1
|
Rivera-Arconada I, Baccei ML, López-García JA, Bardoni R. An electrophysiologist's guide to dorsal horn excitability and pain. Front Cell Neurosci 2025; 19:1548252. [PMID: 40241846 PMCID: PMC12001243 DOI: 10.3389/fncel.2025.1548252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
The dorsal horn of the spinal cord represents the first site in the central nervous system (CNS) where nociceptive signals are integrated. As a result, there has been a rapid growth in the number of studies investigating the ionic mechanisms regulating the excitability of dorsal horn neurons under normal and pathological conditions. We believe that it is time to look back and to critically examine what picture emerges from this wealth of studies. What are the actual types of neurons described in the literature based on electrophysiological criteria? Are these electrophysiologically-defined subpopulations strongly linked to specific morphological, functional, or molecular traits? Are these electrophysiological properties stable, or can they change during development or in response to peripheral injury? Here we provide an in-depth overview of both early and recent publications that explore the factors influencing dorsal horn neuronal excitability (including intrinsic membrane properties and synaptic transmission), how these factors vary across distinct subtypes of dorsal horn neurons, and how such factors are altered by peripheral nerve or tissue damage. The meta-research presented below leads to the conclusion that the dorsal horn is comprised of highly heterogeneous subpopulations in which the observed electrophysiological properties of a given neuron often fail to easily predict other properties such as biochemical phenotype or morphology. This highlights the need for future studies which can more fully interrogate the properties of dorsal horn neurons in a multi-modal manner.
Collapse
Affiliation(s)
| | - Mark L. Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati, Cincinnati, OH, United States
| | | | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Safronov BV, Szucs P. Novel aspects of signal processing in lamina I. Neuropharmacology 2024; 247:109858. [PMID: 38286189 DOI: 10.1016/j.neuropharm.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
The most superficial layer of the spinal dorsal horn, lamina I, is a key element of the nociceptive processing system. It contains different types of projection neurons (PNs) and local-circuit neurons (LCNs) whose functional roles in the signal processing are poorly understood. This article reviews recent progress in elucidating novel anatomical features and physiological properties of lamina I PNs and LCNs revealed by whole-cell recordings in ex vivo spinal cord. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Boris V Safronov
- Neuronal Networks Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Neuroscience Research Group, Debrecen, Hungary
| |
Collapse
|
3
|
Zhang Z, Zheng H, Yu Q, Jing X. Understanding of Spinal Wide Dynamic Range Neurons and Their Modulation on Pathological Pain. J Pain Res 2024; 17:441-457. [PMID: 38318328 PMCID: PMC10840524 DOI: 10.2147/jpr.s446803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
The spinal dorsal horn (SDH) transmits sensory information from the periphery to the brain. Wide dynamic range (WDR) neurons within this relay site play a critical role in modulating and integrating peripheral sensory inputs, as well as the process of central sensitization during pathological pain. This group of spinal multi-receptive neurons has attracted considerable attention in pain research due to their capabilities for encoding the location and intensity of nociception. Meanwhile, transmission, processing, and modulation of incoming afferent information in WDR neurons also establish the underlying basis for investigating the integration of acupuncture and pain signals. This review aims to provide a comprehensive examination of the distinctive features of WDR neurons and their involvement in pain. Specifically, we will examine the regulation of diverse supraspinal nuclei on these neurons and analyze their potential in elucidating the mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hao Zheng
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Qingquan Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Luz LL, Lima S, Fernandes EC, Kokai E, Gomori L, Szucs P, Safronov BV. Contralateral Afferent Input to Lumbar Lamina I Neurons as a Neural Substrate for Mirror-Image Pain. J Neurosci 2023; 43:3245-3258. [PMID: 36948583 PMCID: PMC10162462 DOI: 10.1523/jneurosci.1897-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Mirror-image pain arises from pathologic alterations in the nociceptive processing network that controls functional lateralization of the primary afferent input. Although a number of clinical syndromes related to dysfunction of the lumbar afferent system are associated with the mirror-image pain, its morphophysiological substrate and mechanism of induction remain poorly understood. Therefore, we used ex vivo spinal cord preparation of young rats of both sexes to study organization and processing of the contralateral afferent input to the neurons in the major spinal nociceptive projection area Lamina I. We show that decussating primary afferent branches reach contralateral Lamina I, where 27% of neurons, including projection neurons, receive monosynaptic and/or polysynaptic excitatory drive from the contralateral Aδ-fibers and C-fibers. All these neurons also received ipsilateral input, implying their involvement in the bilateral information processing. Our data further show that the contralateral Aδ-fiber and C-fiber input is under diverse forms of inhibitory control. Attenuation of the afferent-driven presynaptic inhibition and/or disinhibition of the dorsal horn network increased the contralateral excitatory drive to Lamina I neurons and its ability to evoke action potentials. Furthermore, the contralateral Aβδ-fibers presynaptically control ipsilateral C-fiber input to Lamina I neurons. Thus, these results show that some lumbar Lamina I neurons are wired to the contralateral afferent system whose input, under normal conditions, is subject to inhibitory control. A pathologic disinhibition of the decussating pathways can open a gate controlling contralateral information flow to the nociceptive projection neurons and, thus, contribute to induction of hypersensitivity and mirror-image pain.SIGNIFICANCE STATEMENT We show that contralateral Aδ-afferents and C-afferents supply lumbar Lamina I neurons. The contralateral input is under diverse forms of inhibitory control and itself controls the ipsilateral input. Disinhibition of decussating pathways increases nociceptive drive to Lamina I neurons and may cause induction of contralateral hypersensitivity and mirror-image pain.
