1
|
Suzuki Y, Kiyosawa M, Wakakura M, Ishii K. Hyperactivity of the medial thalamus in patients with photophobia-associated migraine. Headache 2024; 64:1005-1014. [PMID: 39023425 DOI: 10.1111/head.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To examine cerebral functional alterations associated with sensory processing in patients with migraine and constant photophobia. BACKGROUND Migraine is a common headache disorder that presents with photophobia in many patients during attacks. Furthermore, some patients with migraine experience constant photophobia, even during headache-free intervals, leading to a compromised quality of life. METHODS This prospective, case-control study included 40 patients with migraine (18 male and 22 female) who were recruited at an eye hospital and eye clinic. The patients were divided into two groups: migraine with photophobia group, consisting of 22 patients (10 male and 12 female) with constant photophobia, and migraine without photophobia group, consisting of 18 patients (eight male and 10 female) without constant photophobia. We used 18F-fluorodeoxyglucose and positron emission tomography to compare cerebral glucose metabolism between the two patient groups and 42 healthy participants (16 men and 26 women). RESULTS Compared with the healthy group, both the migraine with photophobia and migraine without photophobia groups showed cerebral glucose hypermetabolism in the bilateral thalamus (p < 0.05, family-wise error-corrected). Moreover, the contrast of migraine with photophobia minus migraine without photophobia patients showed glucose hypermetabolism in the bilateral medial thalamus (p < 0.05, family-wise error-corrected). CONCLUSIONS The medial thalamus may be associated with the development of continuous photophobia in patients with migraine.
Collapse
Affiliation(s)
- Yukihisa Suzuki
- Japan Community Health Care Organization, Mishima General Hospital, Mishima, Shizuoka, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
2
|
Hou TW, Yang CC, Lai TH, Wu YH, Yang CP. Light Therapy in Chronic Migraine. Curr Pain Headache Rep 2024; 28:621-626. [PMID: 38865075 DOI: 10.1007/s11916-024-01258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE OF REVIEW This review assesses the effectiveness and safety of light therapy, particularly green light therapy, as an emerging non-pharmacological treatment for chronic migraine (CM). It aims to highlight alternative or complementary approaches to traditional pharmacological remedies, focusing the need for diverse treatment options. RECENT FINDINGS Despite sensitivity to light being a defining feature of migraine, light therapy has shown promising signs in providing substantial symptom relief. Studies have provided insights into green light therapy's role in managing CM. These studies consistently demonstrate its efficacy in reducing the frequency, severity, and symptoms of migraines. Additional benefits observed include improvements in sleep quality and reductions in anxiety. Importantly, green light therapy has been associated with minimal side effects, indicating its potential as a suitable option for migraine sufferers. In addition to green light, other forms of light therapy, such as infrared polarized light, low-level laser therapy (LLLT), and intravascular irradiation of blood (ILIB), are also being explored with potential therapeutic effects. Light therapies, especially green light therapy, are recognized as promising, safe, and non-pharmacological interventions for treating CM. They have been shown to be effective in decreasing headache frequency and enhancing the overall quality of life. However, current studies, often limited by small sample sizes, prompt more extensive clinical trials to better understand the full impact of light therapies. The exploration of other light-based treatments, such as LLLT and ILIB, warrants further research to broaden the scope of effective migraine management strategies.
Collapse
Affiliation(s)
- Tsung-Wei Hou
- Department of Neurology, Taichung Veteran General Hospital, Taichung, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Tzu-Hsien Lai
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Hui Wu
- Department of Family Medicine, Kuang-Tien General Hospital, Taichung, Taiwan.
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan.
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
3
|
Xu J, Zhang H, Chen D, Xu K, Li Z, Wu H, Geng X, Wei X, Wu J, Cui W, Wei S. Looking for a Beam of Light to Heal Chronic Pain. J Pain Res 2024; 17:1091-1105. [PMID: 38510563 PMCID: PMC10953534 DOI: 10.2147/jpr.s455549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Chronic pain (CP) is a leading cause of disability and a potential factor that affects biological processes, family relationships, and self-esteem of patients. However, the need for treatment of CP is presently unmet. Current methods of pain management involve the use of drugs, but there are different degrees of concerning side effects. At present, the potential mechanisms underlying CP are not completely clear. As research progresses and novel therapeutic approaches are developed, the shortcomings of current pain treatment methods may be overcome. In this review, we discuss the retinal photoreceptors and brain regions associated with photoanalgesia, as well as the targets involved in photoanalgesia, shedding light on its potential underlying mechanisms. Our aim is to provide a foundation to understand the mechanisms underlying CP and develop light as a novel analgesic treatment has its biological regulation principle for CP. This approach may provide an opportunity to drive the field towards future translational, clinical studies and support pain drug development.
