1
|
Rivera-Arconada I, Baccei ML, López-García JA, Bardoni R. An electrophysiologist's guide to dorsal horn excitability and pain. Front Cell Neurosci 2025; 19:1548252. [PMID: 40241846 PMCID: PMC12001243 DOI: 10.3389/fncel.2025.1548252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
The dorsal horn of the spinal cord represents the first site in the central nervous system (CNS) where nociceptive signals are integrated. As a result, there has been a rapid growth in the number of studies investigating the ionic mechanisms regulating the excitability of dorsal horn neurons under normal and pathological conditions. We believe that it is time to look back and to critically examine what picture emerges from this wealth of studies. What are the actual types of neurons described in the literature based on electrophysiological criteria? Are these electrophysiologically-defined subpopulations strongly linked to specific morphological, functional, or molecular traits? Are these electrophysiological properties stable, or can they change during development or in response to peripheral injury? Here we provide an in-depth overview of both early and recent publications that explore the factors influencing dorsal horn neuronal excitability (including intrinsic membrane properties and synaptic transmission), how these factors vary across distinct subtypes of dorsal horn neurons, and how such factors are altered by peripheral nerve or tissue damage. The meta-research presented below leads to the conclusion that the dorsal horn is comprised of highly heterogeneous subpopulations in which the observed electrophysiological properties of a given neuron often fail to easily predict other properties such as biochemical phenotype or morphology. This highlights the need for future studies which can more fully interrogate the properties of dorsal horn neurons in a multi-modal manner.
Collapse
Affiliation(s)
| | - Mark L. Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati, Cincinnati, OH, United States
| | | | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Rupprecht P, Fan W, Sullivan SJ, Helmchen F, Sdrulla AD. Spike rate inference from mouse spinal cord calcium imaging data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.17.603957. [PMID: 39829770 PMCID: PMC11741245 DOI: 10.1101/2024.07.17.603957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Calcium imaging is a key method to record the spiking activity of identified and genetically targeted neurons. However, the observed calcium signals are only an indirect readout of the underlying electrophysiological events (single spikes or bursts of spikes) and require dedicated algorithms to recover the spike rate. These algorithms for spike inference can be optimized using ground truth data from combined electrical and optical recordings, but it is not clear how such optimized algorithms perform on cell types and brain regions for which ground truth does not exist. Here, we use a state-of-the-art algorithm based on supervised deep learning (CASCADE) and a non-supervised algorithm based on non-negative deconvolution (OASIS) to test spike rate inference in spinal cord neurons. To enable these tests, we recorded specific ground truth from glutamatergic and GABAergic somatosensory neurons in the superficial dorsal horn of spinal cord in mice of both sexes. We find that CASCADE and OASIS algorithms that were designed for cortical excitatory neurons generalize well to both spinal cord cell types. However, CASCADE models re-trained on our ground truth further improved the performance, resulting in a more accurate inference of spiking activity from spinal cord neurons. We openly provide re-trained models that can be applied to spinal cord data of variable noise levels and frame rates. Together, our ground-truth recordings and analyses provide a solid foundation for the interpretation of calcium imaging data from spinal cord dorsal horn and showcase how spike rate inference can generalize between different regions of the nervous system.
Collapse
Affiliation(s)
- Peter Rupprecht
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Switzerland
| | - Wei Fan
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Steve J. Sullivan
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Switzerland
| | - Andrei D. Sdrulla
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Chen X, Tang SJ. Neural Circuitry Polarization in the Spinal Dorsal Horn (SDH): A Novel Form of Dysregulated Circuitry Plasticity during Pain Pathogenesis. Cells 2024; 13:398. [PMID: 38474361 PMCID: PMC10930392 DOI: 10.3390/cells13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.
