1
|
Barrett D, Brintz CE, Zaski AM, Edlund MJ. Dialectical Pain Management: Feasibility of a Hybrid Third-Wave Cognitive Behavioral Therapy Approach for Adults Receiving Opioids for Chronic Pain. PAIN MEDICINE 2021; 22:1080-1094. [PMID: 33175158 DOI: 10.1093/pm/pnaa361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES This study evaluated the feasibility, acceptability, and potential effectiveness of a hybrid skills-based group intervention, dialectical pain management (DPM), for adults with chronic pain who are receiving long-term opioid therapy. DPM adapts dialectical behavior therapy, a rigorous psychotherapeutic approach to emotion dysregulation, to treat disorders of physiological dysregulation. METHODS Individuals with chronic pain (N = 17) participated in one of two 8-week DPM intervention cohorts. At pre-test and post-test, participants completed quantitative self-report assessments measuring pain intensity and interference, depressive symptoms, pain acceptance, beliefs about pain medications, and global rating of change. Within 2 weeks after the intervention, participants completed qualitative interviews to assess participant satisfaction and obtain feedback about specific intervention components. RESULTS Of the 17 enrolled, 15 participants completed the group with 12 (70%) attending six or more sessions. Participants reported high satisfaction with the intervention. Preliminary findings suggested a significant increase in pain acceptance and a significant reduction in depressive symptoms. Participants also reported an improved relationship with their pain conditions and increased flexibility in responding to pain and applying coping skills. Several participants showed a reduction in opioid dosage over the course of the intervention. DISCUSSION Findings support that DPM is a feasible and well-received intervention for individuals with chronic pain. Additional research with a control group is needed to further determine the intervention's efficacy and impact.
Collapse
Affiliation(s)
- Deborah Barrett
- University of North Carolina School of Social Work, Chapel Hill, North Carolina, USA.,University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Carrie E Brintz
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amanda M Zaski
- Duke University School of Medicine, Durham, North Carolina, USA
| | | |
Collapse
|
2
|
Ellerbrock I, Sandström A, Tour J, Kadetoff D, Schalling M, Jensen KB, Kosek E. Polymorphisms of the μ-opioid receptor gene influence cerebral pain processing in fibromyalgia. Eur J Pain 2020; 25:398-414. [PMID: 33064887 PMCID: PMC7821103 DOI: 10.1002/ejp.1680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
Background Dysregulation of the μ‐opioid receptor has been reported in fibromyalgia (FM) and was linked to pain severity. Here, we investigated the effect of the functional genetic polymorphism of the μ‐opioid receptor gene (OPRM1) (rs1799971) on symptom severity, pain sensitivity and cerebral pain processing in FM subjects and healthy controls (HC). Methods Symptom severity and pressure pain sensitivity was assessed in FM subjects (n = 70) and HC (n = 35). Cerebral pain‐related activation was assessed by functional magnetic resonance imaging during individually calibrated painful pressure stimuli. Results Fibromyalgia subjects were more pain sensitive but no significant differences in pain sensitivity or pain ratings were observed between OPRM1 genotypes. A significant difference was found in cerebral pain processing, with carriers of at least one G‐allele showing increased activation in posterior cingulate cortex (PCC) extending to precentral gyrus, compared to AA homozygotes. This effect was significant in FM subjects but not in healthy participants, however, between‐group comparisons did not yield significant results. Seed‐based functional connectivity analysis was performed with the seed based on differences in PCC/precentral gyrus activation between OPRM1 genotypes during evoked pain across groups. G‐allele carriers displayed decreased functional connectivity between PCC/precentral gyrus and prefrontal cortex. Conclusions G‐allele carriers showed increased activation in PCC/precentral gyrus but decreased functional connectivity with the frontal control network during pressure stimulation, suggesting different pain modulatory processes between OPRM1 genotypes involving altered fronto‐parietal network involvement. Furthermore, our results suggest that the overall effects of the OPRM1 G‐allele may be driven by FM subjects. Significance We show that the functional polymorphism of the μ‐opioid receptor gene OPRM1 was associated with alterations in the fronto‐parietal network as well as with increased activation of posterior cingulum during evoked pain in FM. Thus, the OPRM1 polymorphism affects cerebral processing in brain regions implicated in salience, attention, and the default mode network. This finding is discussed in the light of pain and the opioid system, providing further evidence for a functional role of OPRM1 in cerebral pain processing.
