmacological properties of decreasing pain threshold and relieving NPP by exerting nutritional support, neuroprotection, immune regulation, promoting axonal regeneration, and remyelination. Cell transplantation can also change the microenvironment around the nerve injury, which is conducive to the survival of neurons. It can effectively relieve pain by repairing the injured nerve and rebuilding the nerve function. At present, some preclinical and clinical studies have shown that some encouraging results have been achieved in NPP treatment based on cell transplantation. Therefore, we discussed the feasible strategy of cell transplantation as a treatment of NPP and the problems and challenges that need to be solved in the current application of cell transplantation in NPP therapy.
Collapse
Affiliation(s)
- Kan Deng
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China; Ji an College, Ji an City, Jiangxi Province, China
| | - Dong-Xia Hu
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Wen-Jun Zhang
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
3
|
Xiong HY, Hendrix J, Schabrun S, Wyns A, Campenhout JV, Nijs J, Polli A. The Role of the Brain-Derived Neurotrophic Factor in Chronic Pain: Links to Central Sensitization and Neuroinflammation. Biomolecules 2024; 14:71. [PMID: 38254671 PMCID: PMC10813479 DOI: 10.3390/biom14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic pain is sustained, in part, through the intricate process of central sensitization (CS), marked by maladaptive neuroplasticity and neuronal hyperexcitability within central pain pathways. Accumulating evidence suggests that CS is also driven by neuroinflammation in the peripheral and central nervous system. In any chronic disease, the search for perpetuating factors is crucial in identifying therapeutic targets and developing primary preventive strategies. The brain-derived neurotrophic factor (BDNF) emerges as a critical regulator of synaptic plasticity, serving as both a neurotransmitter and neuromodulator. Mounting evidence supports BDNF's pro-nociceptive role, spanning from its pain-sensitizing capacity across multiple levels of nociceptive pathways to its intricate involvement in CS and neuroinflammation. Moreover, consistently elevated BDNF levels are observed in various chronic pain disorders. To comprehensively understand the profound impact of BDNF in chronic pain, we delve into its key characteristics, focusing on its role in underlying molecular mechanisms contributing to chronic pain. Additionally, we also explore the potential utility of BDNF as an objective biomarker for chronic pain. This discussion encompasses emerging therapeutic approaches aimed at modulating BDNF expression, offering insights into addressing the intricate complexities of chronic pain.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON N6A 4V2, Canada
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
4
|
Natale CA, Christie MJ, Aubrey KR. Spinal glycinergic currents are reduced in a rat model of neuropathic pain following partial nerve ligation but not chronic constriction injury. J Neurophysiol 2023; 129:333-341. [PMID: 36541621 DOI: 10.1152/jn.00451.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Animal models have consistently indicated that central sensitization and the development of chronic neuropathic pain are linked to changes to inhibitory signaling in the dorsal horn of the spinal cord. However, replication of data investigating the cellular mechanisms that underlie these changes remains a challenge and there is still a lack of understanding about what aspects of spinal inhibitory transmission most strongly contribute to the disease. Here, we compared the effect of two different sciatic nerve injuries commonly used to generate rodent models of neuropathic pain on spinal glycinergic signaling. Using whole cell patch-clamp electrophysiology in spinal slices, we recorded from neurons in the lamina II of the dorsal horn and evoked inhibitory postsynaptic currents with a stimulator in lamina III, where glycinergic cell bodies are concentrated. We found that glycine inputs onto radial neurons were reduced following partial nerve ligation (PNL) of the sciatic nerve, consistent with a previous report. However, this finding was not replicated in animals that underwent chronic constriction injury (CCI) to the same nerve region. To limit the between-experiment variability, we kept the rat species, sex, and age consistent and had a single investigator carry out the surgeries. These data show that PNL and CCI cause divergent spinal signaling outcomes in the cord and add to the body of evidence suggesting that treatments for neuropathic pain should be triaged according to nerve injury or cellular dysfunction rather than the symptoms of the disease.NEW & NOTEWORTHY Neuropathic pain models are used in preclinical research to investigate the mechanisms underlying allodynia, a common symptom of neuropathic pain, and to test, develop, and validate therapies for persistent pain. We demonstrate that a glycinergic dysfunction is consistently associated with partial nerve ligation but not the chronic constriction injury model. This suggests that the cellular effects produced by each injury are distinct and that data from different neuropathic pain models should be considered separately.
