1
|
Rugnath R, Orzechowicz C, Newell C, Carullo V, Rugnath A. A Literature Review: The Mechanisms and Treatment of Neuropathic Pain-A Brief Discussion. Biomedicines 2024; 12:204. [PMID: 38255308 PMCID: PMC10812949 DOI: 10.3390/biomedicines12010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/24/2024] Open
Abstract
Classically, neuropathic pain is described as a pain caused by a lesion or disease of the somatosensory system. However, one must note that the presence of somatosensory pathology alone does not guarantee a progression to neuropathic pain. This is due, in part, to the fact that neuropathic pain is a notoriously complex disease process, involving sensitization of both the central and peripheral nervous systems. Its causes are also numerous and varied, including trauma, the compression of a nerve, autoimmune disorders, diabetes, and infections. Due to the various manifestations, causes, and symptoms of neuropathic pain, the treatment of this disease process has proved challenging for generations of physicians. This section aims to elaborate on newly proposed mechanisms for pharmacological and targeted therapies, such as neurostimulation, which aim to reduce the negative somatosensory effects of neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | - Anesh Rugnath
- Department and Anesthesiology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (R.R.)
| |
Collapse
|
2
|
Allen JA, Lewis RA. Treatment of Chronic Inflammatory Demyelinating Polyneuropathy. Muscle Nerve 2022; 66:552-557. [PMID: 35994242 DOI: 10.1002/mus.27709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is a chronic peripheral polyneuropathy that results in disability through immune mediated nerve injury, but which not uncommonly has residual and irreversible neurologic deficits after the active inflammatory component of the disorder has been treated. Management of the condition entails addressing both the abnormal immune activity that drives ongoing or active deficits while also managing residual symptoms through supportive interventions. Immune based treatments are grounded in several important principles. First, early treatment is guided by evidence-based proven effective therapies that sequentially escalate depending on the response. Second, optimization or personalization of first line treatments is needed in order to understand the ideal dose for any given patient, and whether long term treatment is needed at all. Third, although many immunosuppressive agents may be utilized in non-responding patients or when intravenous immunoglobulin (IVIG)/corticosteroid sparing intervention is desired, all are unproven and require a delicate balance between risk, cost, and unknown likelihood of benefit that is tailored to each individual patient's unique circumstances. There is no reliable disease activity biomarker that can be used to guide treatment - a reality that makes it very challenging to optimize treatment to individual patient needs. Serial clinical assessments are key to understanding the value of continued immunotherapy or if long-term therapy is needed at all. Regardless of the immunotherapy status of a patient, equally important is addressing residual deficits through supportive interventions including physical therapy, adaptive equipment, pain management, and emotional support. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jeffrey A Allen
- Department of Neurology, University of Minnesota, Minneapolis, MN
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
3
|
Van den Bergh PYK, van Doorn PA, Hadden RDM, Avau B, Vankrunkelsven P, Allen JA, Attarian S, Blomkwist-Markens PH, Cornblath DR, Eftimov F, Goedee HS, Harbo T, Kuwabara S, Lewis RA, Lunn MP, Nobile-Orazio E, Querol L, Rajabally YA, Sommer C, Topaloglu HA. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: Report of a joint Task Force-Second revision. Eur J Neurol 2021; 28:3556-3583. [PMID: 34327760 DOI: 10.1111/ene.14959] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To revise the 2010 consensus guideline on chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). METHODS Seventeen disease experts, a patient representative, and two Cochrane methodologists constructed 12 Population/Intervention/Comparison/Outcome (PICO) questions regarding diagnosis and treatment to guide the literature search. Data were extracted and summarized in GRADE summary of findings (for treatment PICOs) or evidence tables (for diagnostic PICOs). RESULTS Statements were prepared according to the GRADE Evidence-to-Decision frameworks. Typical CIDP and CIDP variants were distinguished. The previous term "atypical CIDP" was replaced by "CIDP variants" because these are well characterized entities (multifocal, focal, distal, motor, or sensory CIDP). The levels of diagnostic certainty were reduced from three (definite, probable, possible CIDP) to only two (CIDP and possible CIDP), because the diagnostic accuracy of criteria for probable and definite CIDP did not significantly differ. Good Practice Points were formulated for supportive criteria and investigations to be considered to diagnose CIDP. The principal treatment recommendations were: (a) intravenous immunoglobulin (IVIg) or corticosteroids are strongly recommended as initial treatment in typical CIDP and CIDP variants; (b) plasma exchange is strongly recommended if IVIg and corticosteroids are ineffective; (c) IVIg should be considered as first-line treatment in motor CIDP (Good Practice Point); (d) for maintenance treatment, IVIg, subcutaneous immunoglobulin or corticosteroids are recommended; (e) if the maintenance dose of any of these is high, consider either combination treatments or adding an immunosuppressant or immunomodulatory drug (Good Practice Point); and (f) if pain is present, consider drugs against neuropathic pain and multidisciplinary management (Good Practice Point).
