1
|
Nold JI, Tinnermann A, Fadai T, Mintah M, Morgenroth MS, Büchel C. Comparing neural responses to cutaneous heat and pressure pain in healthy participants. Sci Rep 2025; 15:14387. [PMID: 40274927 PMCID: PMC12022288 DOI: 10.1038/s41598-025-99247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Even though acute pain comes in many different shapes and forms, a lot of experimental pain studies predominantly employ cutaneous heat pain. This makes a comparison between different pain types and the link between findings from these experimental studies to clinical pain difficult. To bridge this gap, we investigated both cuff pressure pain and cutaneous heat pain using a within-subject design in combination with functional magnetic resonance imaging (fMRI). Noxious stimuli were applied with a 17-s duration at three different intensities above the pain threshold using a thermode and a computer-controlled cuff pressure device. Both pain modalities led to contralateral activation in the anterior insula and parietal operculum. Heat pain showed greater activation in the precentral gyrus, pontine reticular nucleus, and dorsal posterior insula, whilst pressure pain showed greater activation in the primary somatosensory cortex and bilateral superior parietal lobules. Most importantly, the time course of the fMRI signal changes differed between modalities, with pressure pain peaking in the first stimulus half, whereas heat pain led to a prolonged and increasing response across the stimulus duration with a peak in the second stimulus half. Our findings suggest that pressure and heat pain lead to common as well as different (temporal) activation patterns in key pain processing regions.
Collapse
Affiliation(s)
- Janne Ina Nold
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Alexandra Tinnermann
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tahmine Fadai
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marilyn Mintah
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Sophie Morgenroth
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Wade DT, Hanrahan A. Do some people with a prolonged disorder of consciousness experience pain? A clinically focused narrative review and synthesis. Clin Rehabil 2025:2692155251333540. [PMID: 40223293 DOI: 10.1177/02692155251333540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
ObjectiveTo investigate the hypothesis that people with a prolonged disorder of consciousness experience nociceptive pain.MethodA non-systematic literature review into the nature and neurophysiological basis of consciousness and pain likely function when someone has severe thalamocortical dysfunction; the behavioural manifestations of pain in people who cannot communicate; and how they relate to the experience.FindingsConsciousness depends on thalamocortical integrity and is judged clinically by establishing the person's behaviour depends on extracting or using meaning. The experience of pain is also deduced from a person's behaviour, including increased purposeless motor movements, facial expressions, non-verbal vocal expressions and physiological (autonomic) changes such as tachycardia and tear production. Extensive brainstem and midbrain networks are activated by pain, including autonomic networks. Given their early evolution and location, they likely resist damage. The networks appear intrinsically resilient, functioning when damaged unless the damage is severe.SynthesisSomeone with a prolonged disorder of consciousness usually has intransitive consciousness (arousal) that is not dependent on cortical cognitive processes and may have retained occurrent consciousness of mental states when aroused. Nociceptive stimuli elicit automatic but purposeless behaviours typically associated with pain. These behaviours are likely to be responses to this unpleasant mental state of occurrent consciousness that is limited to the time they show pain behaviours, with no memory of it.ConclusionThe unconscious person with a prolonged disorder of consciousness exhibiting pain behaviours in response to nociceptive stimuli likely experiences pain without analysing its significance; they are unlikely to anticipate or remember it.
Collapse
Affiliation(s)
- Derick T Wade
- Centre for Movement, Occupation and Rehabilitation Sciences (MOReS), Oxford Brookes University, Oxford, UK
| | | |
Collapse
|
3
|
Stroman PW, Staud R, Pukall CF. Evidence of a persistent altered neural state in people with fibromyalgia syndrome during functional MRI studies and its relationship with pain and anxiety. PLoS One 2025; 20:e0316672. [PMID: 39854440 PMCID: PMC11759356 DOI: 10.1371/journal.pone.0316672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/14/2024] [Indexed: 01/26/2025] Open
Abstract
Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm. The analyses were supported by fMRI data from the brainstem and spinal cord in FM and HC, brain fMRI data from participants with provoked vestibulodynia (PVD), and eye-tracking data from an fMRI study of FM. The results demonstrate differences in connectivity, and in blood oxygenation-level dependent (BOLD) responses, between FM and HC. In the FM group, BOLD signals underwent a large increase during the first 40 seconds of each fMRI run, prior to the application of any stimuli, compared to much smaller increases in HC. This indicates a heightened state of neural activity in FM that is sustained during fMRI runs, and dissipates between runs. The exaggerated initial rise was not observed in PVD. Autonomic functioning differed between groups. Pupil sizes were larger in FM than in HC, and the groups exhibited pupil dilation to the same levels during noxious stimulation. The initial BOLD increase varied in relation to state and trait anxiety scores. The results indicate that people with FM enter a heightened state of neural activity associated with anxiety and autonomic functioning, during every fMRI run, concurrent with increased pupil sizes, and heightened pain sensitivity. These findings may relate to the well-known hypervigilance and global hypersensitivity of FM participants.
Collapse
Affiliation(s)
- Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Physics, Queen’s University, Kingston, Ontario, Canada
| | - Roland Staud
- Division of Rheumatology, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Caroline F. Pukall
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Bush NJ, Cushnie AK, Boissoneault J, Aghabeigi S, Alexander C, Staud R, Robinson ME. The Two Sides of Placebo Analgesia: Differential Functional Connectivity Reveals Mechanisms of Placebo Analgesic Response. J Pain Res 2025; 18:189-201. [PMID: 39816204 PMCID: PMC11733195 DOI: 10.2147/jpr.s483157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/01/2024] [Indexed: 01/18/2025] Open
Abstract
Background Previous research has demonstrated that placebo induction manipulations can reduce an individual's pain through non-specific mechanisms, such as expectancy manipulations. However, despite robust research characterizing these effects, individual differences in predicting placebo analgesic responses are not well understood. Methods Fifty-four healthy pain-free adults over 18 (M=22.8, SD=7.82) were recruited (66.7% women). Participants completed a baseline followed by a placebo session involving the application of an inactive cream in the context of an expectancy-enhancing instruction set while undergoing a functional magnetic resonance imaging scan (fMRI). Painful heat stimuli were applied to the thenar eminence of the right palm. Stimulus intensity was individually calibrated to produce pain ratings of approximately 40 on a 100-point visual analog scale. Generalized psychophysiological interaction (gPPI) was used to assess the group differences in functional connectivity during painful stimulation compared to warmth stimulation. Results About 68.5% showed a reduction in pain in the placebo condition with an average decrease of 30.3%. Non-responders showed an increase in pain in the placebo condition, with an average increase of 18.6%. Repeated measures ANOVA demonstrated a significant within-subjects interaction between expectancy and responder type (F(1,49)=4.27, p=0.04, ηp2=0.08). Expected pain was significantly associated with pain in the placebo session for the responders (b=0.37, R2=0.29, p<0.001), but not for the non-responders (b=0.11, R2=0.04, p=0.42). gPPI analysis revealed three clusters exhibiting greater increases in FC in areas related to attention and sensory integration in placebo responders compared to non-responders. One cluster was identified where greater increases in functional connectivity were associated with non-responders compared to responders in regions associated with attention and motor processing. Conclusion Our results provide evidence that responders and non-responders have differential behavioral and functional responses to acute pain during a placebo analgesic task.
Collapse
Affiliation(s)
- Nicholas J Bush
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Department of Anesthesiology, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Adriana K Cushnie
- Department of Anesthesiology, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Jeff Boissoneault
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Department of Anesthesiology, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Sharmagh Aghabeigi
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Casey Alexander
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Roland Staud
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael E Robinson
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Powers JM, Koning E, Ioachim G, Stroman PW. Pain is what you think: functional magnetic resonance imaging evidence toward a cognitive and affective approach for pain research. FRONTIERS IN PAIN RESEARCH 2024; 5:1388460. [PMID: 39720318 PMCID: PMC11666527 DOI: 10.3389/fpain.2024.1388460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
The sensory/discriminative domain of pain is often given more consideration than the cognitive and affective influences that ultimately make pain what it is: a highly subjective experience that is based on an individual's life history and experiences. While many investigations of the underlying mechanisms of pain have focused on solely noxious stimuli, few have compared somatosensory stimuli that cross the boundary from innocuous to noxious. Of those that have, there is little consensus on the similarities and differences in neural signaling across these sensory domains. The purpose of this study was to apply our established network connectivity analyses toward the goal of understanding the neural mechanisms behind sensory, cognitive, and affective responses to noxious and innocuous stimuli. Functional MRI data were collected from 19 healthy women and men that experienced warm and hot thermal stimuli across multiple trials. This is a within-subjects cross-sectional experimental study with repeated measures. Ratings of stimulus intensity and unpleasantness that were collected during each run confirmed significant perceptual differences between the two types of stimuli. Despite this finding, no group differences in network connectivity were found across conditions. When individual differences related to pain ratings were investigated, subtle differences were found in connectivity that could be attributed to sensory and association regions in the innocuous condition, and cognitive, affective, and autonomic regions in the pain condition. These results were reflected in the time-course data for each condition. Overall, signaling mechanisms for innocuous and noxious somatosensation are intricately linked, but pain-specific perception appears to be driven by our psychological and autonomic states.