Collapse
Affiliation(s)
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
4
|
Zhang Z, Zheng H, Yu Q, Jing X. Understanding of Spinal Wide Dynamic Range Neurons and Their Modulation on Pathological Pain. J Pain Res 2024; 17:441-457. [PMID: 38318328 PMCID: PMC10840524 DOI: 10.2147/jpr.s446803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
The spinal dorsal horn (SDH) transmits sensory information from the periphery to the brain. Wide dynamic range (WDR) neurons within this relay site play a critical role in modulating and integrating peripheral sensory inputs, as well as the process of central sensitization during pathological pain. This group of spinal multi-receptive neurons has attracted considerable attention in pain research due to their capabilities for encoding the location and intensity of nociception. Meanwhile, transmission, processing, and modulation of incoming afferent information in WDR neurons also establish the underlying basis for investigating the integration of acupuncture and pain signals. This review aims to provide a comprehensive examination of the distinctive features of WDR neurons and their involvement in pain. Specifically, we will examine the regulation of diverse supraspinal nuclei on these neurons and analyze their potential in elucidating the mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hao Zheng
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Qingquan Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Da Vitoria Lobo ME, Weir N, Hardowar L, Al Ojaimi Y, Madden R, Gibson A, Bestall SM, Hirashima M, Schaffer CB, Donaldson LF, Bates DO, Hulse RP. Hypoxia-induced carbonic anhydrase mediated dorsal horn neuron activation and induction of neuropathic pain. Pain 2022; 163:2264-2279. [PMID: 35353768 PMCID: PMC9578530 DOI: 10.1097/j.pain.0000000000002627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Neuropathic pain, such as that seen in diabetes mellitus, results in part from central sensitisation in the dorsal horn. However, the mechanisms responsible for such sensitisation remain unclear. There is evidence that disturbances in the integrity of the spinal vascular network can be causative factors in the development of neuropathic pain. Here we show that reduced blood flow and vascularity of the dorsal horn leads to the onset of neuropathic pain. Using rodent models (type 1 diabetes and an inducible endothelial-specific vascular endothelial growth factor receptor 2 knockout mouse) that result in degeneration of the endothelium in the dorsal horn, we show that spinal cord vasculopathy results in nociceptive behavioural hypersensitivity. This also results in increased hypoxia in dorsal horn neurons, depicted by increased expression of hypoxia markers such as hypoxia inducible factor 1α, glucose transporter 3, and carbonic anhydrase 7. Furthermore, inducing hypoxia through intrathecal delivery of dimethyloxalylglycine leads to the activation of dorsal horn neurons as well as mechanical and thermal hypersensitivity. This shows that hypoxic signalling induced by reduced vascularity results in increased hypersensitivity and pain. Inhibition of carbonic anhydrase activity, through intraperitoneal injection of acetazolamide, inhibited hypoxia-induced pain behaviours. This investigation demonstrates that induction of a hypoxic microenvironment in the dorsal horn, as occurs in diabetes, is an integral process by which neurons are activated to initiate neuropathic pain states. This leads to the conjecture that reversing hypoxia by improving spinal cord microvascular blood flow could reverse or prevent neuropathic pain.
Collapse
Affiliation(s)
- Marlene E. Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Nick Weir
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Yara Al Ojaimi
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ryan Madden
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Alex Gibson
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Samuel M. Bestall
- Pain Centre Versus Arthritis and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, United Kingdom
| | - Masanori Hirashima
- Division of Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Chris B. Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, United States
| | - Lucy F. Donaldson
- Pain Centre Versus Arthritis and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, United Kingdom
| | - David O. Bates
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Richard Philip Hulse
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
6
|
Warwick C, Salsovic J, Hachisuka J, Smith KM, Sheahan TD, Chen H, Ibinson J, Koerber HR, Ross SE. Cell type-specific calcium imaging of central sensitization in mouse dorsal horn. Nat Commun 2022; 13:5199. [PMID: 36057681 PMCID: PMC9440908 DOI: 10.1038/s41467-022-32608-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/08/2022] [Indexed: 01/12/2023] Open
Abstract
Allodynia is a state in which pain is elicited by innocuous stimuli. Capsaicin applied to the skin results in an allodynia that extends to a broad region beyond the application site. This sensitization is thought to be mediated by spinal networks; however, we do not have a clear picture of which spinal neurons mediate this phenomenon. To address this gap, we used two-photon calcium imaging of excitatory interneurons and spinal projection neurons in the mouse spinal dorsal horn. To distinguish among neuronal subtypes, we developed CICADA, a cell profiling approach to identify cell types during calcium imaging. We then identified capsaicin-responsive and capsaicin-sensitized neuronal populations. Capsaicin-sensitized neurons showed emergent responses to innocuous input and increased receptive field sizes consistent with psychophysical reports. Finally, we identified spinal output neurons that showed enhanced responses from innocuous input. These experiments provide a population-level view of central sensitization and a framework with which to model somatosensory integration in the dorsal horn.