Collapse
Affiliation(s)
- Claudia A Natale
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Macdonald J Christie
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Jergova S, Dugan EA, Sagen J. Attenuation of SCI-Induced Hypersensitivity by Intensive Locomotor Training and Recombinant GABAergic Cells. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010084. [PMID: 36671656 PMCID: PMC9854592 DOI: 10.3390/bioengineering10010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
The underlying mechanisms of spinal cord injury (SCI)-induced chronic pain involve dysfunctional GABAergic signaling and enhanced NMDA signaling. Our previous studies showed that SCI hypersensitivity in rats can be attenuated by recombinant rat GABAergic cells releasing NMDA blocker serine-histogranin (SHG) and by intensive locomotor training (ILT). The current study combines these approaches and evaluates their analgesic effects on a model of SCI pain in rats. Cells were grafted into the spinal cord at 4 weeks post-SCI to target the chronic pain, and ILT was initiated 5 weeks post-SCI. The hypersensitivity was evaluated weekly, which was followed by histological and biochemical assays. Prolonged effects of the treatment were evaluated in subgroups of animals after we discontinued ILT. The results show attenuation of tactile, heat and cold hypersensitivity in all of the treated animals and reduced levels of proinflammatory cytokines IL1β and TNFα in the spinal tissue and CSF. Animals with recombinant grafts and ILT showed the preservation of analgesic effects even during sedentary periods when the ILT was discontinued. Retraining helped to re-establish the effect of long-term training in all of the groups, with the greatest impact being in animals with recombinant grafts. These findings suggest that intermittent training in combination with cell therapy might be an efficient approach to manage chronic pain in SCI patients.
Collapse
|
6
|
Yin Q, Zou T, Sun S, Yang D. Cell therapy for neuropathic pain. Front Mol Neurosci 2023; 16:1119223. [PMID: 36923653 PMCID: PMC10008860 DOI: 10.3389/fnmol.2023.1119223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Neuropathic pain (NP) is caused by a lesion or a condition that affects the somatosensory system. Pathophysiologically, NP can be ascribed to peripheral and central sensitization, implicating a wide range of molecular pathways. Current pharmacological and non-pharmacological approaches are not very efficacious, with over half of NP patients failing to attain adequate pain relief. So far, pharmacological and surgical treatments have focused primarily on symptomatic relief by modulating pain transduction and transmission, without treating the underlying pathophysiology. Currently, researchers are trying to use cell therapy as a therapeutic alternative for the treatment of NP. In fact, mounting pre-clinical and clinical studies showed that the cell transplantation-based therapy for NP yielded some encouraging results. In this review, we summarized the use of cell grafts for the treatment of NP caused by nerve injury, synthesized the latest advances and adverse effects, discussed the possible mechanisms to inform pain physicians and neurologists who are endeavoring to develop cell transplant-based therapies for NP and put them into clinical practice.