Collapse
Affiliation(s)
- Jialing Xu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Hao Zhang
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Dan Chen
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Kaiyong Xu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Zifa Li
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Xiwen Geng
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Xia Wei
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Shandong Institute for Food and Drug Control, Ji’nan, Shandong, People’s Republic of China
| | - Jibiao Wu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Sheng Wei
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| |
Collapse
|
4
|
de Vries Lentsch S, Perenboom MJL, Carpay JA, MaassenVanDenBrink A, Terwindt GM. Visual hypersensitivity in patients treated with anti-calcitonin gene-related peptide (receptor) monoclonal antibodies. Headache 2023; 63:926-933. [PMID: 37358548 DOI: 10.1111/head.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/02/2023] [Accepted: 04/10/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE To evaluate the effect of treatment with anti-calcitonin gene-related peptide (CGRP; receptor) antibodies on visual hypersensitivity in patients with migraine. BACKGROUND Increased visual sensitivity can be present both during and outside migraine attacks. CGRP has been demonstrated to play a key role in light-aversive behavior. METHODS In this prospective follow-up study, patients treated for migraine with erenumab (n = 105) or fremanezumab (n = 100) in the Leiden Headache Center were invited to complete a questionnaire on visual sensitivity (the Leiden Visual Sensitivity Scale [L-VISS]), pertaining to both their ictal and interictal state, before starting treatment (T0) and 3 months after treatment initiation (T1). Using a daily e-diary, treatment effectiveness was assessed in weeks 9-12 compared to a 4-week pre-treatment baseline period. L-VISS scores were compared between T0 and T1. Subsequently, the association between the reduction in L-VISS scores and the reduction in monthly migraine days (MMD) was investigated. RESULTS At 3 months, the visual hypersensitivity decreased, with a decrease in mean ± standard deviation (SD) ictal L-VISS (from 20.1 ± 7.7 to 19.2 ± 8.1, p = 0.042) and a decrease in mean ± SD interictal L-VISS (from 11.8 ± 6.6 to 11.1 ± 7.0, p = 0.050). We found a positive association between the reduction in MMD and the decrease in interictal L-VISS (β = 0.2, p = 0.010) and the reduction in ictal L-VISS (β = 0.3, p = 0.001). CONCLUSION A decrease in visual hypersensitivity in patients with migraine after treatment with anti-CGRP (receptor) antibodies is positively associated with clinical response on migraine.
Collapse
Affiliation(s)
| | | | - Johannes A Carpay
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
- Department of Neurology, Tergooi Hospital, Hilversum, the Netherlands
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
5
|
Melo-Carrillo A, Rodriguez R, Ashina S, Lipinski B, Hart P, Burstein R. Psychotherapy Treatment of Generalized Anxiety Disorder Improves When Conducted Under Narrow Band Green Light. Psychol Res Behav Manag 2023; 16:241-250. [PMID: 36726697 PMCID: PMC9885775 DOI: 10.2147/prbm.s388042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/18/2022] [Indexed: 01/28/2023] Open
Abstract
Background and Goals Psychotherapy is one of the most highly recommended and practiced approaches for the treatment of Generalized anxiety disorder (GAD). Commonly defined as excessive worry that is uncontrollable, GAD is one of the most prevalent psychiatric disorders. Anxiety is also one of the most common associated symptoms of migraine. Exposing migraineurs to narrow band green light (nbGL) reduces their anxiety and anxiety-like physiological symptoms such as throat tightness, shortness of breath, and palpitations. Here, we sought to determine whether the reduced anxiety described by our patients was secondary to the reduced headache or independent of it. The goal of the current study was therefore to determine whether exposure to nbGL can reduce anxiety in GAD patients who are not migraineurs. Patients and Methods Included in this open-label, proof-of-concept, prospective study were 13 patients diagnosed with moderate-to-severe GAD. We used the State-Trait Anxiety Inventory Questionnaire (Y-1) to compare anxiety level before and after each 45-minutes psychotherapy session conducted in white light (WL) (intensity = 100±5 candela/m2) vs nbGL (wavelength = 520±10nm (peak ± range), intensity = 10±5 candela/m2). Results Here, we show that psychotherapy sessions conducted under nbGL increase positive and decrease negative feelings significantly more than psychotherapy sessions conducted under regular room light (χ2 = 0.0001). Conclusion The findings provide initial evidence for the potential benefit of conducting psychotherapy sessions for patients suffering GAD under nbGL conditions. Given the absence of side effects or risks, we suggest that illuminating rooms used in psychotherapy with nbGL be considered an add-on to the treatment of GAD.