Collapse
Affiliation(s)
- Liliana L Luz
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Susana Lima
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Elisabete C Fernandes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Eva Kokai
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Lidia Gomori
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- ELKH-DE Neuroscience Research Group, Debrecen H-4032, Hungary
| | - Boris V Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
5
|
Kókai É, Luz LL, Fernandes EC, Safronov BV, Poisbeau P, Szucs P. Quantitative spatial analysis reveals that the local axons of lamina I projection neurons and interneurons exhibit distributions that predict distinct roles in spinal sensory processing. J Comp Neurol 2022; 530:3270-3287. [PMID: 36094014 PMCID: PMC9826435 DOI: 10.1002/cne.25413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Our knowledge about the detailed wiring of neuronal circuits in the spinal dorsal horn (DH), where initial sensory processing takes place, is still very sparse. While a substantial amount of data is available on the somatodendritic morphology of DH neurons, the laminar and segmental distribution patterns and consequential function of individual axons are much less characterized. In the present study, we fully reconstructed the axonal and dendritic processes of 10 projection neurons (PNs) and 15 interneurons (INs) in lamina I of the rat, to reveal quantitative differences in their distribution. We also performed whole-cell patch-clamp recordings to test the predicted function of certain axon collaterals. In line with our earlier qualitative description, we found that lamina I INs in the lateral aspect of the superficial DH send axon collaterals toward the medial part and occupy mostly laminae I-III, providing anatomical basis for a lateromedial flow of information within the DH. Local axon collaterals of PNs were more extensively distributed including dorsal commissural axon collaterals that might refer to those reported earlier linking the lateral aspect of the left and right DHs. PN collaterals dominated the dorsolateral funiculus and laminae IV-VI, suggesting propriospinal and ventral connections. Indeed, patch-clamp recordings confirmed the existence of a dorsoventral excitatory drive upon activation of neurokinin-1 receptors that, although being expressed in various lamina I neurons, are specifically enriched in PNs. In summary, lamina I PNs and INs have almost identical dendritic input fields, while their segmental axon collateral distribution patterns are distinct. INs, whose somata reside in lamina I, establish local connections, may show asymmetry, and contribute to bridging the medial and lateral halves of the DH. PNs, on the other hand, preferably relay their integrated dendritic input to deeper laminae of the spinal gray matter where it might be linked to other ascending pathways or the premotor network, resulting in a putative direct contribution to the nociceptive withdrawal reflex.
