1
|
Petersen KK, O'Neill S, Blichfeldt‐Eckhardt MR, Nim C, Arendt‐Nielsen L, Vægter HB. Pain profiles and variability in temporal summation of pain and conditioned pain modulation in pain-free individuals and patients with low back pain, osteoarthritis, and fibromyalgia. Eur J Pain 2025; 29:e4741. [PMID: 39387150 PMCID: PMC11755398 DOI: 10.1002/ejp.4741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Pain profiles (e.g. pro- and anti-nociceptive) can be developed using quantitative sensory testing (QST) but substantial variability exists. This study describes the variability in temporal summation of pain (TSP) and conditioned pain modulation (CPM) in chronic musculoskeletal pain patients, proposes cut-off values, and explores the association with clinical pain intensity. METHODS This is a secondary analysis in which TSP and CPM were assessed using cuff algometry in pain-free subjects (n = 69), and patients with chronic low back pain (cLBP, n = 267), osteoarthritis (n = 134), and fibromyalgia (n = 101). Using TSP and CPM from the pain-free subjects as a reference, four distinct pain profiles TSP (low/high) and CPM (low/high) were created, and differences in clinical pain between pain profiles were explored. RESULTS Individual data revealed large inter-person variability. High TSP and low CPM were found in fibromyalgia (p < 0.01) and osteoarthritis (p < 0.01) but not cLBP when compared to pain-free subjects. The proportion of patients classified into the distinct pain profiles was significantly different (p < 0.001) with the largest proportion in the high TSP and low CPM group in fibromyalgia (52.5%) and osteoarthritis (41.4%). Clinical pain was not significantly different comparing the pain profiles, and no significant correlations were observed between clinical pain and TSP or CPM. CONCLUSION These results demonstrated substantial inter-person variability in TSP and CPM in patients with different chronic pain conditions and pain-free subjects. The proportion of patients with a pro-nociceptive profile appears larger in fibromyalgia and osteoarthritis, but we found no association to clinical pain. SIGNIFICANT STATEMENT This analysis shows that there is variability when assessing TSP and CPM in both pain-free subjects and patients with chronic pain. A cut-off for determining when a person is pain-sensitive is proposed, and data based on this cut-off approach suggest that significantly more patients with osteoarthritis and fibromyalgia are pain-sensitive (i.e. higher TSP and lower CPM) compared to pain-free subjects. This analysis does not find an association between pain sensitivity and clinical pain.
Collapse
Affiliation(s)
- Kristian Kjær‐Staal Petersen
- Department of Materials and Production, Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA)Aalborg UniversityAalborgDenmark
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and PainAalborg UniversityAalborgDenmark
| | - Søren O'Neill
- Department of Regional Health ResearchUniversity Hospital of Southern DenmarkOdenseDenmark
- Medical Research Unit, Spine Center of Southern DenmarkUniversity Hospital of Southern DenmarkMiddelfartDenmark
| | - Morten Rune Blichfeldt‐Eckhardt
- Department of Regional Health ResearchUniversity Hospital of Southern DenmarkOdenseDenmark
- Department of Anesthesia, Lillebaelt HospitalUniversity Hospital of Southern DenmarkVejleDenmark
| | - Casper Nim
- Department of Regional Health ResearchUniversity Hospital of Southern DenmarkOdenseDenmark
- Medical Research Unit, Spine Center of Southern DenmarkUniversity Hospital of Southern DenmarkMiddelfartDenmark
- Department of Sports Science and Clinical BiomechanicsCenter for Muscle and Joint HealthOdenseDenmark
| | - Lars Arendt‐Nielsen
- Department of Materials and Production, Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA)Aalborg UniversityAalborgDenmark
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and PainAalborg UniversityAalborgDenmark
- Department of Gastroenterology & Hepatology, Mech‐Sense, Clinical InstituteAalborg University HospitalAalborgDenmark
- Steno Diabetes Center North Denmark, Clinical InstituteAalborg University HospitalAalborgDenmark
| | - Henrik Bjarke Vægter
- Department of Clinical Research, Faculty of Health SciencesUniversity of Southern DenmarkDenmark
- Pain Research Group, Pain CenterUniversity Hospital OdenseOdenseDenmark
| |
Collapse
|
2
|