Collapse
Affiliation(s)
- Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | | | - Sait Ashina
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | | | | | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Anesthesia, Harvard Medical School, Boston, MA, USA,Correspondence: Rami Burstein, Tel +1 617 735-2832, Fax +1 617 735-2833, Email
| |
Collapse
|
6
|
Robertson CE, Benarroch EE. The anatomy of head pain. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:41-60. [PMID: 38043970 DOI: 10.1016/b978-0-12-823356-6.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Pain-sensitive structures in the head and neck, including the scalp, periosteum, meninges, and blood vessels, are innervated predominantly by the trigeminal and upper cervical nerves. The trigeminal nerve supplies most of the sensation to the head and face, with the ophthalmic division (V1) providing innervation to much of the supratentorial dura mater and vessels. This creates referral patterns for pain that may be misleading to clinicians and patients, as described by studies involving awake craniotomies and stimulation with electrical and mechanical stimuli. Most brain parenchyma and supratentorial vessels refer pain to the ipsilateral V1 territory, and less commonly the V2 or V3 region. The upper cervical nerves provide innervation to the posterior scalp, while the periauricular region and posterior fossa are territories with shared innervation. Afferent fibers that innervate the head and neck send nociceptive input to the trigeminocervical complex, which then projects to additional pain processing areas in the brainstem, thalamus, hypothalamus, and cortex. This chapter discusses the pain-sensitive structures in the head and neck, including pain referral patterns for many of these structures. It also provides an overview of peripheral and central nervous system structures responsible for transmitting and interpreting these nociceptive signals.
Collapse
Affiliation(s)
- Carrie E Robertson
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States.
| | - Eduardo E Benarroch
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
7
|
Tang YL, Liu AL, Lv SS, Zhou ZR, Cao H, Weng SJ, Zhang YQ. Green light analgesia in mice is mediated by visual activation of enkephalinergic neurons in the ventrolateral geniculate nucleus. Sci Transl Med 2022; 14:eabq6474. [PMID: 36475906 DOI: 10.1126/scitranslmed.abq6474] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Green light exposure has been shown to reduce pain in animal models. Here, we report a vision-associated enkephalinergic neural circuit responsible for green light-mediated analgesia. Full-field green light exposure at an intensity of 10 lux produced analgesic effects in healthy mice and in a model of arthrosis. Ablation of cone photoreceptors completely inhibited the analgesic effect, whereas rod ablation only partially reduced pain relief. The analgesic effect was not modulated by the ablation of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are atypical photoreceptors that control various nonvisual effects of light. Inhibition of the retino-ventrolateral geniculate nucleus (vLGN) pathway completely abolished the analgesic effects. Activation of this pathway reduced nociceptive behavioral responses; such activation was blocked by the inhibition of proenkephalin (Penk)-positive neurons in the vLGN (vLGNPenk). Moreover, green light analgesia was prevented by knockdown of Penk in the vLGN or by ablation of vLGNPenk neurons. In addition, activation of the projections from vLGNPenk neurons to the dorsal raphe nucleus (DRN) was sufficient to suppress nociceptive behaviors, whereas its inhibition abolished the green light analgesia. Our findings indicate that cone-dominated retinal inputs mediated green light analgesia through the vLGNPenk-DRN pathway and suggest that this signaling pathway could be exploited for reducing pain.