Collapse
Affiliation(s)
- Jocelyn M. Powers
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Elena Koning
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Physics, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
6
|
Chen YL, Pan LLH, Niddam DM, Hinrichs C, Wang SJ, Wu YT. Comparative analysis of rs-fMRI markers in heat and mechanical pain sensitivity. PROGRESS IN BRAIN RESEARCH 2024; 290:157-178. [PMID: 39448111 DOI: 10.1016/bs.pbr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 10/26/2024]
Abstract
This study investigates the comparative analysis of resting-state functional magnetic imaging (rs-fMRI) markers in heat and mechanical pain sensitivity among healthy adults. Using quantitative sensory testing (QST) in the orofacial area and rs-fMRI, we explored the relationship between pain sensitivities and resting-state functional connectivity (rsFC) across whole brain areas. Brain regions were spatially divided using group independent component analysis (gICA), and additional masked gICA was performed for brainstem regions. Our findings revealed that a significant number of rsFCs were correlated with either heat or mechanical pain sensitivity, with a substantial portion originating from the Sensorimotor Network (SMN). Furthermore, multivariable regression models incorporating rsFC features demonstrated predictive capabilities for pain sensitivities, with the inclusion of brainstem gICA components significantly enhancing model accuracy. Finally, a composite critical rsFC value was introduced to simplify and describe overall abnormal communication in the brain network, which could also be used in univariable regression models to predict heat and mechanical pain sensitivity.
Collapse
Affiliation(s)
- Yung-Lin Chen
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - David M Niddam
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Clay Hinrichs
- Hackettstown Medical Center, Atlantic Health System, Hackettstown, NJ, United States
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
7
|
Hassanpour S, Algitami H, Umraw M, Merletti J, Keast B, Stroman PW. Investigating Descending Pain Regulation in Fibromyalgia and the Link to Altered Autonomic Regulation by Means of Functional MRI Data. Brain Sci 2024; 14:450. [PMID: 38790429 PMCID: PMC11118798 DOI: 10.3390/brainsci14050450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Fibromyalgia syndrome (FM) is a chronic pain condition that affects a significant portion of the population; yet, this condition is still poorly understood. Prior research has suggested that individuals with FM display a heightened sensitivity to pain and signs of autonomic dysfunction. Recent advances in functional MRI analysis methods to model blood-oxygenation-level-dependent (BOLD) responses across networks of regions, and structural and physiological modeling (SAPM) have shown the potential to provide more detailed information about altered neural activity than was previously possible. Therefore, this study aimed to apply novel analysis methods to investigate altered neural processes underlying pain sensitivity in FM in functional magnetic resonance imaging (fMRI) data from the brainstem and spinal cord. Prior fMRI studies have shown evidence of functional differences in fibromyalgia (FM) within brain regions associated with pain's motivational aspects, as well as differences in neural activity related to pain regulation, arousal, and autonomic homeostatic regulation within the brainstem and spinal cord regions. We, therefore, hypothesized that nociceptive processing is altered in FM compared to healthy controls (HCs) in the brainstem and spinal cord areas linked to autonomic function and descending pain regulation, including the parabrachial nuclei (PBN) and nucleus tractus solitarius (NTS). We expected that new details of this altered neural signaling would be revealed with SAPM. The results provide new evidence of altered neural signaling in FM related to arousal and autonomic homeostatic regulation. This further advances our understanding of the altered neural processing that occurs in women with FM.
Collapse
Affiliation(s)
- Shima Hassanpour
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.H.); (H.A.); (M.U.); (J.M.); (B.K.)
| | - Hannan Algitami
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.H.); (H.A.); (M.U.); (J.M.); (B.K.)
| | - Maya Umraw
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.H.); (H.A.); (M.U.); (J.M.); (B.K.)
| | - Jessica Merletti
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.H.); (H.A.); (M.U.); (J.M.); (B.K.)
| | - Brieana Keast
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.H.); (H.A.); (M.U.); (J.M.); (B.K.)
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.H.); (H.A.); (M.U.); (J.M.); (B.K.)
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
8
|
Kaptan M, Pfyffer D, Konstantopoulos CG, Law CS, Weber II KA, Glover GH, Mackey S. Recent developments and future avenues for human corticospinal neuroimaging. Front Hum Neurosci 2024; 18:1339881. [PMID: 38332933 PMCID: PMC10850311 DOI: 10.3389/fnhum.2024.1339881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Non-invasive neuroimaging serves as a valuable tool for investigating the mechanisms within the central nervous system (CNS) related to somatosensory and motor processing, emotions, memory, cognition, and other functions. Despite the extensive use of brain imaging, spinal cord imaging has received relatively less attention, regardless of its potential to study peripheral communications with the brain and the descending corticospinal systems. To comprehensively understand the neural mechanisms underlying human sensory and motor functions, particularly in pathological conditions, simultaneous examination of neuronal activity in both the brain and spinal cord becomes imperative. Although technically demanding in terms of data acquisition and analysis, a growing but limited number of studies have successfully utilized specialized acquisition protocols for corticospinal imaging. These studies have effectively assessed sensorimotor, autonomic, and interneuronal signaling within the spinal cord, revealing interactions with cortical processes in the brain. In this mini-review, we aim to examine the expanding body of literature that employs cutting-edge corticospinal imaging to investigate the flow of sensorimotor information between the brain and spinal cord. Additionally, we will provide a concise overview of recent advancements in functional magnetic resonance imaging (fMRI) techniques. Furthermore, we will discuss potential future perspectives aimed at enhancing our comprehension of large-scale neuronal networks in the CNS and their disruptions in clinical disorders. This collective knowledge will aid in refining combined corticospinal fMRI methodologies, leading to the development of clinically relevant biomarkers for conditions affecting sensorimotor processing in the CNS.
Collapse
Affiliation(s)
- Merve Kaptan
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Dario Pfyffer
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Christiane G. Konstantopoulos
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Christine S.W. Law
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Kenneth A. Weber II
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Gary H. Glover
- Radiological Sciences Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
9
|
Staud R, Godfrey MM, Stroman PW. Fibromyalgia is associated with hypersensitivity but not with abnormal pain modulation: evidence from QST trials and spinal fMRI. FRONTIERS IN PAIN RESEARCH 2023; 4:1284103. [PMID: 38116188 PMCID: PMC10728773 DOI: 10.3389/fpain.2023.1284103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Widespread pain and hyperalgesia are characteristics of chronic musculoskeletal pain conditions, including fibromyalgia syndrome (FM). Despite mixed evidence, there is increasing consensus that these characteristics depend on abnormal pain augmentation and dysfunctional pain inhibition. Our recent investigations of pain modulation with individually adjusted nociceptive stimuli have confirmed the mechanical and thermal hyperalgesia of FM patients but failed to detect abnormalities of pain summation or descending pain inhibition. Furthermore, our functional magnetic resonance imaging evaluations of spinal and brainstem pain processing during application of sensitivity-adjusted heat stimuli demonstrated similar temporal patterns of spinal cord activation in FM and HC participants. However, detailed modeling of brainstem activation showed that BOLD activity during "pain summation" was increased in FM subjects, suggesting differences in brain stem modulation of nociceptive stimuli compared to HC. Whereas these differences in brain stem activation are likely related to the hypersensitivity of FM patients, the overall central pain modulation of FM showed no significant abnormalities. These findings suggest that FM patients are hyperalgesic but modulate nociceptive input as effectively as HC.
Collapse
Affiliation(s)
- Roland Staud
- Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL, United States
| | - Melyssa M. Godfrey
- Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL, United States
| | - Patrick W. Stroman
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
10
|
Zancanaro M, Stein DJ, Lopes BC, de Souza A, Ströher Toledo R, de Souza AH, Oliveira SM, Visioli F, Sanches PRS, Fregni F, Caumo W, Torres ILS. Preemptive transcranial direct current stimulation induces analgesia, prevents chronic inflammation and fibrosis, and promotes tissue repair in a rat model of postoperative pain. Neurosci Lett 2023; 813:137407. [PMID: 37499743 DOI: 10.1016/j.neulet.2023.137407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
This study evaluated the effects of previous exposure to Transcranial Direct Current Stimulation (tDCS) on nociceptive, neuroinflammatory, and neurochemical parameters, in rats subjected to an incisional pain model. Forty adult male Wistar rats (60 days old; weighing ∼ 250 g) were divided into five groups: 1. control (C); 2. drugs (D); 3. surgery (S); 4. surgery + sham-tDCS (SsT) and 5. surgery + tDCS (ST). Bimodal tDCS (0.5 mA) was applied for 20 min/day/8 days before the incisional model. Mechanical allodynia (von Frey) was evaluated at different time points after surgery. Cytokines and BDNF levels were evaluated in the cerebral cortex, hippocampus, brainstem, and spinal cord. Histology and activity of myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) were evaluated in the surgical lesion sites in the right hind paw. The results demonstrate that the surgery procedure increased BDNF and IL-6 levels in the spinal cord levels in the hippocampus, and decreased IL-1β and IL-6 levels in the cerebral cortex, IL-6 levels in the hippocampus, and IL-10 levels in the brainstem and hippocampus. In addition, preemptive tDCS was effective in controlling postoperative pain, increasing BDNF, IL-6, and IL-10 levels in the spinal cord and brainstem, increasing IL-1β in the spinal cord, and decreasing IL-6 levels in the cerebral cortex and hippocampus, IL-1β and IL-10 levels in the hippocampus. Preemptive tDCS also contributes to tissue repair, preventing chronic inflammation, and consequent fibrosis. Thus, these findings imply that preemptive methods for postoperative pain management should be considered an interesting pain management strategy, and may contribute to the development of clinical applications for tDCS in surgical situations.