Herrmann E, Schindehütte M, Kindl G, Reinhold AK, Aulbach F, Rose N, Dreiling J, Schwarzkopf D, Meir M, Jin Y, Teichmüller K, Widder A, Blum R, Sawalma A, Cebulla N, Sendtner M, Meissner W, Brack A, Pham M, Sommer C, Schlegel N, Rittner HL. Chronic postsurgical inguinal pain: incidence and diagnostic biomarkers from a large German national claims database. Br J Anaesth 2025:S0007-0912(25)00009-1. [PMID: 39909798 DOI: 10.1016/j.bja.2024.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Chronic postsurgical inguinal pain (CPIP) is the most common complication of groin hernia surgery. The characteristics of patients, their medical care, and choice of diagnostic tools remain to be defined to optimise preventive and therapeutic interventions. METHODS Claims data from 2018 and a 1-yr follow-up were analysed for incidence and medical care. A separate cohort (141 healthy controls and 17 CPIP patients) was examined by deep phenotyping. This included sensory testing, blood and skin biopsies, MRI of the dorsal root ganglion (DRG), and patient-reported outcomes. RESULTS Of 11,221 patients with hernia surgery in 2018 identified, 8.5% had pain before that was relieved by surgery, but a similar percentage had novel pain in this region. Deep phenotyping of 141 healthy controls provided a map of the inguinal sensory system. The following analysis of patients with CPIP revealed that they suffered from moderate pain with neuropathic features, individual sensory abnormalities, and unilateral L1 DRG atrophy. In the blood, levels of C-C-motif chemokine ligand (CCL2) and brain-derived neurotrophic factor (BDNF) were upregulated, whereas apolipoprotein A1 (ApoA1) concentration was reduced. A cluster of DRG atrophy, BDNF, ApoA1, and anxiety correlated best with the diagnosis. CPIP patients with novel pain had significantly more DRG atrophy (-24% ipsilateral vs contralateral volume). CONCLUSIONS CPIP is often newly acquired after surgery. A combination of DRG imaging, serum markers, and anxiety screening can support the diagnosis. In the future, this could guide clinicians towards more personalised therapies (e.g. targeting anxiety or lipid profiles) and possible altered surgical techniques. CLINICAL TRIAL REGISTRATION German Trial Registry DRKS00024588 and DRKS00016790.
Collapse
Affiliation(s)
- Eva Herrmann
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Magnus Schindehütte
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Gudrun Kindl
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Ann-Kristin Reinhold
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Felix Aulbach
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Norman Rose
- Department of Anaesthesiology and Intensive Care Medicine, Section Pain Therapy, University Hospital Jena, Jena, Germany
| | - Johannes Dreiling
- Department of Anaesthesiology and Intensive Care Medicine, Section Pain Therapy, University Hospital Jena, Jena, Germany
| | - Daniel Schwarzkopf
- Department of Anaesthesiology and Intensive Care Medicine, Section Pain Therapy, University Hospital Jena, Jena, Germany
| | - Michael Meir
- Department of Surgery I, University Hospital Würzburg, Würzburg, Germany
| | - Yuying Jin
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Karolin Teichmüller
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Anna Widder
- Department of Surgery I, University Hospital Würzburg, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Abdelrahman Sawalma
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Nadine Cebulla
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Michael Sendtner
- Institute for Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Winfried Meissner
- Department of Anaesthesiology and Intensive Care Medicine, Section Pain Therapy, University Hospital Jena, Jena, Germany
| | - Alexander Brack
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of Surgery I, University Hospital Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Wang W, Wang Y, Huang X, Wu P, Li L, Zhang Y, Chen Y, Chen Z, Li C, Zhou Y, Zhang J. Pathophysiology-Directed Engineering of a Combination Nanoanalgesic for Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405483. [PMID: 39716944 PMCID: PMC11848598 DOI: 10.1002/advs.202405483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/08/2024] [Indexed: 12/25/2024]
Abstract
Neuropathic pain, one of the most refractory pain diseases, remains a formidable medical challenge. There is still an unmet demand for effective and safe therapies to address this condition. Herein, a rat model of nerve injury-induced neuropathic pain is first established to explore its pathophysiological characteristics. Recognizing the role of neuroinflammation, an inflammation-resolving amphiphilic conjugate PPT is designed and synthesized by simultaneously conjugating polyethylene glycol, phenylboronic acid pinacol ester, and Tempol onto a cyclic scaffold. PPT can self-assemble into nanomicelles (termed PPTN). Following intravenous injection, PPTN preferentially accumulates in the injured nerve, ameliorates the neuroinflammatory milieu, and promotes nerve regeneration, thereby shortening neuropathic pain duration in rats. Moreover, the Ca2+ channel α2δ1 subunit is identified as a therapeutic target by RNA-sequencing analysis of the injured nerve. Based on this target, a mimicking peptide (AD peptide) is screened as an analgesic. By packaging AD peptide into PPTN, a combination nano-analgesic APTN is developed. Besides potentiated anti-hyperalgesic effects due to site-specific delivery and on-demand release of AD peptide at target sites, APTN simultaneously inhibits neuroinflammation and promotes nerve regeneration by reprogramming macrophages via regulating MAPK/NF-kB signaling pathways and NLRP3 inflammasome activation, thus affording synergistic efficacies in treating nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Wenkai Wang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