Collapse
Affiliation(s)
- QingHua Yin
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - TianHao Zou
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShuJun Sun
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Yang
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Zheng Y, Zhou Y, Wu Q, Yue J, Ying X, Li S, Lou X, Yang G, Tu W, Zhou K, Jiang S. Effect of electroacupuncture on the expression of P2 × 4, GABAA γ 2 and long-term potentiation in spinal cord of rats with neuropathic pain. Brain Res Bull 2020; 162:1-10. [PMID: 32428626 DOI: 10.1016/j.brainresbull.2020.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To observe the impacts of electroacupuncture (EA) stimulation at "Zusanli and Kunlun Points" on spinal dorsal horn microglia activation in L5 spinal nerve ligation (SNL) rats and BNDF, P2 × 4 and GABAAγ2, and the changes in spinal dorsal horn synaptic plasticity in model rats. METHODS Adult male SD rats (180-220 g) were selected and randomly divided into 6 groups, including the sham group, the SNL group, the SNL + EA group, the SNL+5-BDBD group, the SNL + EA + 5-BDBD group and the SNL + FEA group. The changes in the Iba-1, BDNF, P2 × 4 and GABAAγ2 in the spinal cord of rats were observed by Western blotting, immunofluorescence, RT-PCR and other techniques; the long-term changes in the potential after the excitatory synapse of the spinal dorsal horn in rats were observed by in vivo electrophysiological technique. RESULTS After 7 days of intervention, the fluorescence intensity (FI) of P2 × 4 and Iba-1 in the SNL + EA group was lower than that in the SNL group and higher than that in the sham group(P < 0.01), but the FI of GABAAγ2 was higher than that in the SNL group(P < 0.01); the expression of Iba-1, BDNF and P2 × 4 proteins in the SNL + EA group, the SNL+5-BDBD group and the SNL + EA + 5-BDBD group was significantly lower than that in the SNL + FEA group(P < 0.05), but the expression of GABAAγ2 protein was higher (P < 0.05); after treatment with EA, the expression levels of Iba-1 mRNA and P2 × 4 mRNA in the SNL + EA group were lower than those in the SNL group(P < 0.01), but the expression levels of GABAAγ2 mRNA were higher (P < 0.01). Meanwhile, long-term potentiation changes could not be induced in the SNL + EA group. CONCLUSION The EA stimulation at "Zusanli" and "Kunlun" points can improve the pain threshold of rats with neuropathic pain (NP), inhibit the excitatory postsynaptic potential (EPSP), and weaken the excitatory transmission efficiency between synapses during NP.
Collapse
Affiliation(s)
- Yuyin Zheng
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiaoyun Wu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Yue
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinwang Ying
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Li
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinfa Lou
- Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Mutually beneficial effects of intensive exercise and GABAergic neural progenitor cell transplants in reducing neuropathic pain and spinal pathology in rats with spinal cord injury. Exp Neurol 2020; 327:113208. [PMID: 31962127 DOI: 10.1016/j.expneurol.2020.113208] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 01/13/2023]
Abstract
Spinal cord injury (SCI) produces both locomotor deficits and sensory dysfunction that greatly reduce the overall quality of life. Mechanisms underlying chronic pain include increased neuro-inflammation and changes in spinal processing of sensory signals, with reduced inhibitory GABAergic signaling a likely key player. Our previous research demonstrated that spinal transplantation of GABAergic neural progenitor cells (NPCs) reduced neuropathic pain while intensive locomotor training (ILT) could reduce development of pain and partially reverse already established pain behaviors. Therefore, we evaluate the potential mutually beneficial anti-hypersensitivity effects of NPC transplants cells in combination with early or delayed ILT. NPC transplants were done at 4 weeks post-SCI. ILT, using a progressive ramping treadmill protocol, was initiated either 5 days post-SCI (early: pain prevention group) or at 5 weeks post-SCI (delayed: to reverse established pain) in male Sprague Dawley rats. Results showed that either ILT alone or NPCs alone could partially attenuate SCI neuropathic pain behaviors in both prevention and reversal paradigms. However, the combination of ILT with NPC transplants significantly enhanced neuropathic pain reduction on most of the outcome measures including tests for allodynia, hyperalgesia, and ongoing pain. Immunocytochemical and neurochemical analyses showed decreased pro-inflammatory markers and spinal pathology with individual treatments; these measures were further improved by the combination of either early or delayed ILT and GABAergic cellular transplantation. Lumbar dorsal horn GABAergic neuronal and process density were nearly restored to normal levels by the combination treatment. Together, these interventions may provide a less hostile and more supportive environment for promoting functional restoration in the spinal dorsal horn and attenuation of neuropathic pain following SCI. These findings suggest mutually beneficial effects of ILT and NPC transplants for reducing SCI neuropathic pain.
Collapse
|
9
|
Abstract
Neuropathic itch is clinically important but has received much less attention as compared to neuropathic pain. In the past decade, itch-specific pathways have been characterized on a cellular and molecular level, but their exact role in the pathophysiology of neuropathic itch is still unclear. Traditionally, mutually exclusive theories for itch such as labeled line, temporal/spatial pattern, or intensity theory have been proposed, and experimental studies in mice mainly favor the specificity theory of itch. By contrast, results in humans also suggest a role for spatial and temporal patterns in neuropathic itch. Rarefication of skin innervation in neuropathy could provide a "spatial contrast" discharge pattern, and axotomy could induce de novo expression of the itch-specific spinal neuropeptide, gastrin-releasing peptide, in primary afferent nociceptors, thereby modulating itch processing in the dorsal horn. Thus, clinical neuropathy may generate itch by changes in the spatial and temporal discharge patterns of nociceptors, hijacking the labeled line processing of itch and abandoning the canonical scheme of mutual exclusive itch theories. Moreover, the overlap between itch and pain symptoms in neuropathy patients complicates direct translation from animal experiments and, on a clinical level, necessitates collaboration between medical specialities, such as dermatologists, anesthesiologists, and neurologists.