Collapse
Affiliation(s)
- Charles Warwick
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph Salsovic
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junichi Hachisuka
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
- Spinal Cord Group, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Kelly M Smith
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tayler D Sheahan
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haichao Chen
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - James Ibinson
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - H Richard Koerber
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Sarah E Ross
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Ye D, Fairchild TJ, Vo L, Drummond PD. Painful diabetic peripheral neuropathy: Role of oxidative stress and central sensitisation. Diabet Med 2022; 39:e14729. [PMID: 34674302 DOI: 10.1111/dme.14729] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
AIMS Diabetic peripheral neuropathy (DPN) occurs in about half of people with diabetes, of whom a quarter may develop chronic pain. Pain may remain for years yet be difficult to treat because the underlying mechanisms remain unclear. There is consensus that processing excessive glucose leads to oxidative stress, interfering with normal metabolism. In this narrative review, we argue that oxidative stress may also contribute to pain. METHODS We reviewed literature in PubMed published between January 2005 and August 2021. RESULTS AND CONCLUSIONS In diabetes, hyperglycaemia and associated production of reactive species can directly increase pain signalling and activate sensory neurons; or the effects can be indirect, mediated by mitochondrial damage and enhanced inflammation. Furthermore, pain processing in the central nervous system is compromised in painful DPN. This is implicated in central sensitisation and dysfunctional pain modulation. However, central pain modulatory function is understudied in diabetes. Future research is required to clarify whether central sensitisation and/or disturbances in central pain modulation contribute to painful DPN. Positive results would facilitate early detection and future treatment.
Collapse
Affiliation(s)
- Di Ye
- Discipline of Psychology and Healthy Ageing Research Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Timothy J Fairchild
- Discipline of Exercise Science and Healthy Ageing Research Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Lechi Vo
- Discipline of Psychology and Healthy Ageing Research Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Peter D Drummond
- Discipline of Psychology and Healthy Ageing Research Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
8
|
Dhanasobhon D, Medrano MC, Becker LJ, Moreno-Lopez Y, Kavraal S, Bichara C, Schlichter R, Inquimbert P, Yalcin I, Cordero-Erausquin M. Enhanced analgesic cholinergic tone in the spinal cord in a mouse model of neuropathic pain. Neurobiol Dis 2021; 155:105363. [PMID: 33845128 DOI: 10.1016/j.nbd.2021.105363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022] Open
Abstract
Endogenous acetylcholine (ACh) is an important modulator of nociceptive sensory processing in the spinal cord. An increased level of spinal ACh induces analgesia both in humans and rodents while interfering with cholinergic signaling is allodynic, demonstrating that a basal tone of spinal ACh modulates nociceptive responses in naïve animals. The plasticity undergone by this cholinergic system in chronic pain situation is unknown, and the mere presence of this tone in neuropathic animals is controversial. We have addressed these issues in mice through behavioral experiments, histology, electrophysiology and molecular biology, in the cuff model of peripheral neuropathy. Our behavior experiments demonstrate the persistence, and even increased impact of the analgesic cholinergic tone acting through nicotinic receptors in cuff animals. The neuropathy does not affect the number or membrane properties of dorsal horn cholinergic neurons, nor specifically the frequency of their synaptic inputs. The alterations thus appear to be in the neurons receiving the cholinergic signaling, which is confirmed by the fact that subthreshold doses of acetylcholinesterase (AChE) inhibitors in sham animals become anti-allodynic in cuff mice and by the altered expression of the β2 nicotinic receptor subunit. Our results demonstrate that endogenous cholinergic signaling can be manipulated to relieve mechanical allodynia in animal models of peripheral neuropathy. Until now, AChE inhibitors have mainly been used in the clinics in situations of acute pain (parturition, post-operative). The fact that lower doses (thus with fewer side effects) could be efficient in chronic pain conditions opens new avenues for the treatment of neuropathic pain. SIGNIFICANCE STATEMENT: Chronic pain continues to be the most common cause of disability that impairs the quality of life, accruing enormous and escalating socio-economic costs. A better understanding of the plasticity of spinal neuronal networks, crucially involved in nociceptive processing, could help designing new therapeutic avenues. We here demonstrate that chronic pain modifies the spinal nociceptive network in such a way that it becomes more sensitive to cholinergic modulations. The spinal cholinergic system is responsible for an analgesic tone that can be exacerbated by acetylcholinesterase inhibitors, a property used in the clinic to relief acute pain (child birth, post-op). Our results suggest that lower doses of acetylcholinesterases, with even fewer side effects, could be efficient to relieve chronic pain.
