1
|
Safronov BV, Szucs P. Novel aspects of signal processing in lamina I. Neuropharmacology 2024; 247:109858. [PMID: 38286189 DOI: 10.1016/j.neuropharm.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
The most superficial layer of the spinal dorsal horn, lamina I, is a key element of the nociceptive processing system. It contains different types of projection neurons (PNs) and local-circuit neurons (LCNs) whose functional roles in the signal processing are poorly understood. This article reviews recent progress in elucidating novel anatomical features and physiological properties of lamina I PNs and LCNs revealed by whole-cell recordings in ex vivo spinal cord. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Boris V Safronov
- Neuronal Networks Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Neuroscience Research Group, Debrecen, Hungary
| |
Collapse
|
2
|
Liu X, Rich K, Nasseri SM, Li G, Hjæresen S, Finsen B, Scherberger H, Svenningsen Å, Zhang M. A Comparison of PKD2L1-Expressing Cerebrospinal Fluid Contacting Neurons in Spinal Cords of Rodents, Carnivores, and Primates. Int J Mol Sci 2023; 24:13582. [PMID: 37686387 PMCID: PMC10488076 DOI: 10.3390/ijms241713582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Cerebrospinal fluid contacting neurons (CSF-cNs) are a specific type of neurons located around the ventricles in the brain and the central canal in the spinal cord and have been demonstrated to be intrinsic sensory neurons in the central nervous system. One of the important channels responsible for the sensory function is the polycystic kidney disease 2-like 1 (PKD2L1) channel. Most of the studies concerning the distribution and function of the PKD2L1-expressing CSF-cNs in the spinal cord have previously been performed in non-mammalian vertebrates. In the present study immunohistochemistry was performed to determine the distribution of PKD2L1-immunoreactive (IR) CSF-cNs in the spinal cords of four mammalian species: mouse, rat, cat, and macaque monkey. Here, we found that PKD2L1-expressing CSF-cNs were present at all levels of the spinal cord in these animal species. Although the distribution pattern was similar across these species, differences existed. Mice and rats presented a clear PKD2L1-IR cell body labeling, whereas in cats and macaques the PKD2L1-IR cell bodies were more weakly labeled. Ectopic PKD2L1-IR neurons away from the ependymal layer were observed in all the animal species although the abundance and the detailed locations varied. The apical dendritic protrusions with ciliated fibers were clearly seen in the lumen of the central canal in all the animal species, but the sizes of protrusion bulbs were different among the species. PKD2L1-IR cell bodies/dendrites were co-expressed with doublecortin, MAP2 (microtubule-associated protein 2), and aromatic L-amino acid decarboxylase, but not with NeuN (neuronal nuclear protein), indicating their immature properties and ability to synthesize monoamine transmitters. In addition, in situ hybridization performed in rats revealed PKD2L1 mRNA expression in the cells around the central canal. Our results indicate that the intrinsic sensory neurons are conserved across non-mammalian and mammalian vertebrates. The similar morphology of the dendritic bulbs with ciliated fibers (probably representing stereocilia and kinocilia) protruding into the central canal across different animal species supports the notion that PKD2L1 is a chemo- and mechanical sensory channel that responds to mechanical stimulations and maintains homeostasis of the spinal cord. However, the differences of PKD2L1 distribution and expression between the species suggest that PKD2L1-expressing neurons may receive and process sensory signals differently in different animal species.
Collapse
Affiliation(s)
- Xiaohe Liu
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Karen Rich
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Sohail M. Nasseri
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Guifa Li
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Simone Hjæresen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Bente Finsen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
| | - Hansjörg Scherberger
- Deutsches Primantenzentrum, GmbH, 37077 Göttingen, Germany;
- Department of Biology and Psychology, University of Göttingen, 37077 Göttingen, Germany
| | - Åsa Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
- BRIDGE, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Mengliang Zhang
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (X.L.); (K.R.); (S.M.N.); (G.L.); (S.H.); (B.F.); (Å.S.)