Collapse
Affiliation(s)
- Éva Kókai
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary,ELKH‐DE Neuroscience Research GroupDebrecenHungary
| | - Lilana L. Luz
- Instituto de Investigacao e Inovacao em SaudeUniversidade do PortoPortoPortugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Elisabete C. Fernandes
- Instituto de Investigacao e Inovacao em SaudeUniversidade do PortoPortoPortugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Boris V. Safronov
- Instituto de Investigacao e Inovacao em SaudeUniversidade do PortoPortoPortugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Pierrick Poisbeau
- Centre national de la Recherche Scientifique, Institut des Neurosciences Cellulaires et IntégrativesUniversity de StrasbourgStrasbourgFrance
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary,ELKH‐DE Neuroscience Research GroupDebrecenHungary
| |
Collapse
|
6
|
Browne TJ, Smith KM, Gradwell MA, Iredale JA, Dayas CV, Callister RJ, Hughes DI, Graham BA. Spinoparabrachial projection neurons form distinct classes in the mouse dorsal horn. Pain 2021; 162:1977-1994. [PMID: 33779126 PMCID: PMC8208100 DOI: 10.1097/j.pain.0000000000002194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
ABSTRACT Projection neurons in the spinal dorsal horn relay sensory information to higher brain centres. The activation of these populations is shaped by afferent input from the periphery, descending input from the brain, and input from local interneuron circuits. Much of our recent understanding of dorsal horn circuitry comes from studies in transgenic mice; however, information on projection neurons is still based largely on studies in monkey, cat, and rat. We used viral labelling to identify and record from mouse parabrachial nucleus (PBN) projecting neurons located in the dorsal horn of spinal cord slices. Overall, mouse lamina I spinoparabrachial projection neurons (SPBNs) exhibit many electrophysiological and morphological features that overlap with rat. Unbiased cluster analysis distinguished 4 distinct subpopulations of lamina I SPBNs, based on their electrophysiological properties that may underlie different sensory signalling features in each group. We also provide novel information on SPBNs in the deeper lamina (III-V), which have not been previously studied by patch clamp analysis. These neurons exhibited higher action potential discharge frequencies and received weaker excitatory synaptic input than lamina I SPBNs, suggesting this deeper population produces different sensory codes destined for the PBN. Mouse SPBNs from both regions (laminae I and III-V) were often seen to give off local axon collaterals, and we provide neuroanatomical evidence they contribute to excitatory input to dorsal horn circuits. These data provide novel information to implicate excitatory input from parabrachial projection neuron in dorsal horn circuit activity during processing of nociceptive information, as well as defining deep dorsal horn projection neurons that provide an alternative route by which sensory information can reach the PBN.
Collapse
Affiliation(s)
- Tyler J. Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Kelly M. Smith
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark A. Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Jacqueline A. Iredale
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Christopher V. Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Robert J. Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - David I. Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A. Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| |
Collapse
|
7
|
Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. Int J Mol Sci 2021; 22:ijms22052667. [PMID: 33800863 PMCID: PMC7961554 DOI: 10.3390/ijms22052667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to sense and move within an environment are complex functions necessary for the survival of nearly all species. The spinal cord is both the initial entry site for peripheral information and the final output site for motor response, placing spinal circuits as paramount in mediating sensory responses and coordinating movement. This is partly accomplished through the activation of complex spinal microcircuits that gate afferent signals to filter extraneous stimuli from various sensory modalities and determine which signals are transmitted to higher order structures in the CNS and to spinal motor pathways. A mechanistic understanding of how inhibitory interneurons are organized and employed within the spinal cord will provide potential access points for therapeutics targeting inhibitory deficits underlying various pathologies including sensory and movement disorders. Recent studies using transgenic manipulations, neurochemical profiling, and single-cell transcriptomics have identified distinct populations of inhibitory interneurons which express an array of genetic and/or neurochemical markers that constitute functional microcircuits. In this review, we provide an overview of identified neural components that make up inhibitory microcircuits within the dorsal and ventral spinal cord and highlight the importance of inhibitory control of sensorimotor pathways at the spinal level.
Collapse
|
8
|
Hitrec T, Squarcio F, Cerri M, Martelli D, Occhinegro A, Piscitiello E, Tupone D, Amici R, Luppi M. Reversible Tau Phosphorylation Induced by Synthetic Torpor in the Spinal Cord of the Rat. Front Neuroanat 2021; 15:592288. [PMID: 33603651 PMCID: PMC7884466 DOI: 10.3389/fnana.2021.592288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
Tau is a key protein in neurons, where it affects the dynamics of the microtubule system. The hyperphosphorylation of Tau (PP-Tau) commonly leads to the formation of neurofibrillary tangles, as it occurs in tauopathies, a group of neurodegenerative diseases, including Alzheimer's. Hypothermia-related accumulation of PP-Tau has been described in hibernators and during synthetic torpor (ST), a torpor-like condition that has been induced in rats, a non-hibernating species. Remarkably, in ST PP-Tau is reversible and Tau de-phosphorylates within a few hours following the torpor bout, apparently not evolving into pathology. These observations have been limited to the brain, but in animal models of tauopathies, PP-Tau accumulation also appears to occur in the spinal cord (SpCo). The aim of the present work was to assess whether ST leads to PP-Tau accumulation in the SpCo and whether this process is reversible. Immunofluorescence (IF) for AT8 (to assess PP-Tau) and Tau-1 (non-phosphorylated Tau) was carried out on SpCo coronal sections. AT8-IF was clearly expressed in the dorsal horns (DH) during ST, while in the ventral horns (VH) no staining was observed. The AT8-IF completely disappeared after 6 h from the return to euthermia. Tau-1-IF disappeared in both DH and VH during ST, returning to normal levels during recovery. To shed light on the cellular process underlying the PP-Tau pattern observed, the inhibited form of the glycogen-synthase kinase 3β (the main kinase acting on Tau) was assessed using IF: VH (i.e., in motor neurons) were highly stained mainly during ST, while in DH there was no staining. Since tauopathies are also related to neuroinflammation, microglia activation was also assessed through morphometric analyses, but no ST-induced microglia activation was found in the SpCo. Taken together, the present results show that, in the DH of SpCo, ST induces a reversible accumulation of PP-Tau. Since during ST there is no motor activity, the lack of AT8-IF in VH may result from an activity-related process at a cellular level. Thus, ST demonstrates a newly-described physiological mechanism that is able to resolve the accumulation of PP-Tau and apparently avoid the neurodegenerative outcome.