Collapse
Affiliation(s)
- Dhanasak Dhanasobhon
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Maria-Carmen Medrano
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Léa J Becker
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Yunuen Moreno-Lopez
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Sehrazat Kavraal
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Charlotte Bichara
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Rémy Schlichter
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Perrine Inquimbert
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Matilde Cordero-Erausquin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
| |
Collapse
|
9
|
Kenis-Coskun O, Giray E, Gunduz OH, Akyuz G. The effect of vitamin D replacement on spinal inhibitory pathways in women with chronic widespread pain. J Steroid Biochem Mol Biol 2020; 196:105488. [PMID: 31589918 DOI: 10.1016/j.jsbmb.2019.105488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/05/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Vitamin D replacement helps in pain reduction in patients with chronic widespread pain (CWP). But the current literature lack studies that investigate its mechanism. Cutaneous silent period (CSP) is the electrophysiologic analog of the spinal inhibitory pathways and an objective method to document their involvement. This study aims to show if vitamin D replacement has an effect on the spinal inhibitory pathways through CSP parameters. Female patients who have CWP with vitamin D deficiency were included. Patients received an 8-week replacement therapy of vitamin D. Patients' pain were evaluated using the visual analog scale (VAS) and Leeds assessment of neuropathic symptoms and signs pain scale (LANSS). Quality of life with Nottingham Health Profile (NHP) and CSP parameters were also recorded before and after treatment. A total of 51 patients were included in the final analyses. The mean age of the patients was 44.3 ± 12.7 (minimum 18-maximum 65). Mean symptom duration was 13.1 ± 6.7 (minimum3-maximum 24) months. Patients' mean BMI was 21.6 ± 3.9 (minimum 18.0 maximum 29.1). Patients' median VAS and LANSS scores decreased significantly (p < 0.01) and NHP scores improved significantly in all subsets (p < 0.01). Vitamin D replacement did not significantly change CSP latency and duration (p = 0.06 and p = 0.12).Vitamin D replacement does not seem to work via modifying the spinal inhibitory pathways that are involved in the formation of the cutaneous silent period. This is the first study to objectively investigate the effect of vitamin D replacement on central sensitization mechanisms.
Collapse
Affiliation(s)
- Ozge Kenis-Coskun
- Marmara University Medical Faculty Physical Medicine and Rehabilitation Department, Turkey.
| | - Esra Giray
- Marmara University Medical Faculty Physical Medicine and Rehabilitation Department, Turkey
| | - Osman Hakan Gunduz
- Marmara University Medical Faculty Physical Medicine and Rehabilitation Department, Turkey
| | - Gulseren Akyuz
- Marmara University Medical Faculty Physical Medicine and Rehabilitation Department, Turkey
| |
Collapse
|
10
|
Smith TM, Lee D, Bradley K, McMahon SB. Methodology for quantifying excitability of identified projection neurons in the dorsal horn of the spinal cord, specifically to study spinal cord stimulation paradigms. J Neurosci Methods 2020; 330:108479. [DOI: 10.1016/j.jneumeth.2019.108479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022]
|
11
|
Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II-Comparison with Those of Other Endogenous Pain Modulators. Pharmaceuticals (Basel) 2019; 12:ph12030136. [PMID: 31527474 PMCID: PMC6789548 DOI: 10.3390/ph12030136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 01/23/2023] Open
Abstract
Much evidence indicates that hypothalamus-derived neuropeptides, oxytocin, orexins A and B, inhibit nociceptive transmission in the rat spinal dorsal horn. In order to unveil cellular mechanisms for this antinociception, the effects of the neuropeptides on synaptic transmission were examined in spinal lamina II neurons that play a crucial role in antinociception produced by various analgesics by using the whole-cell patch-clamp technique and adult rat spinal cord slices. Oxytocin had no effect on glutamatergic excitatory transmission while producing a membrane depolarization, γ-aminobutyric acid (GABA)-ergic and glycinergic spontaneous inhibitory transmission enhancement. On the other hand, orexins A and B produced a membrane depolarization and/or a presynaptic spontaneous excitatory transmission enhancement. Like oxytocin, orexin A enhanced both GABAergic and glycinergic transmission, whereas orexin B facilitated glycinergic but not GABAergic transmission. These inhibitory transmission enhancements were due to action potential production. Oxytocin, orexins A and B activities were mediated by oxytocin, orexin-1 and orexin-2 receptors, respectively. This review article will mention cellular mechanisms for antinociception produced by oxytocin, orexins A and B, and discuss similarity and difference in antinociceptive mechanisms among the hypothalamic neuropeptides and other endogenous pain modulators (opioids, nociceptin, adenosine, adenosine 5’-triphosphate (ATP), noradrenaline, serotonin, dopamine, somatostatin, cannabinoids, galanin, substance P, bradykinin, neuropeptide Y and acetylcholine) exhibiting a change in membrane potential, excitatory or inhibitory transmission in the spinal lamina II neurons.