- Department of OrthopedicsGeneral Hospital of PLA Xizang Military Area CommandLhasa850007P. R. China
| | - Yan Wang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- War Trauma Medical CenterState key Laboratory of TraumaBurns and Combined injuryArmy Medical CenterDaping HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Xinle Huang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
- Department of OrthopedicsThe Second Naval Hospital of Southern Theater CommandSanya572000P. R. China
| | - Peng Wu
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- School of PharmacyHanzhong Vocational and Technical CollegeHanzhong723002P. R. China
| | - Lanlan Li
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Yang Zhang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Yihui Chen
- Department of General SurgeryXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Zhiyu Chen
- Department of OrthopedicsThe First Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Changqing Li
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Yue Zhou
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Jianxiang Zhang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- State Key Laboratory of Trauma and Chemical PoisoningThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Yu‐Yue Pathology Scientific Research Center313 Gaoteng Avenue, Jiulongpo DistrictChongqing400039P. R. China
| |
Collapse
|
4
|
Rijsdijk M, Tuffaha S, Coert H. Multidisciplinary strategies to treat painful mononeuropathies in the upper extremity: from lab to bedside. J Hand Surg Eur Vol 2024; 49:792-801. [PMID: 38749904 PMCID: PMC11143763 DOI: 10.1177/17531934241240389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 06/01/2024]
Abstract
Neuropathic pain in the upper extremity is a serious problem, commonly involving relatively young patients. The pain causes loss of function and productivity, changes a patient's lifestyle and can progress into a chronic pain syndrome with secondary psychosocial co-morbidities. Treating patients with a painful mononeuropathy remains challenging, with a monodisciplinary approach often having limited treatment efficacy. This narrative review discusses how to deal with this challenge in the treatment of patients with peripheral nerve injury pain, addressing the four important pillars: (1) diagnosing a painful mononeuropathy; (2) clinical pain phenotyping; (3) personalized pain treatment; and (4) using a multidisciplinary team approach.
Collapse
Affiliation(s)
- Mienke Rijsdijk
- Pain Clinic, Department of Anaesthesiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Sami Tuffaha
- Department of Plastic Surgery, Johns Hopkins Medical Centre, Baltimore, Maryland, USA
| | - Henk Coert
- Department of Plastic Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
5
|
Miclescu A, Rönngren C, Bengtsson M, Gordh T, Hedin A. Increased risk of persistent neuropathic pain after traumatic nerve injury and surgery for carriers of a human leukocyte antigen haplotype. Pain 2024; 165:1404-1412. [PMID: 38147413 PMCID: PMC11090029 DOI: 10.1097/j.pain.0000000000003143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 12/28/2023]
Abstract
ABSTRACT It is not known why some patients develop persistent pain after nerve trauma while others do not. Among multiple risk factors for the development of persistent posttrauma and postsurgical pain, a neuropathic mechanism due to iatrogenic nerve lesion has been proposed as the major cause of these conditions. Because there is some evidence that the human leukocyte antigen (HLA) system plays a role in persistent postsurgical pain, this study aimed to identify the genetic risk factors, specifically among HLA loci, associated with chronic neuropathic pain after traumatic nerve injuries and surgery in the upper extremities. Blood samples were taken to investigate the contribution of HLA alleles (ie, HLA-A, HLA-B, HLA-DRB1, HLA-DQB1, and HLA-DPB1) in a group of patients with persistent neuropathic pain (n = 70) and a group of patients with neuropathy without pain (n = 61). All subjects had intraoperatively verified nerve damage in the upper extremity. They underwent bedside clinical neurological examination to identify the neuropathic pain component according to the present grading system of neuropathic pain. Statistical analyses on the allele and haplotype were conducted using the BIGDAWG package. We found that the HLA haplotype A*02:01-B*15:01-C*03:04-DRB1*04:01-DQB1*03:02 was associated with an increased risk of developing persistent neuropathic pain in the upper extremity (OR = 9.31 [95% CI 1.28-406.45], P < 0.05). No significant associations were found on an allele level when correcting for multiple testing. Further studies are needed to investigate whether this association is on a haplotypic level or if certain alleles may be causing the association.