- BRIDGE, University of Southern Denmark, DK-5000 Odense, Denmark
| |
Collapse
|
3
|
Luz LL, Lima S, Fernandes EC, Kokai E, Gomori L, Szucs P, Safronov BV. Contralateral Afferent Input to Lumbar Lamina I Neurons as a Neural Substrate for Mirror-Image Pain. J Neurosci 2023; 43:3245-3258. [PMID: 36948583 PMCID: PMC10162462 DOI: 10.1523/jneurosci.1897-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Mirror-image pain arises from pathologic alterations in the nociceptive processing network that controls functional lateralization of the primary afferent input. Although a number of clinical syndromes related to dysfunction of the lumbar afferent system are associated with the mirror-image pain, its morphophysiological substrate and mechanism of induction remain poorly understood. Therefore, we used ex vivo spinal cord preparation of young rats of both sexes to study organization and processing of the contralateral afferent input to the neurons in the major spinal nociceptive projection area Lamina I. We show that decussating primary afferent branches reach contralateral Lamina I, where 27% of neurons, including projection neurons, receive monosynaptic and/or polysynaptic excitatory drive from the contralateral Aδ-fibers and C-fibers. All these neurons also received ipsilateral input, implying their involvement in the bilateral information processing. Our data further show that the contralateral Aδ-fiber and C-fiber input is under diverse forms of inhibitory control. Attenuation of the afferent-driven presynaptic inhibition and/or disinhibition of the dorsal horn network increased the contralateral excitatory drive to Lamina I neurons and its ability to evoke action potentials. Furthermore, the contralateral Aβδ-fibers presynaptically control ipsilateral C-fiber input to Lamina I neurons. Thus, these results show that some lumbar Lamina I neurons are wired to the contralateral afferent system whose input, under normal conditions, is subject to inhibitory control. A pathologic disinhibition of the decussating pathways can open a gate controlling contralateral information flow to the nociceptive projection neurons and, thus, contribute to induction of hypersensitivity and mirror-image pain.SIGNIFICANCE STATEMENT We show that contralateral Aδ-afferents and C-afferents supply lumbar Lamina I neurons. The contralateral input is under diverse forms of inhibitory control and itself controls the ipsilateral input. Disinhibition of decussating pathways increases nociceptive drive to Lamina I neurons and may cause induction of contralateral hypersensitivity and mirror-image pain.
Collapse
Affiliation(s)
- Liliana L Luz
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Susana Lima
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Elisabete C Fernandes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Eva Kokai
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Lidia Gomori
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- ELKH-DE Neuroscience Research Group, Debrecen H-4032, Hungary
| | - Boris V Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
4
|
Krotov V, Agashkov K, Romanenko S, Halaidych O, Andrianov Y, Safronov BV, Belan P, Voitenko N. Elucidating afferent-driven presynaptic inhibition of primary afferent input to spinal laminae I and X. Front Cell Neurosci 2023; 16:1029799. [PMID: 36713779 PMCID: PMC9874151 DOI: 10.3389/fncel.2022.1029799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Although spinal processing of sensory information greatly relies on afferent-driven (AD) presynaptic inhibition (PI), our knowledge about how it shapes peripheral input to different types of nociceptive neurons remains insufficient. Here we examined the AD-PI of primary afferent input to spinal neurons in the marginal layer, lamina I, and the layer surrounding the central canal, lamina X; two nociceptive-processing regions with similar patterns of direct supply by Aδ- and C-afferents. Unmyelinated C-fibers were selectively activated by electrical stimuli of negative polarity that induced an anodal block of myelinated Aβ/δ-fibers. Combining this approach with the patch-clamp recording in an ex vivo spinal cord preparation, we found that attenuation of the AD-PI by the anodal block of Aβ/δ-fibers resulted in the appearance of new mono- and polysynaptic C-fiber-mediated excitatory postsynaptic current (EPSC) components. Such homosegmental Aβ/δ-AD-PI affected neurons in the segment of the dorsal root entrance as well as in the adjacent rostral segment. In their turn, C-fibers from the L5 dorsal root induced heterosegmental AD-PI of the inputs from the L4 Aδ- and C-afferents to the neurons in the L4 segment. The heterosegmental C-AD-PI was reciprocal since the L4 C-afferents inhibited the L5 Aδ- and C-fiber inputs, as well as some direct L5 Aβ-fiber inputs. Moreover, the C-AD-PI was found to control the spike discharge in spinal neurons. Given that the homosegmental Aβ/δ-AD-PI and heterosegmental C-AD-PI affected a substantial percentage of lamina I and X neurons, we suggest that these basic mechanisms are important for shaping primary afferent input to the neurons in the spinal nociceptive-processing network.
Collapse
Affiliation(s)
- Volodymyr Krotov
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine,Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine,*Correspondence: Volodymyr Krotov,
| | - Kirill Agashkov
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Sergii Romanenko
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Oleh Halaidych
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Yaroslav Andrianov
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Boris V. Safronov
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pavel Belan
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine,Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine,Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine,Dobrobut Academy Medical School, Kyiv, Ukraine
| |
Collapse
|
5
|
Kókai É, Luz LL, Fernandes EC, Safronov BV, Poisbeau P, Szucs P. Quantitative spatial analysis reveals that the local axons of lamina I projection neurons and interneurons exhibit distributions that predict distinct roles in spinal sensory processing. J Comp Neurol 2022; 530:3270-3287. [PMID: 36094014 PMCID: PMC9826435 DOI: 10.1002/cne.25413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Our knowledge about the detailed wiring of neuronal circuits in the spinal dorsal horn (DH), where initial sensory processing takes place, is still very sparse. While a substantial amount of data is available on the somatodendritic morphology of DH neurons, the laminar and segmental distribution patterns and consequential function of individual axons are much less characterized. In the present study, we fully reconstructed the axonal and dendritic processes of 10 projection neurons (PNs) and 15 interneurons (INs) in lamina I of the rat, to reveal quantitative differences in their distribution. We also performed whole-cell patch-clamp recordings to test the predicted function of certain axon collaterals. In line with our earlier qualitative description, we found that lamina I INs in the lateral aspect of the superficial DH send axon collaterals toward the medial part and occupy mostly laminae I-III, providing anatomical basis for a lateromedial flow of information within the DH. Local axon collaterals of PNs were more extensively distributed including dorsal commissural axon collaterals that might refer to those reported earlier linking the lateral aspect of the left and right DHs. PN collaterals dominated the dorsolateral funiculus and laminae IV-VI, suggesting propriospinal and ventral connections. Indeed, patch-clamp recordings confirmed the existence of a dorsoventral excitatory drive upon activation of neurokinin-1 receptors that, although being expressed in various lamina I neurons, are specifically enriched in PNs. In summary, lamina I PNs and INs have almost identical dendritic input fields, while their segmental axon collateral distribution patterns are distinct. INs, whose somata reside in lamina I, establish local connections, may show asymmetry, and contribute to bridging the medial and lateral halves of the DH. PNs, on the other hand, preferably relay their integrated dendritic input to deeper laminae of the spinal gray matter where it might be linked to other ascending pathways or the premotor network, resulting in a putative direct contribution to the nociceptive withdrawal reflex.