Collapse
Affiliation(s)
- Isabel Ellerbrock
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeanette Tour
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karin B Jensen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
DaSilva AF, Zubieta JK, DosSantos MF. Positron emission tomography imaging of endogenous mu-opioid mechanisms during pain and migraine. Pain Rep 2019; 4:e769. [PMID: 31579860 PMCID: PMC6727995 DOI: 10.1097/pr9.0000000000000769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/04/2019] [Accepted: 05/25/2019] [Indexed: 11/26/2022] Open
Abstract
The enormous advancements in the medical imaging methods witnessed in the past decades have allowed clinical researchers to study the function of the human brain in vivo, both in health and disease. In addition, a better understanding of brain responses to different modalities of stimuli such as pain, reward, or the administration of active or placebo interventions has been achieved through neuroimaging methods. Although magnetic resonance imaging has provided important information regarding structural, hemodynamic, and metabolic changes in the central nervous system related to pain, magnetic resonance imaging does not address modulatory pain systems at the molecular level (eg, endogenous opioid). Such important information has been obtained through positron emission tomography, bringing insights into the neuroplastic changes that occur in the context of the pain experience. Positron emission tomography studies have not only confirmed the brain structures involved in pain processing and modulation but also have helped elucidate the neural mechanisms that underlie healthy and pathological pain regulation. These data have shown some of the biological basis of the interindividual variability in pain perception and regulation. In addition, they provide crucial information to the mechanisms that drive placebo and nocebo effects, as well as represent an important source of variability in clinical trials. Positron emission tomography studies have also permitted exploration of the dynamic interaction between behavior and genetic factors and between different pain modulatory systems. This narrative review will present a summary of the main findings of the positron emission tomography studies that evaluated the functioning of the opioidergic system in the context of pain.
Collapse
Affiliation(s)
- Alexandre F. DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, University of Utah Health, Salt Lake City, UT, USA
| | - Marcos F. DosSantos
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
4
|
The Contribution of Endogenous Modulatory Systems to TMS- and tDCS-Induced Analgesia: Evidence from PET Studies. Pain Res Manag 2018; 2018:2368386. [PMID: 30538794 PMCID: PMC6257907 DOI: 10.1155/2018/2368386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Chronic pain is an important public health issue. Moreover, its adequate management is still considered a major clinical problem, mainly due to its incredible complexity and still poorly understood pathophysiology. Recent scientific evidence coming from neuroimaging research, particularly functional magnetic resonance (fMRI) and positron emission tomography (PET) studies, indicates that chronic pain is associated with structural and functional changes in several brain structures that integrate antinociceptive pathways and endogenous modulatory systems. Furthermore, the last two decades have witnessed a huge increase in the number of studies evaluating the clinical effects of noninvasive neuromodulatory methods, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), which have been proved to effectively modulate the cortical excitability, resulting in satisfactory analgesic effects with minimal adverse events. Nevertheless, the precise neuromechanisms whereby such methods provide pain control are still largely unexplored. Recent studies have brought valuable information regarding the recruitment of different modulatory systems and related neurotransmitters, including glutamate, dopamine, and endogenous opioids. However, the specific neurocircuits involved in the analgesia produced by those therapies have not been fully elucidated. This review focuses on the current literature correlating the clinical effects of noninvasive methods of brain stimulation to the changes in the activity of endogenous modulatory systems.
Collapse
|