Collapse
Affiliation(s)
- Timna Hitrec
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Fabio Squarcio
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Davide Martelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Emiliana Piscitiello
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
García-Magro N, Negredo P, Martin YB, Nuñez Á, Avendaño C. Modulation of mechanosensory vibrissal responses in the trigeminocervical complex by stimulation of the greater occipital nerve in a rat model of trigeminal neuropathic pain. J Headache Pain 2020; 21:96. [PMID: 32762640 PMCID: PMC7410158 DOI: 10.1186/s10194-020-01161-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Stimulation of the occipital or trigeminal nerves has been successfully used to treat chronic refractory neurovascular headaches such as migraine or cluster headache, and painful neuropathies. Convergence of trigeminal and occipital sensory afferents in the ‘trigeminocervical complex’ (TCC) from cutaneous, muscular, dural, and visceral sources is a key mechanism for the input-induced central sensitization that may underlie the altered nociception. Both excitatory (glutamatergic) and inhibitory (GABAergic and glycinergic) mechanisms are involved in modulating nociception in the spinal and medullary dorsal horn neurons, but the mechanisms by which nerve stimulation effects occur are unclear. This study was aimed at investigating the acute effects of electrical stimulation of the greater occipital nerve (GON) on the responses of neurons in the TCC to the mechanical stimulation of the vibrissal pad. Methods Adult male Wistar rats were used. Neuronal recordings were obtained in laminae II-IV in the TCC in control, sham and infraorbital chronic constriction injury (CCI-IoN) animals. The GON was isolated and electrically stimulated. Responses to the stimulation of vibrissae by brief air pulses were analyzed before and after GON stimulation. In order to understand the role of the neurotransmitters involved, specific receptor blockers of NMDA (AP-5), GABAA (bicuculline, Bic) and Glycine (strychnine, Str) were applied locally. Results GON stimulation produced a facilitation of the response to light facial mechanical stimuli in controls, and an inhibition in CCI-IoN cases. AP-5 reduced responses to GON and vibrissal stimulation and blocked the facilitation of GON on vibrissal responses found in controls. The application of Bic or Str significantly reduced the facilitatory effect of GON stimulation on the response to vibrissal stimulation in controls. However, the opposite effect was found when GABAergic or Glycinergic transmission was prevented in CCI-IoN cases. Conclusions GON stimulation modulates the responses of TCC neurons to light mechanical input from the face in opposite directions in controls and under CCI-IoN. This modulation is mediated by GABAergic and Glycinergic mechanisms. These results will help to elucidate the neural mechanisms underlying the effectiveness of nerve stimulation in controlling painful craniofacial disorders, and may be instrumental in identifying new therapeutic targets for their prevention and treatment.