Collapse
Affiliation(s)
- Peter Y K Van den Bergh
- Neuromuscular Reference Centre, Department of Neurology, University Hospital Saint-Luc, Brussels, Belgium
| | - Pieter A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Bert Avau
- Cochrane Belgium, CEBAM, Leuven, Belgium and CEBaP, Belgian Red Cross, Mechelen, Belgium
| | | | - Jeffrey A Allen
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shahram Attarian
- Centre de Référence des Maladies Neuromusculaires et de la SLA, APHM, CHU Timone, Marseille, France
| | | | - David R Cornblath
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Filip Eftimov
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H Stephan Goedee
- Department of Neuromuscular Disorders, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Thomas Harbo
- Department of Neurology, Århus University Hospital, Århus, Denmark
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University Hospital, Chiba, Japan
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael P Lunn
- Department of Neurology and MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical and Research Center, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luis Querol
- Neuromuscular Diseases Unit-Neurology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Yusuf A Rajabally
- Regional Neuromuscular Service, Neurology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Claudia Sommer
- Neurology Clinic, University Hospital Würzburg, Würzburg, Germany
| | | |
Collapse
|
4
|
Van den Bergh PYK, van Doorn PA, Hadden RDM, Avau B, Vankrunkelsven P, Allen JA, Attarian S, Blomkwist-Markens PH, Cornblath DR, Eftimov F, Goedee HS, Harbo T, Kuwabara S, Lewis RA, Lunn MP, Nobile-Orazio E, Querol L, Rajabally YA, Sommer C, Topaloglu HA. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: Report of a joint Task Force-Second revision. J Peripher Nerv Syst 2021; 26:242-268. [PMID: 34085743 DOI: 10.1111/jns.12455] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022]
Abstract
To revise the 2010 consensus guideline on chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Seventeen disease experts, a patient representative, and two Cochrane methodologists constructed 12 Population/Intervention/Comparison/Outcome (PICO) questions regarding diagnosis and treatment to guide the literature search. Data were extracted and summarized in GRADE summary of findings (for treatment PICOs) or evidence tables (for diagnostic PICOs). Statements were prepared according to the GRADE Evidence-to-Decision frameworks. Typical CIDP and CIDP variants were distinguished. The previous term "atypical CIDP" was replaced by "CIDP variants" because these are well characterized entities (multifocal, focal, distal, motor, or sensory CIDP). The levels of diagnostic certainty were reduced from three (definite, probable, possible CIDP) to only two (CIDP and possible CIDP), because the diagnostic accuracy of criteria for probable and definite CIDP did not significantly differ. Good Practice Points were formulated for supportive criteria and investigations to be considered to diagnose CIDP. The principal treatment recommendations were: (a) intravenous immunoglobulin (IVIg) or corticosteroids are strongly recommended as initial treatment in typical CIDP and CIDP variants; (b) plasma exchange is strongly recommended if IVIg and corticosteroids are ineffective; (c) IVIg should be considered as first-line treatment in motor CIDP (Good Practice Point); (d) for maintenance treatment, IVIg, subcutaneous immunoglobulin or corticosteroids are recommended; (e) if the maintenance dose of any of these is high, consider either combination treatments or adding an immunosuppressant or immunomodulatory drug (Good Practice Point); and (f) if pain is present, consider drugs against neuropathic pain and multidisciplinary management (Good Practice Point).