Collapse
Affiliation(s)
- Éva Kókai
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary,ELKH‐DE Neuroscience Research GroupDebrecenHungary
| | - Lilana L. Luz
- Instituto de Investigacao e Inovacao em SaudeUniversidade do PortoPortoPortugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Elisabete C. Fernandes
- Instituto de Investigacao e Inovacao em SaudeUniversidade do PortoPortoPortugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Boris V. Safronov
- Instituto de Investigacao e Inovacao em SaudeUniversidade do PortoPortoPortugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Pierrick Poisbeau
- Centre national de la Recherche Scientifique, Institut des Neurosciences Cellulaires et IntégrativesUniversity de StrasbourgStrasbourgFrance
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary,ELKH‐DE Neuroscience Research GroupDebrecenHungary
| |
Collapse
|
6
|
Krotov V, Agashkov K, Krasniakova M, Safronov BV, Belan P, Voitenko N. Segmental and descending control of primary afferent input to the spinal lamina X. Pain 2022; 163:2014-2020. [PMID: 35297816 PMCID: PMC9339045 DOI: 10.1097/j.pain.0000000000002597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Despite being involved in a number of functions, such as nociception and locomotion, spinal lamina X remains one of the least studied central nervous system regions. Here, we show that Aδ- and C-afferent inputs to lamina X neurons are presynaptically inhibited by homo- and heterosegmental afferents as well as by descending fibers from the corticospinal tract, dorsolateral funiculus, and anterior funiculus. Activation of descending tracts suppresses primary afferent-evoked action potentials and also elicits excitatory (mono- and polysynaptic) and inhibitory postsynaptic responses in lamina X neurons. Thus, primary afferent input to lamina X is subject to both spinal and supraspinal control being regulated by at least 5 distinct pathways.
Collapse
Affiliation(s)
- Volodymyr Krotov
- Departments of Sensory Signaling and
- Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | | | | | - Boris V. Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pavel Belan
- Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Departments of Sensory Signaling and
- Kyiv Academic University, Kyiv, Ukraine
- Private Institution Dobrobut Academy, Kyiv, Ukraine
| |
Collapse
|
7
|
Ohashi N, Uta D, Ohashi M, Baba H. Norepinephrine restores inhibitory tone of spinal lamina X circuitry, thus contributing to analgesia against inflammatory pain. Neuroscience 2022; 490:224-235. [DOI: 10.1016/j.neuroscience.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
8
|
Distinct mechanisms of signal processing by lamina I spino-parabrachial neurons. Sci Rep 2019; 9:19231. [PMID: 31848358 PMCID: PMC6917718 DOI: 10.1038/s41598-019-55462-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Lamina I spino-parabrachial neurons (SPNs) receive peripheral nociceptive input, process it and transmit to the supraspinal centres. Although responses of SPNs to cutaneous receptive field stimulations have been intensively studied, the mechanisms of signal processing in these neurons are poorly understood. Therefore, we used an ex-vivo spinal cord preparation to examine synaptic and cellular mechanisms determining specific input-output characteristics of the neurons. The vast majority of the SPNs received a few direct nociceptive C-fiber inputs and generated one spike in response to saturating afferent stimulation, thus functioning as simple transducers of painful stimulus. However, 69% of afferent stimulation-induced action potentials in the entire SPN population originated from a small fraction (19%) of high-output neurons. These neurons received a larger number of direct Aδ- and C-fiber inputs, generated intrinsic bursts and efficiently integrated a local network activity via NMDA-receptor-dependent mechanisms. The high-output SPNs amplified and integrated the nociceptive input gradually encoding its intensity into the number of generated spikes. Thus, different mechanisms of signal processing allow lamina I SPNs to play distinct roles in nociception.
Collapse
|