Collapse
Affiliation(s)
- Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ai-Lin Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Su-Su Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zi-Rui Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Tcheslavski GV, Vasefi M. An "Instantaneous" Response of a Human Visual System to Hue: An EEG-Based Study. SENSORS (BASEL, SWITZERLAND) 2022; 22:8484. [PMID: 36366181 PMCID: PMC9657469 DOI: 10.3390/s22218484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
(1) The article presents a new technique to interpret biomedical data (EEG) to assess cortical responses to continuous color/hue variations. We propose an alternative approach to analyze EEG activity evoked by visual stimulation. This approach may augment the traditional VEP analysis. (2) Considering ensembles of EEG epochs as multidimensional spatial vectors evolving over time (rather than collections of time-domain signals) and evaluating the similarity between such vectors across different EEG epochs may result in a more accurate detection of colors that evoke greater responses of the visual system. To demonstrate its suitability, the developed analysis technique was applied to the EEG data that we previously collected from 19 participants with normal color vision, while exposing them to stimuli of continuously varying hue. (3) Orange/yellow and dark blue/violet colors generally aroused better-pronounced cortical responses. The selection of EEG channels allowed for assessing the activity that predominantly originates from specific cortical regions. With such channel selection, the strongest response to the hue was observed from Parieto-Temporal region of the right hemisphere. The statistical test-Kruskal-Wallis one-way analysis of variance-indicates that the distance evaluated for spatial EEG vectors at different post-stimulus latencies generally originate from different statistical distributions with a probability exceeding 99.9% (α = 0.001).
Collapse
Affiliation(s)
- Gleb V. Tcheslavski
- Drayer Department of Electrical Engineering, Lamar University, Beaumont, TX 77710, USA
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77710, USA
| |
Collapse
|
9
|
Wang Y, Wang S, Qiu T, Xiao Z. Photophobia in headache disorders: characteristics and potential mechanisms. J Neurol 2022; 269:4055-4067. [PMID: 35322292 DOI: 10.1007/s00415-022-11080-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 01/23/2023]
Abstract
Photophobia is present in multiple types of headache disorders. The coexistence of photophobia and headache suggested the potential reciprocal interactions between visual and pain pathways. In this review, we summarized the photophobic characteristics in different types of headache disorders in the context of the three diagnostic categories of headache disorders: (1) primary headaches: migraine, tension-type headache, and trigeminal autonomic cephalalgias; (2) secondary headaches: headaches attributed to traumatic brain injury, meningitis, non-traumatic subarachnoid hemorrhage and disorder of the eyes; (3) painful cranial neuropathies: trigeminal neuralgia and painful optic neuritis. We then discussed potential mechanisms for the coexistence of photophobia and headache. In conclusion, the characteristics of photophobia are different among these headache disorders. The coexistence of photophobia and headache is associated with the interactions between visual and pain pathway at retina, midbrain, thalamus, hypothalamus and visual cortex. The communication between these pathways may depend on calcitonin gene-related peptide and pituitary cyclase-activating polypeptide transmission. Moreover, cortical spreading depression, an upstream trigger of headache, also plays an important role in photophobia by increased nociceptive input to the thalamus.
Collapse
Affiliation(s)
- Yajuan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shaoyang Wang
- Department of Emergency, Rizhao People's Hospital, Rizhao, 276800, Shandong, China
| | - Tao Qiu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
10
|
Bilen N, Hamurcu M. Evaluation of electrophysiological changes in migraine with visual aura. Taiwan J Ophthalmol 2022; 12:295-300. [PMID: 36248085 PMCID: PMC9558466 DOI: 10.4103/2211-5056.354281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE: The purpose of this study was to evaluate the electrical responses in the retina and cortex of migraine patients with electrophysiological tests and compare with healthy controls. MATERIALS AND METHODS: This prospective study included 18 migraine patients with visual aura and 28 healthy controls. Pattern-reversal visual evoked potentials (VEP) and flash electroretinography (fERG) of migraine patients during the headache-free period were compared with healthy controls. RESULTS: There were statistically significant differences in VEP results: P100 and N75 amplitudes increased significantly (P = 0.025 and P = 0.007 respectively) and P100 latency decreased significantly in migraine patients (P = 0.022). Furthermore, fERG scotopic combined cone and rod amplitude increased significantly in migraine patients (P = 0.01). CONCLUSION: Migraine brain displays abnormal visual evoked responses in between migraine attacks. In migraine eye, scotopic cone and rod response increased. The results of this study support the hyperexcitability of the retina and cortex in patients with migraine.