Collapse
Affiliation(s)
- Mayra Zancanaro
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Dirson J Stein
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Bettega C Lopes
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil
| | - Andressa de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil
| | - Roberta Ströher Toledo
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil
| | - Alessandra H de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil
| | - Sara M Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Visioli
- Departamento de Odontologia Conservadora, Faculdade de Odontologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | | | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, United States
| | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Iraci L S Torres
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-003, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
11
|
Bush NJ, Boissoneault J, Letzen J, Staud R, Robinson ME. Task-dependent functional connectivity of pain is associated with the magnitude of placebo analgesia in pain-free individuals. Eur J Pain 2023; 27:1023-1035. [PMID: 37344957 PMCID: PMC10527332 DOI: 10.1002/ejp.2145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/03/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Task-based functional connectivity (FC) of pain-related regions resulting from expectancy-based placebo induction has yet to be examined, limiting our understanding of regions and networks associated with placebo analgesia. METHODS Fifty-five healthy pain-free adults over 18 (M = 22.8 years, SD = 7.75) were recruited (65.5% women; 63.6% non-Hispanic/Latino/a/x; 58.2% White). Participants completed a baseline followed by a placebo session involving the topical application of an inactive cream in the context of an expectancy-enhancing instruction set. Noxious heat stimuli were applied to the thenar eminence of the right palm using an fMRI-safe thermode. Stimulus intensity was individually calibrated to produce pain ratings of approximately 40 on a 100-point visual analogue scale. RESULTS A total of 67.3% of the participants showed a reduction in pain intensity in the placebo condition with an average reduction in pain across the whole sample of 12.7%. Expected pain intensity was associated with reported pain intensity in the placebo session (b = 0.32, p = 0.004, R2 = 0.15). Voxel-wise analyses indicated seven clusters with significant activation during noxious heat stimulation at baseline (pFDR < 0.05). Generalized psychophysiological interaction analysis suggested that placebo-related FC changes between middle frontal gyrus-superior parietal lobule during noxious stimulation were significantly associated with the magnitude of pain reduction (pFDR < 0.05). CONCLUSIONS Results suggest that stronger expectancy-based placebo responses might be underpinned by greater FC among attentional and somatosensory regions. SIGNIFICANCE This article provides support and insight for task-dependent functional connectivity differences related to the magnitude of placebo analgesia. Our findings provide key support that the magnitude of expectation-based placebo response depends on the coupling of regions associated with somatosensory and attentional processing.
Collapse
Affiliation(s)
- Nicholas J Bush
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
- Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida, USA
| | - Jeff Boissoneault
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
- Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida, USA
| | - Janelle Letzen
- Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roland Staud
- Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida, USA
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Michael E Robinson
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
- Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Crawford LS, Meylakh N, Macey PM, Macefield VG, Keay KA, Henderson LA. Stimulus-independent and stimulus-dependent neural networks underpin placebo analgesia responsiveness in humans. Commun Biol 2023; 6:569. [PMID: 37244947 DOI: 10.1038/s42003-023-04951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023] Open
Abstract
The neural circuits that regulate placebo analgesia responsivity are unknown, although engagement of brainstem pain modulatory regions is likely critical. Here we show in 47 participants that differences are present in neural circuit connectivity's in placebo responders versus non-responders. We distinguish stimulus-independent and stimulus-dependent neural networks that display altered connections between the hypothalamus, anterior cingulate cortex and midbrain periaqueductal gray matter. This dual regulatory system underpins an individual's ability to mount placebo analgesia.
Collapse
Affiliation(s)
- Lewis S Crawford
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Noemi Meylakh
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Paul M Macey
- UCLA School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | - Vaughan G Macefield
- Department of Neuroscience, Monash University, Melbourne, VIC, 3800, Australia
| | - Kevin A Keay
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
13
|
Ioachim G, Warren HJM, Powers JM, Staud R, Pukall CF, Stroman PW. Distinct neural signaling characteristics between fibromyalgia and provoked vestibulodynia revealed by means of functional magnetic resonance imaging in the brainstem and spinal cord. FRONTIERS IN PAIN RESEARCH 2023; 4:1171160. [PMID: 37283704 PMCID: PMC10240076 DOI: 10.3389/fpain.2023.1171160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Fibromyalgia and provoked vestibulodynia are two chronic pain conditions that disproportionately affect women. The mechanisms underlying the pain in these conditions are still poorly understood, but there is speculation that both may be linked to altered central sensitization and autonomic regulation. Neuroimaging studies of these conditions focusing on the brainstem and spinal cord to explore changes in pain regulation and autonomic regulation are emerging, but none to date have directly compared pain and autonomic regulation in these conditions. This study compares groups of women with fibromyalgia and provoked vestibulodynia to healthy controls using a threat/safety paradigm with a predictable noxious heat stimulus. Methods Functional magnetic resonance imaging data were acquired at 3 tesla in the cervical spinal cord and brainstem with previously established methods. Imaging data were analyzed with structural equation modeling and ANCOVA methods during: a period of noxious stimulation, and a period before the stimulation when participants were expecting the upcoming pain. Results The results demonstrate several similarities and differences between brainstem/spinal cord connectivity related to autonomic and pain regulatory networks across the three groups in both time periods. Discussion Based on the regions and connections involved in the differences, the altered pain processing in fibromyalgia appears to be related to changes in how autonomic and pain regulation networks are integrated, whereas altered pain processing in provoked vestibulodynia is linked in part to changes in arousal or salience networks as well as changes in affective components of pain regulation.
Collapse
Affiliation(s)
- Gabriela Ioachim
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | | | - Jocelyn M. Powers
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Roland Staud
- Department of Medicine, University of Florida, Gainseville, FL, United States
| | - Caroline F. Pukall
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Psychology, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Patrick W. Stroman
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Physics, Queen's University, Kingston, ON, Canada
| |
Collapse
|
14
|
Koning E, Powers JM, Ioachim G, Stroman PW. A Comparison of Functional Connectivity in the Human Brainstem and Spinal Cord Associated with Noxious and Innocuous Thermal Stimulation Identified by Means of Functional MRI. Brain Sci 2023; 13:brainsci13050777. [PMID: 37239249 DOI: 10.3390/brainsci13050777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The somatosensory system is multidimensional and processes important information for survival, including the experience of pain. The brainstem and spinal cord serve pivotal roles in both transmitting and modulating pain signals from the periphery; although, they are studied less frequently with neuroimaging when compared to the brain. In addition, imaging studies of pain often lack a sensory control condition, failing to differentiate the neural processes associated with pain versus innocuous sensations. The purpose of this study was to investigate neural connectivity between key regions involved in descending modulation of pain in response to a hot, noxious stimulus as compared to a warm, innocuous stimulus. This was achieved with functional magnetic resonance imaging (fMRI) of the brainstem and spinal cord in 20 healthy men and women. Functional connectivity was observed to vary between specific regions across painful and innocuous conditions. However, the same variations were not observed in the period of anticipation prior to the onset of stimulation. Specific connections varied with individual pain scores only during the noxious stimulation condition, indicating a significant role of individual differences in the experience of pain which are distinct from that of innocuous sensation. The results also illustrate significant differences in descending modulation before and during stimulation in both conditions. These findings contribute to a deeper understanding of the mechanisms underlying pain processing at the level of the brainstem and spinal cord, and how pain is modulated.
Collapse
Affiliation(s)
- Elena Koning
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jocelyn M Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Patrick W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
15
|
Stroman PW, Powers JM, Ioachim G. Proof-of-concept of a novel structural equation modelling approach for the analysis of functional magnetic resonance imaging data applied to investigate individual differences in human pain responses. Hum Brain Mapp 2023; 44:2523-2542. [PMID: 36773275 PMCID: PMC10028631 DOI: 10.1002/hbm.26228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
A novel network analysis method is demonstrated for applications with functional magnetic resonance imaging (fMRI) data. The method is based on structural equation modeling (SEM) plus modeling of physiological responses in order to explain blood oxygenation-level dependent (BOLD) responses across interconnected regions. The method, termed structural and physiological modeling (SAPM) aims to overcome a weakness of previous analysis methods by estimating both input and output signaling of every region of a network. The results also provide weighting factors (B) which describe the influence of each input signal to a region on its output signaling to another region. The SAPM method is demonstrated by applying it to fMRI data from the brainstem and spinal cord in 55 healthy participants undergoing repeated applications of a heat pain stimulation paradigm. Data are also analyzed using our established SEM method for comparison. The results with both methods indicate that individual differences in nociceptive processing are mediated by differences in descending regulation of spinal cord neurons under the influence of both the nucleus tractus solitarius and periaqueductal gray region. The SAPM results show that BOLD responses in the entire network can be explained during all periods of the stimulation paradigm based on two latent (unobserved) input signaling sources, and a model of the predicted BOLD responses to the heat stimulus. The results demonstrate the concept of our novel SAPM method and provide evidence for its validity. Additional studies are needed to further develop the method and its applications to investigations of complex neural processes across networks.