Collapse
|
10
|
Abstract
Neuropathic itch is a pathological condition that is due to damage within the nervous system. This type of itch can be severe and unrelenting, which has a very negative impact on quality of life. Neuropathic itch is more common than generally appreciated because most types of neuropathic pain have a neuropathic itch counterpart. Unfortunately, much like neuropathic pain, there is a lack of effective treatments for neuropathic itch. Here, we consider the neural basis of itch and then describe how injuries within these neural circuits can lead to neuropathic itch in both animal models and human disease states.
Collapse
|
11
|
Braz JM, Etlin A, Juarez-Salinas D, Llewellyn-Smith IJ, Basbaum AI. Rebuilding CNS inhibitory circuits to control chronic neuropathic pain and itch. PROGRESS IN BRAIN RESEARCH 2018; 231:87-105. [PMID: 28554402 DOI: 10.1016/bs.pbr.2016.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell transplantation offers an attractive alternative to pharmacotherapy for the management of a host of clinical conditions. Most importantly, the transplanted cells provide a continuous, local delivery of therapeutic compounds, which avoids many of the adverse side effects associated with systemically administered drugs. Here, we describe the broad therapeutic utility of transplanting precursors of cortical inhibitory interneurons derived from the embryonic medial ganglionic eminence (MGE), in a variety of chronic pain and itch models in the mouse. Despite the cortical environment in which the MGE cells normally develop, these cells survive transplantation and will even integrate into the circuitry of an adult host spinal cord. When transplanted into the spinal cord, the cells significantly reduce the hyperexcitability that characterizes both chronic neuropathic pain and itch conditions. This MGE cell-based strategy differs considerably from traditional pharmacological treatments as the approach is potentially disease modifying (i.e., the therapy targets the underlying etiology of the pain and itch pathophysiology).
Collapse
Affiliation(s)
- Joao M Braz
- University of California-San Francisco, San Francisco, CA, United States
| | - Alex Etlin
- University of California-San Francisco, San Francisco, CA, United States
| | | | - Ida J Llewellyn-Smith
- Cardiovascular Medicine, Human Physiology and Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Allan I Basbaum
- University of California-San Francisco, San Francisco, CA, United States.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This review aims to describe the recent findings on epidemiology, pathophysiology, and management of neuropathic symptoms of the ocular surface, with a focus on potential similarities between sensations of dry eye, pain and itch. RECENT FINDINGS A narrative review of the literature was undertaken. Key references from research in dry eye, neuropathic symptoms of the ocular surface, ocular pain and itch, as well as general references on itch and pain neurobiology were included. Recent findings suggest aspects of dry eye, chronic ocular pain and itch symptomatology are driven by neuropathic pain mechanisms involving peripheral and central sensitization processes. SUMMARY Ocular dryness, pain, and itch are prevalent complaints with several of shared features. Multiple lines of evidence suggest that peripheral and central neuronal sensitization processes are involved in generating and maintaining ocular sensory symptoms. Research is warranted on the epidemiology of ocular sensations, molecular mechanisms involved in nociception and pruriception in the eye, electrophysiological alterations in animal models of eye conditions, and therapeutic modalities that can alleviate unpleasant ocular sensations.