Collapse
|
11
|
Wang F, Jiang W, Gao L, Liu C, Deng M, Ren X, Zhu C, Guan JS, Wang Y. Detecting Abnormal Neuronal Activity in a Chronic Migraine Model by Egr1-EGFP Transgenic Mice. Front Neurosci 2021; 15:705938. [PMID: 34456674 PMCID: PMC8387874 DOI: 10.3389/fnins.2021.705938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
Chronic migraine (CM) is a highly disabling neurological disorder characterized by recurrent headache accompanied by a variety of sensory and/or emotional symptoms. However, the mechanisms of migraine onset and its chronicity have not been elucidated. The present study was designed to search for brain regions and neurons that were abnormally activated by CM and might be related to its pathogenesis and different concomitant symptoms. CM models were established here by repeated intraperitoneal injection of nitroglycerin (NTG) every other day for 9 days to early growth response gene 1 (Egr1)-enhanced green fluorescent protein (EGFP) transgenic mice, which allowed monitoring of neuronal activities in the whole brain. CM-related behaviors were recorded through head grooming test and light aversion assay. Elevation of Egr1 expression signals was detected in trigeminal nucleus caudalis (TNC), primary somatosensory cortex (SSp), lateral amygdala nucleus (LA), primary visual area (VISp), and temporal association areas (TEa) 2 h after the last injection of NTG by immunofluorescence and digital slice scanning technology. Meanwhile, no change of Egr1 expression was found in auditory areas (AUD), CA1, ectorhinal area (ECT), piriform (PIR), and anterior cingulate area (ACC). Furthermore, with the strongest support by evidence-based medicine among the current limited oral treatments of CM, topiramate was administrated every day for 11 days from 2 days before the first NTG injection. The results showed that topiramate partially improved the photophobia behavior of CM models in the short-term with gradually weakened efficacy as the course of the disease prolonged. Meanwhile, NTG-induced increase in Egr1 expression was completely reversed in TNC, SSp, and VISp and partially reduced in LA and TEa by topiramate at the same time point mentioned above. In conclusion, the current results suggested that the abnormal hyperactivities in TNC, SSp and VISp were associated with the pathogenesis of CM.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiqing Jiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhu Deng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Ren
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenlu Zhu
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Ji-Song Guan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yonggang Wang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Headache Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
12
|
Abstract
Photophobia is one of the most common symptoms in migraine, and the underlying mechanism is uncertain. The discovery of the intrinsically-photosensitive retinal ganglion cells which signal the intensity of light on the retina has led to discussion of their role in the pathogenesis of photophobia. In the current review, we discuss the relationship between pain and discomfort leading to light aversion (traditional photophobia) and discomfort from flicker, patterns, and colour that are also common in migraine and cannot be explained solely by the activity of intrinsically-photosensitive retinal ganglion cells. We argue that, at least in migraine, a cortical mechanism provides a parsimonious explanation for discomfort from all forms of visual stimulation, and that the traditional definition of photophobia as pain in response to light may be too restrictive. Future investigation that directly compares the retinal and cortical contributions to photophobia in migraine with that in other conditions may offer better specificity in identifying biomarkers and possible mechanisms to target for treatment.
Collapse
Affiliation(s)
| | - Sarah M Haigh
- Department of Psychology and Integrative Neuroscience, University of Nevada, Reno, USA
| | - Omar A Mahroo
- Institute of Ophthalmology, University College London, London, UK and Retinal Service, Moorfields Eye Hospital, London, UK
| | | |
Collapse
|
13
|
Baksh BS, Garcia JC, Galor A. Exploring the Link Between Dry Eye and Migraine: From Eye to Brain. Eye Brain 2021; 13:41-57. [PMID: 33692643 PMCID: PMC7939506 DOI: 10.2147/eb.s234073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
Dry eye and migraine are common diseases with large societal and economic burdens that have recently been associated in the literature. This review outlines the link between dry eye and migraine, which may have implications for reducing their respective burdens. We highlight possible shared pathophysiology, including peripheral and central sensitization, as the potential link between dry eye and migraine. Finally, therapies targeting similar pathophysiological mechanisms between dry eye and migraine are discussed.