Collapse
Affiliation(s)
- Patrick W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Physics, Queen's University, Kingston, Ontario, Canada
| | - Jocelyn M Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Adamczyk WM, Szikszay TM, Nahman-Averbuch H, Skalski J, Nastaj J, Gouverneur P, Luedtke K. To Calibrate or not to Calibrate? A Methodological Dilemma in Experimental Pain Research. THE JOURNAL OF PAIN 2022; 23:1823-1832. [PMID: 35918020 DOI: 10.1016/j.jpain.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/24/2022] [Accepted: 07/20/2022] [Indexed: 05/23/2023]
Abstract
To calibrate or not to calibrate? This question is raised by almost everyone designing an experimental pain study with supra-threshold stimulation. The dilemma is whether to individualize stimulus intensity to the pain threshold / supra-threshold pain level of each participant or whether to provide the noxious stimulus at a fixed intensity so that everyone receives the identical input. Each approach has unique pros and cons which need to be considered to i) accurately design an experiment, ii) enhance statistical inference in the given data and, iii) reduce bias and the influence of confounding factors in the individual study e.g., body composition, differences in energy absorption and previous experience. Individualization requires calibration, a procedure already irritating the nociceptive system but allowing to match the pain level across individuals. It leads to a higher variability of the stimulus intensity, thereby influencing the encoding of "noxiousness" by the central nervous system. Results might be less influenced by statistical phenomena such as ceiling/floor effects and the approach does not seem to rise ethical concerns. On the other hand, applying a fixed (standardized) intensity reduces the problem of intensity encoding leading to a large between-subjects variability in pain responses. Fixed stimulation intensities do not require pre-exposure. It can be proposed that one method is not preferable over another, however the choice depends on the study aim and the desired level of external validity. This paper discusses considerations for choosing the optimal approach for experimental pain studies and provides recommendations for different study designs. PERSPECTIVE: To calibrate pain or not? This dilemma is related to almost every experimental pain research. The decision is a trade-off between statistical power and greater control of stimulus encoding. The article decomposes both approaches and presents the pros and cons of either approach supported by data and simulation experiment.
Collapse
Affiliation(s)
- Waclaw M Adamczyk
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland; Institute of Health Sciences, Department of Physiotherapy, Pain & Exercise Research Luebeck (P.E.R.L.), University of Lübeck, Lübeck, Germany.
| | - Tibor M Szikszay
- Institute of Health Sciences, Department of Physiotherapy, Pain & Exercise Research Luebeck (P.E.R.L.), University of Lübeck, Lübeck, Germany
| | - Hadas Nahman-Averbuch
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jacek Skalski
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Jakub Nastaj
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Philip Gouverneur
- Institute of Medical Informatics, University of Lübeck, Lübeck, Germany
| | - Kerstin Luedtke
- Institute of Health Sciences, Department of Physiotherapy, Pain & Exercise Research Luebeck (P.E.R.L.), University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
17
|
Hoggarth MA, Wang MC, Hemmerling KJ, Vigotsky AD, Smith ZA, Parrish TB, Weber KA, Bright MG. Effects of variability in manually contoured spinal cord masks on fMRI co-registration and interpretation. Front Neurol 2022; 13:907581. [PMID: 36341092 PMCID: PMC9630922 DOI: 10.3389/fneur.2022.907581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) of the human spinal cord (SC) is a unique non-invasive method for characterizing neurovascular responses to stimuli. Group-analysis of SC fMRI data involves co-registration of subject-level data to standard space, which requires manual masking of the cord and may result in bias of group-level SC fMRI results. To test this, we examined variability in SC masks drawn in fMRI data from 21 healthy participants from a completed study mapping responses to sensory stimuli of the C7 dermatome. Masks were drawn on temporal mean functional image by eight raters with varying levels of neuroimaging experience, and the rater from the original study acted as a reference. Spatial agreement between rater and reference masks was measured using the Dice Similarity Coefficient, and the influence of rater and dataset was examined using ANOVA. Each rater's masks were used to register functional data to the PAM50 template. Gray matter-white matter signal contrast of registered functional data was used to evaluate the spatial normalization accuracy across raters. Subject- and group-level analyses of activation during left- and right-sided sensory stimuli were performed for each rater's co-registered data. Agreement with the reference SC mask was associated with both rater (F(7, 140) = 32.12, P < 2 × 10-16, η2 = 0.29) and dataset (F(20, 140) = 20.58, P < 2 × 10-16, η2 = 0.53). Dataset variations may reflect image quality metrics: the ratio between the signal intensity of spinal cord voxels and surrounding cerebrospinal fluid was correlated with DSC results (p < 0.001). As predicted, variability in the manually-drawn masks influenced spatial normalization, and GM:WM contrast in the registered data showed significant effects of rater and dataset (rater: F(8, 160) = 23.57, P < 2 × 10-16, η2 = 0.24; dataset: F(20, 160) = 22.00, P < 2 × 10-16, η2 = 0.56). Registration differences propagated into subject-level activation maps which showed rater-dependent agreement with the reference. Although group-level activation maps differed between raters, no systematic bias was identified. Increasing consistency in manual contouring of spinal cord fMRI data improved co-registration and inter-rater agreement in activation mapping, however our results suggest that improvements in image acquisition and post-processing are also critical to address.
Collapse
Affiliation(s)
- Mark A. Hoggarth
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Max C. Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Kimberly J. Hemmerling
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Andrew D. Vigotsky
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
- Department of Statistics, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Zachary A. Smith
- Department of Neurological Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Todd B. Parrish
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kenneth A. Weber
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, United States
| | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
18
|
Yeater TD, Cruz CJ, Cruz-Almeida Y, Allen KD. Autonomic Nervous System Dysregulation and Osteoarthritis Pain: Mechanisms, Measurement, and Future Outlook. Curr Rheumatol Rep 2022; 24:175-183. [PMID: 35420372 PMCID: PMC9189055 DOI: 10.1007/s11926-022-01071-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW The autonomic nervous system is an important regulator of stress responses and exhibits functional changes in chronic pain states. This review discusses potential overlap among autonomic dysregulation, osteoarthritis (OA) progression, and chronic pain. From this foundation, we then discuss preclinical to clinical research opportunities to close gaps in our knowledge of autonomic dysregulation and OA. Finally, we consider the potential to generate new therapies for OA pain via modulation of the autonomic nervous system. RECENT FINDINGS Recent reviews provide a framework for the autonomic nervous system in OA progression; however, research is still limited on the topic. In other chronic pain states, functional overlaps between the central autonomic network and pain processing centers in the brain suggest relationships between concomitant dysregulation of the two systems. Non-pharmacological therapeutics, such as vagus nerve stimulation, mindfulness-based meditation, and exercise, have shown promise in alleviating painful symptoms of joint diseases, and these interventions may be partially mediated through the autonomic nervous system. The autonomic nervous system appears to be dysregulated in OA progression, and further research on rebalancing autonomic function may lead to novel therapeutic strategies for treating OA pain.
Collapse
Affiliation(s)
- Taylor D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Carlos J. Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Orthopedic Surgery and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.,Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Powers JM, Ioachim G, Stroman PW. Evidence for Integration of Cognitive, Affective, and Autonomic Influences During the Experience of Acute Pain in Healthy Human Volunteers. Front Neurosci 2022; 16:884093. [PMID: 35692431 PMCID: PMC9178236 DOI: 10.3389/fnins.2022.884093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Our psychological state greatly influences our perception of sensations and pain, both external and visceral, and is expected to contribute to individual pain sensitivity as well as chronic pain conditions. This investigation sought to examine the integration of cognitive and emotional communication across brainstem regions involved in pain modulation by comparing data from previous functional MRI studies of affective modulation of pain. Data were included from previous studies of music analgesia (Music), mood modulation of pain (Mood), and individual differences in pain (ID), totaling 43 healthy women and 8 healthy men. The Music and Mood studies were combined into an affective modulation group consisting of runs with music and positive-valenced emotional images plus concurrent presentation of pain, and a control group of runs with no-music, and neutral-valenced images with concurrent presentation of pain. The ID group was used as an independent control. Ratings of pain intensity were collected for each run and were analyzed in relation to the functional data. Differences in functional connectivity were identified across conditions in relation to emotional, autonomic, and pain processing in periods before, during and after periods of noxious stimulation. These differences may help to explain healthy pain processes and the cognitive and emotional appraisal of predictable noxious stimuli, in support of the Fields’ Decision Hypothesis. This study provides a baseline for current and future investigation of expanded neural networks, particularly within higher limbic and cortical structures. The results obtained by combining data across studies with different methods of pain modulation provide further evidence of the neural signaling underlying the complex nature of pain.
Collapse
Affiliation(s)
- Jocelyn M. Powers
- Stroman Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Gabriela Ioachim
- Stroman Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Patrick W. Stroman
- Stroman Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Physics, Queen’s University, Kingston, ON, Canada
- *Correspondence: Patrick W. Stroman,
| |
Collapse
|
20
|
Powers JM, Ioachim G, Stroman PW. Music to My Senses: Functional Magnetic Resonance Imaging Evidence of Music Analgesia Across Connectivity Networks Spanning the Brain and Brainstem. FRONTIERS IN PAIN RESEARCH 2022; 3:878258. [PMID: 35663249 PMCID: PMC9160574 DOI: 10.3389/fpain.2022.878258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Pain is often viewed and studied as an isolated perception. However, cognition, emotion, salience effects, and autonomic and sensory input are all integrated to create a comprehensive experience. Music-induced analgesia has been used for thousands of years, with moderate behavioural effects on pain perception, yet the neural mechanisms remain ambiguous. The purpose of this study was to investigate the effects of music analgesia through individual ratings of pain, and changes in connectivity across a network of regions spanning the brain and brainstem that are involved in limbic, paralimbic, autonomic, cognitive, and sensory domains. This is the first study of its kind to assess the effects of music analgesia using complex network analyses in the human brain and brainstem. Functional MRI data were collected from 20 healthy men and women with concurrent presentation of noxious stimulation and music, in addition to control runs without music. Ratings of peak pain intensity and unpleasantness were collected for each run and were analysed in relation to the functional data. We found that music alters connectivity across these neural networks between regions such as the insula, thalamus, hypothalamus, amygdala and hippocampus (among others), and is impacted by individual pain sensitivity. While these differences are important for how we understand pain and analgesia, it is essential to note that these effects are variable across participants and provide moderate pain relief at best. Therefore, a therapeutic strategy involving music should use it as an adjunct to pain management in combination with healthy lifestyle changes and/or pharmaceutical intervention.