Collapse
|
13
|
Saffari TM, Schüttenhelm BN, van Neck JW, Holstege JC. Nerve reinnervation and itch behavior in a rat burn wound model. Wound Repair Regen 2018; 26:16-26. [PMID: 29453855 DOI: 10.1111/wrr.12620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/05/2018] [Indexed: 11/28/2022]
Abstract
In this study, we investigated whether postburn itch in rats, after a full thickness burn, is correlated to the nervous reinnervation of the burn wound area. For this purpose, we determined scratching duration (expressed as second/hour) at 24 hours, 2, 4, 8, and 12 weeks postburn and combined this with immunohistochemistry for protein gene product 9.5 (PGP9.5) to identify all nerve fibers, calcitonin gene related peptide (CGRP) to identify peptidergic fibers, tyrosine hydroxylase (TH) for sympathetic fibers, and growth-associated protein 43 (GAP-43) for regrowing fibers. We found a modest, but highly significant, increase in scratching duration of all burn wound rats from 3 to 12 weeks postburn (maximally 63 ± 9.5 second/hour compared to sham 3.1 ± 1.4 second/hour at 9 weeks). At 24 hours postburn, all nerve fibers had disappeared from the burn area. Around 4 weeks postburn PGP 9.5- and CGRP-immunoreactive nerve fibers returned to control levels. TH- and GAP-43-IR nerve fibers, which we found to be almost completely colocalized, did not regrow. No correlation was found between scratching duration and nervous reinnervation of the skin. The present results suggest that in rat, like in human, burn wound healing will induce increased scratching, which is not correlated to the appearance of nervous reinnervation.
Collapse
Affiliation(s)
- Tiam M Saffari
- Department of Neuroscience, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Barthold N Schüttenhelm
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Johan W van Neck
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Jan C Holstege
- Department of Neuroscience, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Fu H, Li F, Thomas S, Yang Z. Hyperbaric oxygenation alleviates chronic constriction injury (CCI)-induced neuropathic pain and inhibits GABAergic neuron apoptosis in the spinal cord. Scand J Pain 2017; 17:330-338. [PMID: 28927648 DOI: 10.1016/j.sjpain.2017.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS Dysfunction of GABAergic inhibitory controls contributes to the development of neuropathic pain. We examined our hypotheses that (1) chronic constriction injury (CCI)-induced neuropathic pain is associated with increased spinal GABAergic neuron apoptosis, and (2) hyperbaric oxygen therapy (HBO) alleviates CCI-induced neuropathic pain by inhibiting GABAergic neuron apoptosis. METHODS Male rats were randomized into 3 groups: CCI, CCI+HBO and the control group (SHAM). Mechanical allodynia was tested daily following CCI procedure. HBO rats were treated at 2.4 atmospheres absolute (ATA) for 60min once per day. The rats were euthanized and the spinal cord harvested on day 8 and 14 post-CCI. Detection of GABAergic cells and apoptosis was performed. The percentages of double positive stained cells (NeuN/GABA), cleaved caspase-3 or Cytochrome C in total GABAergic cells or in total NeuN positive cells were calculated. RESULTS HBO significantly alleviated mechanical allodynia. CCI-induced neuropathic pain was associated with significantly increased spinal apoptotic GABA-positive neurons. HBO considerably decreased these spinal apoptotic cells. Cytochrome-C-positive neurons and cleaved caspase-3-positive neurons were also significantly higher in CCI rats. HBO significantly decreased these positive cells. Caspase-3 mRNA was also significantly higher in CCI rats. HBO reduced mRNA expression of caspase-3. CONCLUSIONS CCI-induced neuropathic pain was associated with increased apoptotic GABAergic neurons induced by activation of key proteins of mitochondrial apoptotic pathways in the dorsal horn of the spinal cord. HBO alleviated CCI-induced neuropathic pain and reduced GABAergic neuron apoptosis. The beneficial effect of HBO may be via its inhibitory role in CCI-induced GABAergic neuron apoptosis by suppressing mitochondrial apoptotic pathways in the spinal cord. IMPLICATIONS Increased apoptotic GABAergic neurons induced by activation of key proteins of mitochondrial apoptotic pathways in the dorsal horn of the spinal cord is critical in CCI-induced neuropathic pain. The inhibitory role of HBO in GABAergic neuron apoptosis suppresses ongoing neuropathic pain.