Collapse
Affiliation(s)
- Brandon S Baksh
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julia Costa Garcia
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Faculdade de Medicina (FMB) da Universidade do Estado de São Paulo (UNESP), Botucatu, Brazil
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
14
|
Zele AJ, Dey A, Adhikari P, Feigl B. Melanopsin hypersensitivity dominates interictal photophobia in migraine. Cephalalgia 2020; 41:217-226. [PMID: 33040593 DOI: 10.1177/0333102420963850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE To define the melanopsin and cone luminance retinogeniculate pathway contributions to photophobia in healthy controls and migraineurs. METHODS Healthy controls and migraineurs were categorized according to the International Classification of Headache Disorders criteria. Photophobia was measured under full-field illumination using electromyography in response to narrowband lights spanning the melanopsin and cone luminance action spectra. Migraineurs were tested during their interictal headache-free period. Melanopsin-mediated post-illumination pupil responses quantified intrinsically photosensitive Retinal Ganglion Cell (ipRGC) function. RESULTS A model combining the melanopsin and cone luminance action spectra best described photophobia thresholds in controls and migraineurs; melanopsin contributions were ∼1.5× greater than cone luminance. In the illumination range causing photophobia, migraineurs had lower photophobia thresholds (∼0.55 log units; p < 0.001) and higher post-illumination pupil response amplitudes (p = 0.03) than controls. CONCLUSION Photophobia is driven by melanopsin and cone luminance inputs to the cortex via the retino-thalamocortical pathway. In migraineurs, lower photophobia thresholds reflect hypersensitivity of ipRGC and cone luminance pathways, with the larger and prolonged post-illumination pupil response amplitude indicative of a supranormal melanopsin response. Our findings inform artificial lighting strategies incorporating luminaires with low melanopsin excitation and photopic luminance to limit the lighting conditions leading to photophobia.
Collapse
Affiliation(s)
- Andrew J Zele
- Centre for Vision and Eye Research, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Ashim Dey
- Centre for Vision and Eye Research, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Prakash Adhikari
- Centre for Vision and Eye Research, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Queensland Eye Institute, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Sowers LP, Wang M, Rea BJ, Taugher RJ, Kuburas A, Kim Y, Wemmie JA, Walker CS, Hay DL, Russo AF. Stimulation of Posterior Thalamic Nuclei Induces Photophobic Behavior in Mice. Headache 2020; 60:1961-1981. [PMID: 32750230 DOI: 10.1111/head.13917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE A hallmark of migraine is photophobia. In mice, photophobia-like behavior is induced by calcitonin gene-related peptide (CGRP), a neuropeptide known to be a key player in migraine. In this study, we sought to identify sites within the brain from which CGRP could induce photophobia. DESIGN We focused on the posterior thalamic region, which contains neurons responsive to both light and dural stimulation and has CGRP binding sites. We probed this area with both optogenetic stimulation and acute CGRP injections in wild-type mice. Since the light/dark assay has historically been used to investigate anxiety-like responses in animals, we measured anxiety in a light-independent open field assay and asked if stimulation of a brain region, the periaqueductal gray, that induces anxiety would yield similar results to posterior thalamic stimulation. The hippocampus was used as an anatomical control to ensure that light-aversive behaviors could not be induced by the stimulation of any brain region. RESULTS Optogenetic activation of neuronal cell bodies in the posterior thalamic nuclei elicited light aversion in both bright and dim light without an anxiety-like response in an open field assay. Injection of CGRP into the posterior thalamic region triggered similar light-aversive behavior without anxiety. In contrast to the posterior thalamic nuclei, optogenetic stimulation of dorsal periaqueductal gray cell bodies caused both light aversion and an anxiety-like response, while CGRP injection had no effect. In the dorsal hippocampus, neither optical stimulation nor CGRP injection affected light aversion or open field behaviors. CONCLUSION Stimulation of posterior thalamic nuclei is able to initiate light-aversive signals in mice that may be modulated by CGRP to cause photophobia in migraine.