Collapse
Affiliation(s)
- Jocelyn M. Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Physics, Queen's University, Kingston, ON, Canada
- *Correspondence: Patrick W. Stroman
| |
Collapse
|
21
|
Ioachim G, Warren HJM, Powers JM, Staud R, Pukall CF, Stroman PW. Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients During the Anticipation and Experience of Experimental Pain. Front Neurol 2022; 13:862976. [PMID: 35599729 PMCID: PMC9120571 DOI: 10.3389/fneur.2022.862976] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain associated with fibromyalgia (FM) affects a large portion of the population but the underlying mechanisms leading to this altered pain are still poorly understood. Evidence suggests that FM involves altered neural processes in the central nervous system and neuroimaging methods such as functional magnetic resonance imaging (fMRI) are used to reveal these underlying alterations. While many fMRI studies of FM have been conducted in the brain, recent evidence shows that the changes in pain processing in FM may be linked to autonomic and homeostatic dysregulation, thus requiring further investigation in the brainstem and spinal cord. Functional magnetic resonance imaging data from 15 women with FM and 15 healthy controls were obtained in the cervical spinal cord and brainstem at 3 tesla using previously established methods. In order to investigate differences in pain processing in these groups, participants underwent trials in which they anticipated and received a predictable painful stimulus, randomly interleaved with trials with no stimulus. Differences in functional connectivity between the groups were investigated by means of structural equation modeling. The results demonstrate significant differences in brainstem/spinal cord network connectivity between the FM and control groups which also correlated with individual differences in pain responses. The regions involved in these differences in connectivity included the LC, hypothalamus, PAG, and PBN, which are known to be associated with autonomic homeostatic regulation, including fight or flight responses. This study extends our understanding of altered neural processes associated with FM and the important link between sensory and autonomic regulation systems in this disorder.
Collapse
Affiliation(s)
- Gabriela Ioachim
- Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | | - Jocelyn M. Powers
- Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Roland Staud
- Department of Medicine, University of Florida, Seffner, FL, United States
| | - Caroline F. Pukall
- Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Patrick W. Stroman
- Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Physics, Queen's University, Kingston, ON, Canada
- *Correspondence: Patrick W. Stroman
| |
Collapse
|
22
|
Tonic pain alters functional connectivity of the descending pain modulatory network involving amygdala, periaqueductal gray, parabrachial nucleus and anterior cingulate cortex. Neuroimage 2022; 256:119278. [PMID: 35523367 PMCID: PMC9250649 DOI: 10.1016/j.neuroimage.2022.119278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Resting state functional connectivity (FC) is widely used to assess functional brain alterations in patients with chronic pain. However, reports of FC accompanying tonic pain in pain-free persons are rare. A network we term the Descending Pain Modulatory Network (DPMN) is implicated in healthy and pathologic pain modulation. Here, we evaluate the effect of tonic pain on FC of specific nodes of this network: anterior cingulate cortex (ACC), amygdala (AMYG), periaqueductal gray (PAG), and parabrachial nuclei (PBN). METHODS In 50 pain-free participants (30F), we induced tonic pain using a capsaicin-heat pain model. functional MRI measured resting BOLD signal during pain-free rest with a 32°C thermode and then tonic pain where participants experienced a previously warm temperature combined with capsaicin. We evaluated FC from ACC, AMYG, PAG, and PBN with correlation of self-report pain intensity during both states. We hypothesized tonic pain would diminish FC dyads within the DPMN. RESULTS Of all hypothesized FC dyads, only PAG and subgenual ACC was weakly altered during pain (F=3.34; p=0.074; pain-free>pain d=0.25). After pain induction sACC-PAG FC became positively correlated with pain intensity (R=0.38; t=2.81; p=0.007). Right PBN-PAG FC during pain-free rest positively correlated with subsequently experienced pain (R=0.44; t=3.43; p=0.001). During pain, this connection's FC was diminished (paired t=-3.17; p=0.0026). In whole-brain analyses, during pain-free rest, FC between left AMYG and right superior parietal lobule and caudate nucleus were positively correlated with subsequent pain. During pain, FC between left AMYG and right inferior temporal gyrus negatively correlated with pain. Subsequent pain positively correlated with right AMYG FC with right claustrum; right primary visual cortex and right temporo-occipitoparietal junction Conclusion: We demonstrate sACC-PAG tonic pain FC positively correlates with experienced pain and resting right PBN-PAG FC correlates with subsequent pain and is diminished during tonic pain. Finally, we reveal PAG- and right AMYG-anchored networks which correlate with subsequently experienced pain intensity. Our findings suggest specific connectivity patterns within the DPMN at rest are associated with subsequently experienced pain and modulated by tonic pain. These nodes and their functional modulation may reveal new therapeutic targets for neuromodulation or biomarkers to guide interventions.
Collapse
|
23
|
Brainstem Mechanisms of Pain Modulation: A within-Subjects 7T fMRI Study of Placebo Analgesic and Nocebo Hyperalgesic Responses. J Neurosci 2021; 41:9794-9806. [PMID: 34697093 DOI: 10.1523/jneurosci.0806-21.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia remain to be directly addressed. This study used ultra-high-field 7 tesla functional MRI (fMRI) to accurately resolve differences in brainstem circuitry present during the generation of placebo analgesia and nocebo hyperalgesia in healthy human participants (N = 25, 12 male). Over 2 successive days, through blinded application of altered thermal stimuli, participants were deceptively conditioned to believe that two inert creams labeled lidocaine (placebo) and capsaicin (nocebo) were acting to modulate their pain relative to a third Vaseline (control) cream. In a subsequent test phase, fMRI image sets were collected while participants were given identical noxious stimuli to all three cream sites. Pain intensity ratings were collected and placebo and nocebo responses determined. Brainstem-specific fMRI analysis revealed altered activity in key pain modulatory nuclei, including a disparate recruitment of the periaqueductal gray (PAG)-rostral ventromedial medulla (RVM) pathway when both greater placebo and nocebo effects were observed. Additionally, we found that placebo and nocebo responses differentially activated the parabrachial nucleus but overlapped in engagement of the substantia nigra and locus coeruleus. These data reveal that placebo and nocebo effects are generated through differential engagement of the PAG-RVM pathway, which in concert with other brainstem sites likely influences the experience of pain by modulating activity at the level of the dorsal horn.SIGNIFICANCE STATEMENT Understanding endogenous pain modulatory mechanisms would support development of effective clinical treatment strategies for both acute and chronic pain. Specific brainstem nuclei have long been known to play a central role in nociceptive modulation; however, because of the small size and complex organization of the nuclei, previous neuroimaging efforts have been limited in directly identifying how these subcortical networks interact during the development of antinociceptive and pro-nociceptive effects. We used ultra-high-field fMRI to resolve brainstem structures and measure signal change during placebo analgesia and nocebo hyperalgesia. We define overlapping and disparate brainstem circuitry responsible for altering pain perception. These findings extend our understanding of the detailed organization and function of discrete brainstem nuclei involved in pain processing and modulation.
Collapse
|
24
|
Staud R, Boissoneault J, Lai S, Mejia MS, Ramanlal R, Godfrey MM, Stroman PW. Spinal cord neural activity of patients with fibromyalgia and healthy controls during temporal summation of pain: an fMRI study. J Neurophysiol 2021; 126:946-956. [PMID: 34406893 DOI: 10.1152/jn.00276.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cause for the increased sensitivity of patients with fibromyalgia (FM) to painful stimuli is unclear but sensitization of dorsal horn spinal cord neurons has been suggested. There, critical changes of sensory information occur which depend on the plasticity of second-order neurons and descending pain modulation, including facilitation and inhibition. This study used repetitive stimuli that produce temporal-summation-of-second-pain (TSSP) and central sensitization, relevant mechanisms for patients with chronic pain. We examined spinal cord neural activation during TSSP in patients with FM and healthy controls (HC) and used its functional connectivity with several brainstem nuclei to model the observed blood-oxygen-level-dependent (BOLD) time-course with pain ratings. Sixteen HC and 14 FM participants received repetitive heat stimuli to the hand at 0.4 Hz to achieve TSSP during functional imaging with a 3 T-Philips Achieva MRI scanner. Stimuli were adjusted to each individual's pain sensitivity to achieve maximal pain ratings of 50 ± 10 on a numerical pain scale (0-100). Using a 16-channel neurovascular coil, multiple image series were obtained from the cervical spinal cord to the brainstem using single-shot turbo-spin echo sequences. During repetitive, sensitivity-adjusted heat stimuli, pain ratings of all subjects increased as predicted, consistent with TSSP. HC and FM participants had similar temporal patterns of spinal activation: initial BOLD increase followed by deactivation. Structural equation modeling showed that the observed spinal activity during TSSP was associated with more BOLD activity across/within the brainstem in FM subjects than HC, suggesting differences in pain modulation.NEW & NOTEWORTHY "Windup" and its behavioral correlate "temporal-summation-of-second pain" (TSSP) represent spinal cord mechanisms of pain augmentation associated with central sensitization and chronic pain. Fibromyalgia (FM) is a chronic pain disorder, where abnormal TSSP has been demonstrated. We used fMRI to study spinal cord and brainstem activation during TSSP. We characterized the time course of spinal cord and brainstem BOLD activity during TSSP which showed abnormal brainstem activity in patients with FM, possibly due to deficient pain modulation.