Collapse
Affiliation(s)
- Peter Y K Van den Bergh
- Neuromuscular Reference Centre, Department of Neurology, University Hospital Saint-Luc, Brussels, Belgium
| | - Pieter A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Bert Avau
- Cochrane Belgium, CEBAM, Leuven, Belgium and CEBaP, Belgian Red Cross, Mechelen, Belgium
| | | | - Jeffrey A Allen
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shahram Attarian
- Centre de Référence des Maladies Neuromusculaires et de la SLA, APHM, CHU Timone, Marseille, France
| | | | - David R Cornblath
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Filip Eftimov
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H Stephan Goedee
- Department of Neuromuscular Disorders, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Thomas Harbo
- Department of Neurology, Århus University Hospital, Århus, Denmark
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University Hospital, Chiba, Japan
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael P Lunn
- Department of Neurology and MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical and Research Center, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luis Querol
- Neuromuscular Diseases Unit-Neurology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Yusuf A Rajabally
- Regional Neuromuscular Service, Neurology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Claudia Sommer
- Neurology Clinic, University Hospital Würzburg, Würzburg, Germany
| | | |
Collapse
|
5
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
6
|
Clinical and electrophysiological profiles in early recognition of polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes syndrome. Chin Med J (Engl) 2020; 132:1666-1672. [PMID: 31268911 PMCID: PMC6759111 DOI: 10.1097/cm9.0000000000000318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: The detection of polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes (POEMS) syndrome at early stage is challenging for neurologists. Since polyneuropathy could be the first manifestation, it could be misdiagnosed as chronic inflammatory demyelinating polyneuropathy (CIDP). The present study aimed to determine the clinical and electrophysiological features of POEMS syndrome to distinguish from CIDP. Methods: The data of a group of patients with POEMS (n = 17) and patients with CIDP (n = 17) in Zhongshan Hospital Fudan University from January 2015 to September 2017 were analyzed in this retrospective study. The clinical features, neurological symptoms, and electrophysiological findings were compared between the two groups. Results: Clinically, patients with POEMS demonstrated significantly more neuropathic pain in the lower extremities than patients with CIDP (58.8% vs. 11.8%, P = 0.01). Multisystem features like edema, skin change, organomegaly, and thrombocytosis were also pointed towards the diagnosis of POEMS syndrome. Electrophysiologically, terminal latency index (TLI) was significantly higher in patients with POEMS than that in patients with CIDP (median nerve: 0.39 [0.17–0.52] vs. 0.30 (0.07–0.69), Z = –2.413, P = 0.016; ulnar nerve: 0.55 [0.23–0.78] vs. 0.42 [0.12–0.70], Z = –2.034, P = 0.042). Patients with POEMS demonstrated a higher frequency of absent compound muscle action potential of the tibial nerve (52.9% vs. 17.6%, P = 0.031), less conduction block (ulnar nerve: 0 vs. 35.3%, P = 0.018), and less temporal dispersion (median nerve: 17.6% vs. 58.8%, P = 0.032) than CIDP group. The combination of positive serum monoclonal protein and high TLI (if either one or both were present) discriminated POEMS from CIDP with a sensitivity of 94.1% and 47.1% and specificity of 76.5% and 100.0%, respectively. Conclusions: POEMS syndrome could be distinguished from CIDP through typical clinical and electrophysiological characteristics in practice. The combination of serum monoclonal protein and high TLI might raise the sensitivity of detecting POEMS syndrome.
Collapse
|