Collapse
Affiliation(s)
- Levi P Sowers
- Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.,Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Mengya Wang
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Brandon J Rea
- Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.,Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Rebecca J Taugher
- Veterans Administration Health Center, Iowa City, IA, USA.,Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Adisa Kuburas
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - John A Wemmie
- Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Andrew F Russo
- Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.,Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Department of Neurology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Verkest C, Häfner S, Ávalos Prado P, Baron A, Sandoz G. Migraine and Two-Pore-Domain Potassium Channels. Neuroscientist 2020; 27:268-284. [PMID: 32715910 DOI: 10.1177/1073858420940949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Migraine is a common, disabling neurological disorder with a genetic, environmental, and hormonal component with an annual prevalence estimated at ~15%. It is characterized by attacks of severe, usually unilateral and throbbing headache, and can be accompanied by nausea, vomiting, and photophobia. Migraine is clinically divided into two main subtypes: migraine with aura, when it is preceded by transient neurological disturbances due to cortical spreading depression (CSD), and migraine without aura. Activation and sensitization of trigeminal sensory neurons, leading to the release of pro-inflammatory peptides, is likely a key component in headache pain initiation and transmission in migraine. In the present review, we will focus on the function of two-pore-domain potassium (K2P) channels, which control trigeminal sensory neuron excitability and their potential interest for developing new drugs to treat migraine.
Collapse
Affiliation(s)
- Clément Verkest
- CNRS, INSERM, iBV, Université Cote d'Azur, Nice, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France.,Université Cote d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Stephanie Häfner
- CNRS, INSERM, iBV, Université Cote d'Azur, Nice, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France
| | - Pablo Ávalos Prado
- CNRS, INSERM, iBV, Université Cote d'Azur, Nice, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France
| | - Anne Baron
- Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France.,Université Cote d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Guillaume Sandoz
- CNRS, INSERM, iBV, Université Cote d'Azur, Nice, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France
| |
Collapse
|
17
|
McAdams H, Kaiser EA, Igdalova A, Haggerty EB, Cucchiara B, Brainard DH, Aguirre GK. Selective amplification of ipRGC signals accounts for interictal photophobia in migraine. Proc Natl Acad Sci U S A 2020; 117:17320-17329. [PMID: 32632006 PMCID: PMC7382295 DOI: 10.1073/pnas.2007402117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Second only to headache, photophobia is the most debilitating symptom reported by people with migraine. While the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) are thought to play a role, how cone and melanopsin signals are integrated in this pathway to produce visual discomfort is poorly understood. We studied 60 people: 20 without headache and 20 each with interictal photophobia from migraine with or without visual aura. Participants viewed pulses of spectral change that selectively targeted melanopsin, the cones, or both and rated the degree of visual discomfort produced by these stimuli while we recorded pupil responses. We examined the data within a model that describes how cone and melanopsin signals are weighted and combined at the level of the retina and how this combined signal is transformed into a rating of discomfort or pupil response. Our results indicate that people with migraine do not differ from headache-free controls in the manner in which melanopsin and cone signals are combined. Instead, people with migraine demonstrate an enhanced response to integrated ipRGC signals for discomfort. This effect of migraine is selective for ratings of visual discomfort, in that an enhancement of pupil responses was not seen in the migraine group, nor were group differences found in surveys of other behaviors putatively linked to ipRGC function (chronotype, seasonal sensitivity, presence of a photic sneeze reflex). By revealing a dissociation in the amplification of discomfort vs. pupil response, our findings suggest a postretinal alteration in processing of ipRGC signals for photophobia in migraine.
Collapse
Affiliation(s)
- Harrison McAdams
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric A Kaiser
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Aleksandra Igdalova
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Edda B Haggerty
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Brett Cucchiara
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David H Brainard
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | - Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
18
|
|
19
|
Abstract
Migraine is among the most common and most disabling disorders worldwide, yet its underlying pathophysiology is among the most poorly understood. New information continues to emerge on mechanisms within the central and peripheral nervous systems that may contribute to migraine attacks. Additionally, new therapeutics have recently become available and along with much needed relief for many patients, these drugs provide insight into the disorder based on their mechanism of action. This review will cover new findings within the last several years that add to the understanding of migraine pathophysiology, including those related to the vasculature, calcitonin gene-related peptide (CGRP), and mechanisms within the cortex and meninges that may contribute to attacks. Discussion will also cover recent findings on novel therapeutic targets, several of which continue to show promise in new preclinical studies, including acid-sensing ion channels (ASICs) and the delta-opioid receptor (DOR).
Collapse
Affiliation(s)
- Greg Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080
| |
Collapse
|
20
|
Burstein R. Reply to Spitschan. Pain 2019; 160:2409-2410. [PMID: 31568101 PMCID: PMC7250251 DOI: 10.1097/j.pain.0000000000001654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine,
Beth Israel Deaconess Medical Center, Boston MA 02115
- Harvard Medical School, Boston, MA 02215
| |
Collapse
|