Collapse
Affiliation(s)
- Roland Staud
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Jeff Boissoneault
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
| | - Song Lai
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Marlin S Mejia
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Riddhi Ramanlal
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | - Patrick W Stroman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
25
|
Yessick LR, Pukall CF, Ioachim G, Chamberlain SM, Stroman PW. An Investigation of Descending Pain Modulation in Women With Provoked Vestibulodynia (PVD): Alterations of Spinal Cord and Brainstem Connectivity. FRONTIERS IN PAIN RESEARCH 2021; 2:682483. [PMID: 35295532 PMCID: PMC8915748 DOI: 10.3389/fpain.2021.682483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
The most common subtype of vulvodynia (idiopathic chronic vulvar pain) is provoked vestibulodynia (PVD). Previous imaging studies have shown that women with vulvodynia exhibit increased neural activity in pain-related brain regions (e.g., the secondary somatosensory cortex, insula, dorsal midcingulate, posterior cingulate, and thalamus). However, despite the recognized role of the spinal cord/brainstem in pain modulation, no previous neuroimaging studies of vulvodynia have examined the spinal cord/brainstem. Sixteen women with PVD and sixteen matched Control women underwent a spinal cord/brainstem functional magnetic resonance imaging (fMRI) session consisting of five runs with no painful thermal stimuli (No Pain), interleaved randomly with five runs with calibrated, moderately painful heat stimulation (Pain). Functional connectivity was also assessed in periods before, during, and after, pain stimulation to investigate dynamic variations in pain processing throughout the stimulation paradigm. Functional connectivity in the brainstem and spinal cord for each group was examined using structural equation modeling (SEM) for both Pain and No Pain conditions. Significant connectivity differences during stimulation were identified between PVD and Control groups within pain modulatory regions. Comparisons of Pain and No Pain conditions identified a larger number of connections in the Control group than in the PVD group, both before and during stimulation. The results suggest that women with PVD exhibit altered pain processing and indicate an insufficient response of the pain modulation system. This study is the first to examine the spinal cord/brainstem functional connectivity in women with PVD, and it demonstrates altered connectivity related to pain modulation in the spinal cord/brainstem.
Collapse
Affiliation(s)
| | - Caroline F. Pukall
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Susan M. Chamberlain
- Department of Obstetrics and Gynecology, Queen's University, Kingston, ON, Canada
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
26
|
Stroman PW, Powers JM, Ioachim G, Warren HJM, McNeil K. Investigation of the neural basis of expectation-based analgesia in the human brainstem and spinal cord by means of functional magnetic resonance imaging. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100068. [PMID: 34381928 PMCID: PMC8333346 DOI: 10.1016/j.ynpai.2021.100068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Expectation of lower pain results in lower perceived pain in healthy humans. This expectation analgesia is mediated by descending regulation of the spinal cord. Connectivity analyses showed effects of expecting lower pain prior to stimulation. Expectation analgesia involves regions linked to arousal and autonomic regulation.
Purpose The expected intensity of pain resulting from a noxious stimulus has been observed to have a strong influence on the pain that is perceived. The neural basis of pain reduction, as a result of expecting lower pain, was investigated using functional magnetic resonance imaging (fMRI) in the brainstem and spinal cord. Methods Functional MRI studies were carried out in a region spanning the brainstem and cervical spinal cord in healthy participants. Participants were familiarized with a noxious heat stimulus and study procedures in advance, and were informed during each trial that either a heat calibrated to produce moderate pain (Base state), or a temperature 1 °C lower (Low state), would be applied to their hand. However, the Base temperature was applied in every trial. Results Pain ratings were significantly reduced as a result of expecting lower temperatures. FMRI results demonstrate blood oxygenation-level dependent (BOLD) signal variations in response to participants being informed of the stimulus to expect, in advance of stimulation, and in response to stimulation. Significant coordination of BOLD signals was also detected across specific brainstem and spinal cord regions, with connectivity strengths that varied significantly with the study condition, and with individual pain ratings. The results identify regions that are known to be involved with arousal and autonomic regulation. Conclusions Expectation-based analgesia is mediated by descending regulation of spinal cord nociceptive responses. This regulation appears to be related to arousal and autonomic regulation, consistent with the cognitive/affective dimension of pain.
Collapse
Affiliation(s)
- P W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.,Department of Physics, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - J M Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - G Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - H J M Warren
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - K McNeil
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.,Royal Military College of Canada, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
27
|
Mills EP, Keay KA, Henderson LA. Brainstem Pain-Modulation Circuitry and Its Plasticity in Neuropathic Pain: Insights From Human Brain Imaging Investigations. FRONTIERS IN PAIN RESEARCH 2021; 2:705345. [PMID: 35295481 PMCID: PMC8915745 DOI: 10.3389/fpain.2021.705345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Acute pain serves as a protective mechanism that alerts us to potential tissue damage and drives a behavioural response that removes us from danger. The neural circuitry critical for mounting this behavioural response is situated within the brainstem and is also crucial for producing analgesic and hyperalgesic responses. In particular, the periaqueductal grey, rostral ventromedial medulla, locus coeruleus and subnucleus reticularis dorsalis are important structures that directly or indirectly modulate nociceptive transmission at the primary nociceptive synapse. Substantial evidence from experimental animal studies suggests that plasticity within this system contributes to the initiation and/or maintenance of chronic neuropathic pain, and may even predispose individuals to developing chronic pain. Indeed, overwhelming evidence indicates that plasticity within this circuitry favours pro-nociception at the primary synapse in neuropathic pain conditions, a process that ultimately contributes to a hyperalgesic state. Although experimental animal investigations have been crucial in our understanding of the anatomy and function of the brainstem pain-modulation circuitry, it is vital to understand this system in acute and chronic pain states in humans so that more effective treatments can be developed. Recent functional MRI studies have identified a key role of this system during various analgesic and hyperalgesic responses including placebo analgesia, offset analgesia, attentional analgesia, conditioned pain modulation, central sensitisation and temporal summation. Moreover, recent MRI investigations have begun to explore brainstem pain-modulation circuitry plasticity in chronic neuropathic pain conditions and have identified altered grey matter volumes and functioning throughout the circuitry. Considering the findings from animal investigations, it is likely that these changes reflect a shift towards pro-nociception that ultimately contributes to the maintenance of neuropathic pain. The purpose of this review is to provide an overview of the human brain imaging investigations that have improved our understanding of the pain-modulation system in acute pain states and in neuropathic conditions. Our interpretation of the findings from these studies is often guided by the existing body of experimental animal literature, in addition to evidence from psychophysical investigations. Overall, understanding the plasticity of this system in human neuropathic pain conditions alongside the existing experimental animal literature will ultimately improve treatment options.
Collapse
|
28
|
Yessick LR, Pukall CF, Ioachim G, Chamberlain SM, Stroman PW. An Investigation of Descending Pain Modulation in Women With Provoked Vestibulodynia: Alterations of Brain Connectivity. FRONTIERS IN PAIN RESEARCH 2021; 2:682484. [PMID: 35295457 PMCID: PMC8915563 DOI: 10.3389/fpain.2021.682484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 12/01/2022] Open
Abstract
Provoked Vestibulodynia (PVD) is the most common vulvodynia subtype (idiopathic chronic vulvar pain). Functional magnetic resonance imaging (fMRI) studies indicate that women with PVD exhibit altered function in a number of pain modulatory regions in response to noxious stimulation, such as in the secondary somatosensory cortex, insula, dorsal midcingulate, posterior cingulate, and thalamus. However, previous neuroimaging studies of PVD have not examined periods of time before and after noxious stimulation or investigated functional connectivity among pain modulatory regions. Fourteen women with PVD and 14 matched Control participants underwent five fMRI runs with no painful stimuli interleaved randomly with five runs with calibrated, moderately painful heat stimuli applied to the thenar eminence. As recent findings indicate that pain processing begins before and continues after painful stimulation, 2-min periods were included in each run before and after the stimulus. Functional brain connectivity was assessed during both trials of Pain and No Pain stimulation for each group using structural equation modeling (SEM). Analyses of variance (ANOVAs) on connectivity values demonstrated significant main effects of study condition, and group, for connectivity among pain modulatory regions. Most of the differences between the Pain and No Pain conditions found only in the PVD group take place before (i.e., thalamus to INS, ACC to S1, thalamus to S1, and thalamus to S2) and after pain stimulation (i.e., INS to amygdala, PPC to S1, and thalamus to S2). Such differences were not observed in the Control group. These findings further support previous results indicating that women with PVD have altered pain processing compared to pain-free women.