Collapse
|
12
|
Yamada A, Koga K, Kume K, Ohsawa M, Furue H. Ethanol-induced enhancement of inhibitory synaptic transmission in the rat spinal substantia gelatinosa. Mol Pain 2018; 14:1744806918817969. [PMID: 30453825 PMCID: PMC6293375 DOI: 10.1177/1744806918817969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent studies have shown that ethanol produces a widespread modulation
of neuronal activity in the central nervous system. It is not fully
understood, however, how ethanol changes nociceptive transmission. We
investigated acute effects of ethanol on synaptic transmission in the
substantia gelatinosa (lamina II of the spinal dorsal horn) and
mechanical responses in the spinal dorsal horn. In substantia
gelatinosa neurons, bath application of ethanol at low concentration
(10 mM) did not change the frequency and amplitude of spontaneous
inhibitory postsynaptic currents. At medium to high concentrations
(20–100 mM), however, ethanol elicited a barrage of large amplitude
spontaneous inhibitory postsynaptic currents. In the presence of
tetrodotoxin, such enhancement of spontaneous inhibitory postsynaptic
currents was not detected. In addition, ethanol (20–100 mM) increased
the frequency of spontaneous discharge of vesicular GABA
transporter-Venus-labeled neurons and suppressed the mechanical
nociceptive response in wide-dynamic range neurons in the spinal
dorsal horn. The present results suggest that ethanol may reduce
nociceptive information transfer in the spinal dorsal horn by
enhancement of inhibitory GABAergic and glycinergic synaptic
transmission.
Collapse
Affiliation(s)
- Akihiro Yamada
- Department of Neurophysiology, Hyogo College of
Medicine, Nishinomiya, Japan
- Department of Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Department of Information Physiology, National
Institute for Physiological Sciences, Okazaki, Japan
| | - Kohei Koga
- Department of Neurophysiology, Hyogo College of
Medicine, Nishinomiya, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of
Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of
Medicine, Nishinomiya, Japan
- Department of Information Physiology, National
Institute for Physiological Sciences, Okazaki, Japan
- School of Life Science, Graduate University for
Advanced Studies, Okazaki, Japan
- Hidemasa Furue, Department of
Neurophysiology 663–8131, Hyogo College of Medicine, Nishinomiya,
Japan.