Collapse
Affiliation(s)
- Huiqun Fu
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Fenghua Li
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Sebastian Thomas
- Pain Treatment Center, Upstate Medical University, Syracuse, NY 13210, USA
| | - Zhongjin Yang
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
15
|
Functional Synaptic Integration of Forebrain GABAergic Precursors into the Adult Spinal Cord. J Neurosci 2017; 36:11634-11645. [PMID: 27852772 DOI: 10.1523/jneurosci.2301-16.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 01/17/2023] Open
Abstract
Spinal cord transplants of embryonic cortical GABAergic progenitor cells derived from the medial ganglionic eminence (MGE) can reverse mechanical hypersensitivity in the mouse models of peripheral nerve injury- and paclitaxel-induced neuropathic pain. Here, we used electrophysiology, immunohistochemistry, and electron microscopy to examine the extent to which MGE cells integrate into host circuitry and recapitulate endogenous inhibitory circuits. Whether the transplants were performed before or after nerve injury, the MGE cells developed into mature neurons and exhibited firing patterns characteristic of subpopulations of cortical and spinal cord inhibitory interneurons. Conversely, the transplanted cells preserved cortical morphological and neurochemical properties. We also observed a robust anatomical and functional synaptic integration of the transplanted cells into host circuitry in both injured and uninjured animals. The MGE cells were activated by primary afferents, including TRPV1-expressing nociceptors, and formed GABAergic, bicuculline-sensitive, synapses onto host neurons. Unexpectedly, MGE cells transplanted before injury prevented the development of mechanical hypersensitivity. Together, our findings provide direct confirmation of an extensive, functional synaptic integration of MGE cells into host spinal cord circuits. This integration underlies normalization of the dorsal horn inhibitory tone after injury and may be responsible for the prophylactic effect of preinjury transplants. SIGNIFICANCE STATEMENT Spinal cord transplants of embryonic cortical GABAergic interneuron progenitors from the medial ganglionic eminence (MGE), can overcome the mechanical hypersensitivity produced in different neuropathic pain models in adult mice. Here, we examined the properties of transplanted MGE cells and the extent to which they integrate into spinal cord circuitry. Using electrophysiology, immunohistochemistry, and electron microscopy, we demonstrate that MGE cells, whether transplanted before or after nerve injury, develop into inhibitory neurons, are activated by nociceptive primary afferents, and form GABA-A-mediated inhibitory synapses with the host. Unexpectedly, cells transplanted into naive spinal cord prevented the development of nerve-injury-induced mechanical hypersensitivity. These results illustrate the remarkable plasticity of adult spinal cord and the potential of cell-based therapies against neuropathic pain.
Collapse
|
16
|
Chronic Pain and Itch are Common, Morbid Sequelae Among Individuals Who Receive Tissue Autograft After Major Thermal Burn Injury. Clin J Pain 2017; 33:627-634. [DOI: 10.1097/ajp.0000000000000446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Synergistic antipruritic effects of gamma aminobutyric acid A and B agonists in a mouse model of atopic dermatitis. J Allergy Clin Immunol 2017; 140:454-464.e2. [PMID: 28232084 DOI: 10.1016/j.jaci.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Despite recent insights into the pathophysiology of acute and chronic itch, chronic itch remains an often intractable condition. Among major contributors to chronic itch is dysfunction of spinal cord gamma aminobutyric acidergic (GABAergic) inhibitory controls. OBJECTIVES We sought to test the hypothesis that selective GABA agonists as well as cell transplant-derived GABA are antipruritic against acute itch and in a transgenic mouse model of atopic dermatitis produced by overexpression of the TH2 cell-associated cytokine, IL-31 (IL-31Tg mice). METHODS We injected wild-type and IL-31Tg mice with combinations of GABA-A (muscimol) or GABA-B (baclofen) receptor agonists 15 to 20 minutes prior to injection of various pruritogens (histamine, chloroquine, or endothelin-1) and recorded spontaneous scratching before and after drug administration. We also tested the antipruritic properties of intraspinal transplantation of precursors of GABAergic interneurons in the IL-31Tg mice. RESULTS Systemic muscimol or baclofen are antipruritic against both histamine-dependent and -independent pruritogens, but the therapeutic window using either ligand alone was very small. In contrast, combined subthreshold doses of baclofen and muscimol produced a significant synergistic antipruritic effect, with no sedation. Finally, transplant-mediated long-term enhancement of GABAergic signaling not only reduced spontaneous scratching in the IL-31Tg mice but also dramatically resolved the associated skin lesions. CONCLUSIONS Although additional research is clearly needed, existing approved GABA agonists should be considered in the management of chronic itch, notably atopic dermatitis.
Collapse
|