Collapse
Affiliation(s)
| | - Caroline F. Pukall
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Susan M. Chamberlain
- Department of Obstetrics and Gynecology, Queen's University, Kingston, ON, Canada
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
29
|
Palsson TS, Doménech-García V, Boudreau SS, Graven-Nielsen T. Pain referral area is reduced by remote pain. Eur J Pain 2021; 25:1804-1814. [PMID: 33987881 DOI: 10.1002/ejp.1792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/02/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Endogenous pain inhibitory mechanisms are known to reduce pain intensity, but whether they influence the size and distribution of pain referral is unclear. This study aimed to determine if referred pain is reduced by applying a remote, conditioning painful stimulus. METHODS Twenty-four healthy men participated in this randomized, crossover study with a control and conditioning session. Referred pain was induced from the infraspinatus muscle (dominant side) by a painful pressure for 60 s. When applying pressure, the intensity was adjusted to a local pain intensity of 7/10 on a numerical rating scale. In the conditioning session, tonic painful pressure was simultaneously applied to the non-dominant leg during induction of referred pain. The area of referred pain was drawn onto a digital body chart and size extracted for data analysis. RESULTS For the total group and in a subgroup with distinct patterns of referred pain (n = 15/24), the pain area perceived in the back and front+back was smaller during the conditioning compared with the control (p < 0.05). No significant difference was found between sessions in a subgroup only demonstrating local pain (n = 9/24). CONCLUSIONS Engaging the descending noxious inhibitory control reduced the size of pain areas predominately when distinct pain referral was present. Assuming a conditioning effect of descending inhibitory control acting on dorsal horn neurons, these findings may indicate that mechanisms underlying pain referral can be modulated by endogenous control. The findings may indicate that referred pain may be a useful proxy to evaluate sensitivity of central pain mechanisms as previously suggested. SIGNIFICANCE The current results indicate a link between endogenous inhibition and pain referral. Descending inhibitory control effects on pain referral support a spinal mechanism involved in pain referral. Future studies should investigate whether the spatial characteristics of referred pain (e.g. size, frequency of affected body regions and distribution away from the primary nociceptive stimulus) can useful to evaluate the efficiency of endogenous pain modulation.
Collapse
Affiliation(s)
- Thorvaldur S Palsson
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Victor Doménech-García
- Department of Physiotherapy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
| | - Shellie S Boudreau
- Center For Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center For Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
30
|
Projections from the lateral parabrachial nucleus to the lateral and ventral lateral periaqueductal gray subregions mediate the itching sensation. Pain 2021; 162:1848-1863. [PMID: 33449512 DOI: 10.1097/j.pain.0000000000002193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/30/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Lateral and ventral lateral subregions of the periaqueductal gray (l/vlPAG) have been proved to be pivotal components in descending circuitry of itch processing, and their effects are related to the subclassification of neurons that were meditated. In this study, lateral parabrachial nucleus (LPB), one of the most crucial relay stations in the ascending pathway, was taken as the input nucleus to examine the modulatory effect of l/vlPAG neurons that received LPB projections. Anatomical tracing, chemogenetic, optogenetic, and local pharmacological approaches were used to investigate the participation of the LPB-l/vlPAG pathway in itch and pain sensation in mice. First, morphological evidence for projections from vesicular glutamate transporter-2-containing neurons in the LPB to l/vlPAG involved in itch transmission has been provided. Furthermore, chemogenetic and optogenetic activation of the LPB-l/vlPAG pathway resulted in both antipruritic effect and analgesic effect, whereas pharmacogenetic inhibition strengthened nociceptive perception without affecting spontaneous scratching behavior. Finally, in vivo pharmacology was combined with optogenetics which revealed that AMPA receptor-expressing neurons in l/vlPAG might play a more essential role in pathway modulation. These findings provide a novel insight about the connections between 2 prominent transmit nuclei, LPB and l/vlPAG, in both pruriceptive and nociceptive sensations and deepen the understanding of l/vlPAG modulatory roles in itch sensation by chosen LPB as source of ascending efferent projections.
Collapse
|
31
|
Warren HJM, Ioachim G, Powers JM, Stroman PW. How fMRI Analysis Using Structural Equation Modeling Techniques Can Improve Our Understanding of Pain Processing in Fibromyalgia. J Pain Res 2021; 14:381-398. [PMID: 33603453 PMCID: PMC7882802 DOI: 10.2147/jpr.s290795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/16/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the utility of data-driven analyses of functional magnetic resonance imaging (fMRI) data, by means of structural equation modeling, for the investigation of pain processing in fibromyalgia (FM). PATIENTS AND METHODS Datasets from two separate pain fMRI studies involving healthy controls (HC) and participants with FM were re-analyzed using both a conventional model-driven approach and a data-driven approach, and the results from these analyses were compared. The first dataset contained 15 women with FM and 15 women as healthy controls. The second dataset contained 15 women with FM and 11 women as healthy controls. RESULTS Consistent with previous studies, the model-driven analyses did not identify differences in pain processing between the HC and FM study groups in both datasets. On the other hand, the data-driven analyses identified significant group differences in both datasets. CONCLUSION Data-driven analyses can enhance our understanding of pain processing in healthy controls and in clinical populations by identifying activity associated with pain processing specific to the clinical groups that conventional model-driven analyses may miss.
Collapse
Affiliation(s)
- Howard J M Warren
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Jocelyn M Powers
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Patrick W Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Physics, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
32
|
Stroman PW, Warren HJM, Ioachim G, Powers JM, McNeil K. A comparison of the effectiveness of functional MRI analysis methods for pain research: The new normal. PLoS One 2020; 15:e0243723. [PMID: 33315886 PMCID: PMC7735591 DOI: 10.1371/journal.pone.0243723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Studies of the neural basis of human pain processing present many challenges because of the subjective and variable nature of pain, and the inaccessibility of the central nervous system. Neuroimaging methods, such as functional magnetic resonance imaging (fMRI), have provided the ability to investigate these neural processes, and yet commonly used analysis methods may not be optimally adapted for studies of pain. Here we present a comparison of model-driven and data-driven analysis methods, specifically for the study of human pain processing. Methods are tested using data from healthy control participants in two previous studies, with separate data sets spanning the brain, and the brainstem and spinal cord. Data are analyzed by fitting time-series responses to predicted BOLD responses in order to identify significantly responding regions (model-driven), as well as with connectivity analyses (data-driven) based on temporal correlations between responses in spatially separated regions, and with connectivity analyses based on structural equation modeling, allowing for multiple source regions to explain the signal variations in each target region. The results are assessed in terms of the amount of signal variance that can be explained in each region, and in terms of the regions and connections that are identified as having BOLD responses of interest. The characteristics of BOLD responses in identified regions are also investigated. The results demonstrate that data-driven approaches are more effective than model-driven approaches for fMRI studies of pain.
Collapse
Affiliation(s)
- Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Physics, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| | - Howard J. M. Warren
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Jocelyn M. Powers
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Kaitlin McNeil
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Royal Military College of Canada, Kingston, Ontario, Canada
| |
Collapse
|
33
|
Holmes SA, Kim A, Borsook D. The brain and behavioral correlates of motor-related analgesia (MRA). Neurobiol Dis 2020; 148:105158. [PMID: 33157210 DOI: 10.1016/j.nbd.2020.105158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/03/2023] Open
Abstract
The human motor system has the capacity to act as an internal form of analgesia. Since the discovery of the potential influence of motor systems on analgesia in rodent models, clinical applications of targeting the motor system for analgesia have been implemented. However, a neurobiological basis for motor activation's effects on analgesia is not well defined. Motor-related analgesia (MRA) is a phenomenon wherein a decrease in pain symptoms can be achieved through either indirect or direct activation of the motor axis. To date, research has focused on (a) evaluating the pain-motor interaction as one focused on the acute protection from painful stimuli; (b) motor cortex stimulation for chronic pain; or (c) exercise as a method of improving chronic pain in animal and human models. This review evaluates (1) current knowledge surrounding how pain interferes with canonical neurological performance throughout the motor axis; and (2) the physiological basis for motor-related analgesia as a means to reduce pain symptom loads for patients. A proposal for future research directions is provided.
Collapse
Affiliation(s)
- S A Holmes
- Center for Pain and the Brain, Boston Childrens Hospital and Harvard Medical School, 1-Department of Anesthesiology Critical Care and Pain Medicine, Boston Children's Hospital- Harvard Medical School, Boston, United States.
| | - A Kim
- Center for Pain and the Brain, Boston Childrens Hospital and Harvard Medical School, 1-Department of Anesthesiology Critical Care and Pain Medicine, Boston Children's Hospital- Harvard Medical School, Boston, United States.
| | - D Borsook
- Center for Pain and the Brain, Boston Childrens Hospital and Harvard Medical School, 1-Department of Anesthesiology Critical Care and Pain Medicine, Boston Children's Hospital- Harvard Medical School, Boston, United States.
| |
Collapse
|
34
|
Tinnermann A, Büchel C, Cohen-Adad J. Cortico-spinal imaging to study pain. Neuroimage 2020; 224:117439. [PMID: 33039624 DOI: 10.1016/j.neuroimage.2020.117439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Functional magnetic resonance imaging of the brain has helped to reveal mechanisms of pain perception in health and disease. Recently, imaging approaches have been developed that allow recording neural activity simultaneously in the brain and in the spinal cord. These approaches offer the possibility to examine pain perception in the entire central pain system and in addition, to investigate cortico-spinal interactions during pain processing. Although cortico-spinal imaging is a promising technique, it bears challenges concerning data acquisition and data analysis strategies. In this review, we discuss studies that applied simultaneous imaging of the brain and spinal cord to explore central pain processing. Furthermore, we describe different MR-related acquisition techniques, summarize advantages and disadvantages of approaches that have been implemented so far and present software that has been specifically developed for the analysis of spinal fMRI data to address challenges of spinal data analysis.
Collapse
Affiliation(s)
- Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany.