| |
Collapse
|
13
|
Song Y, Zhu JS, Hua R, Du L, Huang ST, Stackman RW, Zhang G, Zhang YM. Small-Conductance Ca 2+-Activated K + Channel 2 in the Dorsal Horn of Spinal Cord Participates in Visceral Hypersensitivity in Rats. Front Pharmacol 2018; 9:840. [PMID: 30123129 PMCID: PMC6085475 DOI: 10.3389/fphar.2018.00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
Visceral hypersensitivity is a highly complex and subjective phenomenon associated with multiple levels of the nervous system and a wide range of neurotransmission. The dorsal horn (DH) in spinal cord relays the peripheral sensory information into the brain. Small conductance Ca2+-activated K+ (SK) channels regulate neuronal excitability and firing by allowing K+ to efflux in response to increase in the intracellular Ca2+ level. In this study, we examined the influence of SK2 channels in the spinal DH on the pathogenesis of visceral hypersensitivity induced by colorectal distension (CRD) in rats. Electrophysiological results showed that rats with visceral hypersensitivity presented a decrease in the SK channel-mediated afterhyperpolarization current (IAHP), and an increase in neuronal firing rates and c-Fos positive staining in the spinal DH. Western blot data revealed a decrease in the SK2 channel protein in the membrane fraction. Moreover, intrathecal administration of the SK2 channel activator 1-EBIO or CyPPA alleviated visceral hypersensitivity, reversed the decrease in IAHP and the increase in neuronal firing rates in spinal DH in rats that experienced CRD. 1-EBIO or CyPPA effect could be prevented by SK2 channel blocker apamin. CRD induced an increase in c-Fos protein expression in the spinal DH, which was prevented by 1-EBIO. Together, these data suggest that visceral hypersensitivity and pain is associated with a decrease in the number and function of membrane SK2 channels in the spinal DH. Pharmacological manipulation of SK2 channels may open a new avenue for the treatment of visceral hypersensitivity and pain. Highlights:Neonatal colorectal distension induced visceral hypersensitivity in rats. Visceral hypersensitivity rats presented a decrease in afterhyperpolarization current (IAHP) and membrane SK2 channel protein in the spinal dorsal horn. Visceral hypersensitivity rats presented an increase in neuronal firing rate in the spinal dorsal horn. Intrathecal administration of SK2 channel activator 1-EBIO or CyPPA prevented visceral hypersensitivity and decrease in IAHP.
Collapse
Affiliation(s)
- Yu Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Sheng Zhu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Rong Hua
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Emergency Department, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lei Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Si-Ting Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Robert W Stackman
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Gongliang Zhang
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States.,College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
Fu H, Li F, Thomas S, Yang Z. Hyperbaric oxygenation alleviates chronic constriction injury (CCI)-induced neuropathic pain and inhibits GABAergic neuron apoptosis in the spinal cord. Scand J Pain 2017; 17:330-338. [PMID: 28927648 DOI: 10.1016/j.sjpain.2017.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS Dysfunction of GABAergic inhibitory controls contributes to the development of neuropathic pain. We examined our hypotheses that (1) chronic constriction injury (CCI)-induced neuropathic pain is associated with increased spinal GABAergic neuron apoptosis, and (2) hyperbaric oxygen therapy (HBO) alleviates CCI-induced neuropathic pain by inhibiting GABAergic neuron apoptosis. METHODS Male rats were randomized into 3 groups: CCI, CCI+HBO and the control group (SHAM). Mechanical allodynia was tested daily following CCI procedure. HBO rats were treated at 2.4 atmospheres absolute (ATA) for 60min once per day. The rats were euthanized and the spinal cord harvested on day 8 and 14 post-CCI. Detection of GABAergic cells and apoptosis was performed. The percentages of double positive stained cells (NeuN/GABA), cleaved caspase-3 or Cytochrome C in total GABAergic cells or in total NeuN positive cells were calculated. RESULTS HBO significantly alleviated mechanical allodynia. CCI-induced neuropathic pain was associated with significantly increased spinal apoptotic GABA-positive neurons. HBO considerably decreased these spinal apoptotic cells. Cytochrome-C-positive neurons and cleaved caspase-3-positive neurons were also significantly higher in CCI rats. HBO significantly decreased these positive cells. Caspase-3 mRNA was also significantly higher in CCI rats. HBO reduced mRNA expression of caspase-3. CONCLUSIONS CCI-induced neuropathic pain was associated with increased apoptotic GABAergic neurons induced by activation of key proteins of mitochondrial apoptotic pathways in the dorsal horn of the spinal cord. HBO alleviated CCI-induced neuropathic pain and reduced GABAergic neuron apoptosis. The beneficial effect of HBO may be via its inhibitory role in CCI-induced GABAergic neuron apoptosis by suppressing mitochondrial apoptotic pathways in the spinal cord. IMPLICATIONS Increased apoptotic GABAergic neurons induced by activation of key proteins of mitochondrial apoptotic pathways in the dorsal horn of the spinal cord is critical in CCI-induced neuropathic pain. The inhibitory role of HBO in GABAergic neuron apoptosis suppresses ongoing neuropathic pain.
Collapse
Affiliation(s)
- Huiqun Fu
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Fenghua Li
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Sebastian Thomas
- Pain Treatment Center, Upstate Medical University, Syracuse, NY 13210, USA
| | - Zhongjin Yang
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|