Collapse
Affiliation(s)
- Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain.,Programme in Neuroscience, Doctoral School, Autonoma University of Madrid, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Yasmina B Martin
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223, Madrid, Spain
| | - Ángel Nuñez
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain.
| |
Collapse
|
10
|
Peirs C, Dallel R, Todd AJ. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia. J Neural Transm (Vienna) 2020; 127:505-525. [PMID: 32239353 PMCID: PMC7148279 DOI: 10.1007/s00702-020-02159-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The dorsal horns of the spinal cord and the trigeminal nuclei in the brainstem contain neuron populations that are critical to process sensory information. Neurons in these areas are highly heterogeneous in their morphology, molecular phenotype and intrinsic properties, making it difficult to identify functionally distinct cell populations, and to determine how these are engaged in pathophysiological conditions. There is a growing consensus concerning the classification of neuron populations, based on transcriptomic and transductomic analyses of the dorsal horn. These approaches have led to the discovery of several molecularly defined cell types that have been implicated in cutaneous mechanical allodynia, a highly prevalent and difficult-to-treat symptom of chronic pain, in which touch becomes painful. The main objective of this review is to provide a contemporary view of dorsal horn neuronal populations, and describe recent advances in our understanding of on how they participate in cutaneous mechanical allodynia.
Collapse
Affiliation(s)
- Cedric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
11
|
Fernandes EC, Pechincha C, Luz LL, Kokai E, Szucs P, Safronov BV. Primary afferent-driven presynaptic inhibition of C-fiber inputs to spinal lamina I neurons. Prog Neurobiol 2020; 188:101786. [PMID: 32173398 DOI: 10.1016/j.pneurobio.2020.101786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 01/29/2023]
Abstract
Presynaptic inhibition of primary afferent terminals is a powerful mechanism for controlling sensory information flow into the spinal cord. Lamina I is the major spinal nociceptive projecting area and monosynaptic input from C-fibers to this region represents a direct pathway for transmitting pain signals to supraspinal centers. Here we used an isolated spinal cord preparation to show that this pathway is under control of the afferent-driven GABAergic presynaptic inhibition. Presynaptic inhibition of C-fiber input to lamina I projection and local-circuit neurons is mediated by recruitment of Aβ-, Aδ- and C-afferents. C-fiber-driven inhibition of C-fibers functions as a feedforward mechanism, by which the homotypic afferents control sensory information flow into the spinal cord and regulate degree of the primary nociceptive afferent activation needed to excite the second order neurons. The presynaptic inhibition of C-fiber input to lamina I neurons may be mediated by both synaptic and non-synaptic mechanisms, and its occurrence and extent are quite heterogeneous. This heterogeneity is likely to be reflective of involvement of lamina I neurons in diverse circuitries processing specific modalities of sensory information in the superficial dorsal horn. Thus, our results implicate both low- and high-threshold afferents in the modulation of C-fiber input into the spinal cord.
Collapse
Affiliation(s)
- E C Fernandes
- Instituto De Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal; Neuronal Networks Group, Instituto De Biologia Molecular e Celular (IBMC), Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - C Pechincha
- Instituto De Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal; Neuronal Networks Group, Instituto De Biologia Molecular e Celular (IBMC), Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - L L Luz
- Instituto De Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal; Neuronal Networks Group, Instituto De Biologia Molecular e Celular (IBMC), Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - E Kokai
- Instituto De Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal; Neuronal Networks Group, Instituto De Biologia Molecular e Celular (IBMC), Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - P Szucs
- MTA-DE Neuroscience Research Group, Debrecen, Hungary; Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - B V Safronov
- Instituto De Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal; Neuronal Networks Group, Instituto De Biologia Molecular e Celular (IBMC), Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
12
|
Distinct mechanisms of signal processing by lamina I spino-parabrachial neurons. Sci Rep 2019; 9:19231. [PMID: 31848358 PMCID: PMC6917718 DOI: 10.1038/s41598-019-55462-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Lamina I spino-parabrachial neurons (SPNs) receive peripheral nociceptive input, process it and transmit to the supraspinal centres. Although responses of SPNs to cutaneous receptive field stimulations have been intensively studied, the mechanisms of signal processing in these neurons are poorly understood. Therefore, we used an ex-vivo spinal cord preparation to examine synaptic and cellular mechanisms determining specific input-output characteristics of the neurons. The vast majority of the SPNs received a few direct nociceptive C-fiber inputs and generated one spike in response to saturating afferent stimulation, thus functioning as simple transducers of painful stimulus. However, 69% of afferent stimulation-induced action potentials in the entire SPN population originated from a small fraction (19%) of high-output neurons. These neurons received a larger number of direct Aδ- and C-fiber inputs, generated intrinsic bursts and efficiently integrated a local network activity via NMDA-receptor-dependent mechanisms. The high-output SPNs amplified and integrated the nociceptive input gradually encoding its intensity into the number of generated spikes. Thus, different mechanisms of signal processing allow lamina I SPNs to play distinct roles in nociception.
Collapse
|
13
|
|