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
35
|
Ioachim G, Powers JM, Warren HJM, Stroman PW. Coordinated Human Brainstem and Spinal Cord Networks during the Expectation of Pain Have Elements Unique from Resting-State Effects. Brain Sci 2020; 10:brainsci10090568. [PMID: 32824896 PMCID: PMC7565010 DOI: 10.3390/brainsci10090568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) research on the human brainstem (BS) and spinal cord (SC) has identified extensive BS/SC resting-state networks (RSNs) by showing spontaneous coordinated blood oxygenation-level dependent (BOLD) signal fluctuations in the absence of a stimulus. Studies have shown that these networks can be influenced by participants’ level of arousal or attention (e.g., watching a video), and linked network function to autonomic homeostatic regulation. Here we explore how the cognitive state of expecting pain can influence connectivity in these networks. Data from two studies (a predictable pain stimulus study, and a resting-state study) were compared to show the effects of expecting pain on BS/SC networks, and how networks differed from networks associated with the resting-state. In each study, BOLD fMRI data were obtained from the cervical SC and brainstem in healthy participants at 3 tesla using a T2-weighted single-shot fast spin-echo imaging method. Functional connectivity was investigated within the entire 3D volume by means of structural equation modeling (SEM) and analyses of covariance (ANCOVA). Results showed extensive connectivity within/across BS and SC regions during the expectation of pain, and ANCOVA analyses showed that connectivity in specific components of these networks varied with individual pain sensitivity. Comparing these results to RSN fluctuations revealed commonalities in coordination between BS and SC regions, and specific BS–BS connectivity fluctuations unique to the expectation of pain. Based on the regions involved, these results provide evidence of brainstem regulation specific to the expectation of pain.
Collapse
Affiliation(s)
- Gabriela Ioachim
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.I.); (J.M.P.); (H.J.M.W.)
| | - Jocelyn M. Powers
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.I.); (J.M.P.); (H.J.M.W.)
| | - Howard J. M. Warren
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.I.); (J.M.P.); (H.J.M.W.)
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.I.); (J.M.P.); (H.J.M.W.)
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Queen’s University, Kingston, ON K7L 3N6, Canada
- Correspondence: ; Tel.: +1-613-533-3245
| |
Collapse
|
36
|
Lockwood S, Dickenson AH. What goes up must come down: insights from studies on descending controls acting on spinal pain processing. J Neural Transm (Vienna) 2020; 127:541-549. [PMID: 31515656 PMCID: PMC7148257 DOI: 10.1007/s00702-019-02077-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022]
Abstract
Descending controls link higher processing of noxious signals to modulation of spinal cord responses to their noxious inputs. It has become possible to study one key inhibitory system in animals and humans using one painful stimulus to attenuate another distant response and so eliciting diffuse noxious inhibitory controls (DNIC) or the human counterpart, conditioned pain modulation (CPM). Here, we discuss the neuronal pathways in both species, their pharmacology and examine changes in descending controls with a focus on osteoarthritis. We will also discuss the opposing descending facilitatory system. Strong parallels between DNIC and CPM emphasize the possibility of forward and reverse translation.
Collapse
Affiliation(s)
- Stevie Lockwood
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London, WC1E6BT, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London, WC1E6BT, UK.
| |
Collapse
|
37
|
Hohenschurz-Schmidt DJ, Calcagnini G, Dipasquale O, Jackson JB, Medina S, O'Daly O, O'Muircheartaigh J, de Lara Rubio A, Williams SCR, McMahon SB, Makovac E, Howard MA. Linking Pain Sensation to the Autonomic Nervous System: The Role of the Anterior Cingulate and Periaqueductal Gray Resting-State Networks. Front Neurosci 2020; 14:147. [PMID: 33041747 PMCID: PMC7527240 DOI: 10.3389/fnins.2020.00147] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/06/2020] [Indexed: 12/27/2022] Open
Abstract
There are bi-directional interactions between the autonomic nervous system (ANS) and pain. This is likely underpinned by a substantial overlap between brain areas of the central autonomic network and areas involved in pain processing and modulation. To date, however, relatively little is known about the neuronal substrates of the ANS-pain association. Here, we acquired resting state fMRI scans in 21 healthy subjects at rest and during tonic noxious cold stimulation. As indicators of autonomic function, we examined how heart rate variability (HRV) frequency measures were influenced by tonic noxious stimulation and how these variables related to participants’ pain perception and to brain functional connectivity in regions known to play a role in both ANS regulation and pain perception, namely the right dorsal anterior cingulate cortex (dACC) and periaqueductal gray (PAG). Our findings support a role of the cardiac ANS in brain connectivity during pain, linking functional connections of the dACC and PAG with measurements of low frequency (LF)-HRV. In particular, we identified a three-way relationship between the ANS, cortical brain networks known to underpin pain processing, and participants’ subjectively reported pain experiences. LF-HRV both at rest and during pain correlated with functional connectivity between the seed regions and other cortical areas including the right dorsolateral prefrontal cortex (dlPFC), left anterior insula (AI), and the precuneus. Our findings link cardiovascular autonomic parameters to brain activity changes involved in the elaboration of nociceptive information, thus beginning to elucidate underlying brain mechanisms associated with the reciprocal relationship between autonomic and pain-related systems.
Collapse
Affiliation(s)
- David Johannes Hohenschurz-Schmidt
- Department of Neuroimaging, King's College London, London, United Kingdom.,Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Giovanni Calcagnini
- Department of Technology and Health, Italian National Institute of Health, Rome, Italy
| | - Ottavia Dipasquale
- Department of Neuroimaging, King's College London, London, United Kingdom
| | - Jade B Jackson
- Department of Neuroimaging, King's College London, London, United Kingdom.,Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Sonia Medina
- Department of Neuroimaging, King's College London, London, United Kingdom.,Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Owen O'Daly
- Department of Neuroimaging, King's College London, London, United Kingdom
| | - Jonathan O'Muircheartaigh
- Department of Neuroimaging, King's College London, London, United Kingdom.,Sackler Institute for Translational Neurodevelopment, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | | | | | - Stephen B McMahon
- Department of Technology and Health, Italian National Institute of Health, Rome, Italy
| | - Elena Makovac
- Department of Neuroimaging, King's College London, London, United Kingdom.,Department of Technology and Health, Italian National Institute of Health, Rome, Italy
| | - Matthew A Howard
- Department of Neuroimaging, King's College London, London, United Kingdom
| |
Collapse
|
38
|
Weisman A, Quintner J, Masharawi Y. Congenital Insensitivity to Pain: A Misnomer. THE JOURNAL OF PAIN 2019; 20:1011-1014. [PMID: 30716471 DOI: 10.1016/j.jpain.2019.01.331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/11/2019] [Accepted: 01/31/2019] [Indexed: 11/19/2022]
Abstract
Congenital insensitivity to pain is an umbrella term used to describe a group of rare genetic diseases also classified as hereditary sensory autonomic neuropathies. These conditions are intriguing, with the potential to shed light on the poorly understood relationship concerning nociception and the experience of pain. However, the term congenital insensitivity to pain is epistemologically incorrect and is the product of historical circumstances. The term conflates pain and nociception and, thus, prevents researchers and caregivers from grasping the full dimensions of these conditions. The aims of this article were to review the epistemological problems surrounding the term, to demonstrate why the term is inaccurate and to suggest a new term, namely, congenital nociceptor deficiency. The suggested term better reflects the nature of the conditions and incorporates current understandings of nociception. PERSPECTIVE: The umbrella term congenital insensitivity to pain conflates pain and nociception, which is epistemologically unacceptable. We suggest a new term, namely, congenital nociceptor deficiency, that overcomes this problem and is concordant with current neurobiological knowledge.
Collapse
Affiliation(s)
- Asaf Weisman
- Spinal Research Laboratory, Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Israel; Clalit Health Services, Department of Physical Therapy, Holon, Israel.
| | - John Quintner
- Arthritis Foundation of Western Australia, Shenton Park WA, Australia
| | - Youssef Masharawi
- Spinal Research Laboratory, Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
39
|
Powers JM, Ioachim G, Stroman PW. Ten Key Insights into the Use of Spinal Cord fMRI. Brain Sci 2018; 8:E173. [PMID: 30201938 PMCID: PMC6162663 DOI: 10.3390/brainsci8090173] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 01/27/2023] Open
Abstract
A comprehensive review of the literature-to-date on functional magnetic resonance imaging (fMRI) of the spinal cord is presented. Spinal fMRI has been shown, over more than two decades of work, to be a reliable tool for detecting neural activity. We discuss 10 key points regarding the history, development, methods, and applications of spinal fMRI. Animal models have served a key purpose for the development of spinal fMRI protocols and for experimental spinal cord injury studies. Applications of spinal fMRI span from animal models across healthy and patient populations in humans using both task-based and resting-state paradigms. The literature also demonstrates clear trends in study design and acquisition methods, as the majority of studies follow a task-based, block design paradigm, and utilize variations of single-shot fast spin-echo imaging methods. We, therefore, discuss the similarities and differences of these to resting-state fMRI and gradient-echo EPI protocols. Although it is newly emerging, complex connectivity and network analysis is not only possible, but has also been shown to be reliable and reproducible in the spinal cord for both task-based and resting-state studies. Despite the technical challenges associated with spinal fMRI, this review identifies reliable solutions that have been developed to overcome these challenges.
Collapse
Affiliation(s)
- Jocelyn M Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Patrick W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada.
- Department of Biomedical Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
- Department of Physics, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|