Collapse
Affiliation(s)
| | | | - Mats Bengtsson
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Anders Hedin
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Deng D, Xu F, Ma L, Zhang T, Wang Y, Huang S, Zhao W, Chen X. Electroacupuncture Alleviates CFA-Induced Inflammatory Pain via PD-L1/PD-1-SHP-1 Pathway. Mol Neurobiol 2023; 60:2922-2936. [PMID: 36753045 DOI: 10.1007/s12035-023-03233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/14/2023] [Indexed: 02/09/2023]
Abstract
Inflammatory pain is difficult to treat clinically, but electroacupuncture (EA) has been demonstrated to be effective in alleviating inflammatory pain. Programmed cell death ligand-1 (PD-L1) and its downstream signal, Src homology region two domain-containing phosphatase-1 (SHP-1) have a critical role in relieving inflammatory pain. However, whether the PD-L1/PD-1-SHP-1 pathway mediates the analgesic and anti-inflammatory effects of EA in inflammatory pain remains unclear. Here, we observed that EA reversed the complete Freund's adjuvant (CFA)-induced hyperalgesia. EA reduced the expression of IL-6, iNOS, and NF-κB pathway in dorsal root ganglia (DRG) on day 7 after CFA injection but had no effect on the expression of IL-6, iNOS, and NF-κB PP65 on day 21 after CFA injection. Moreover, EA upregulated the protein levels of the PD-L1/PD-1-SHP-1 pathway on day 7 and day 21 after CFA injection. Furthermore, EA upregulated PD-L1 expression in calcitonin gene-related peptide (CGRP)+ but not in isohaemagglutinin B4 (IB4)+ and NF200+ neurons on day 7 and day 21 after CFA injection. Intrathecal injection of the PD-L1/PD-1 inhibitor BMS-1 (50 or 100 µg) blocked the EA-induced analgesic effect, significantly increased IL-6 and iNOS levels, and reduced the levels of PD-L1/PD-1-SHP-1. BMS-1 (50 or 100 µg) significantly reduced the expression of PD-L1 in IB4+, CGRP+, and NF200+ neurons. Our results show that EA's anti-inflammatory and analgesic effects are associated with activating the PD-L1/PD-1-SHP-1 pathway and suppressing its regulated neuroinflammation. This study provides a new potential therapeutic target for treating inflammatory pain.
Collapse
Affiliation(s)
- Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Unbiased proteomic analysis detects painful systemic inflammatory profile in the serum of nerve-injured mice. Pain 2023; 164:e77-e90. [PMID: 35587992 PMCID: PMC9833115 DOI: 10.1097/j.pain.0000000000002695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Neuropathic pain is a complex, debilitating disease that results from injury to the somatosensory nervous system. The presence of systemic chronic inflammation has been observed in patients with chronic pain but whether it plays a causative role remains unclear. This study aims to determine the perturbation of systemic homeostasis by an injury to peripheral nerve and its involvement in neuropathic pain. We assessed the proteomic profile in the serum of mice at 1 day and 1 month after partial sciatic nerve injury (PSNL) or sham surgery. We also assessed mouse mechanical and cold sensitivity in naïve mice after receiving intravenous administration of serum from PSNL or sham mice. Mass spectrometry-based proteomic analysis revealed that PSNL resulted in a long-lasting alteration of serum proteome, where most of the differentially expressed proteins were in inflammation-related pathways, involving cytokines and chemokines, autoantibodies, and complement factors. Although transferring sham serum to naïve mice did not change their pain sensitivity, PSNL serum significantly lowered mechanical thresholds and induced cold hypersensitivity in naïve mice. With broad anti-inflammatory properties, bone marrow cell extracts not only partially restored serum proteomic homeostasis but also significantly ameliorated PSNL-induced mechanical allodynia, and serum from bone marrow cell extracts-treated PSNL mice no longer induced hypersensitivity in naïve mice. These findings clearly demonstrate that nerve injury has a long-lasting impact on systemic homeostasis, and nerve injury-associated systemic inflammation contributes to the development of neuropathic pain.
Collapse
|
8
|
Miclescu AA, Granlund P, Butler S, Gordh T. Association between systemic inflammation and experimental pain sensitivity in subjects with pain and painless neuropathy after traumatic nerve injuries. Scand J Pain 2023; 23:184-199. [PMID: 35531763 DOI: 10.1515/sjpain-2021-0195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/05/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Peripheral neuropathies that occur secondary to nerve injuries may be painful or painless, and including a low-grade inflammation and pro-inflammatory cytokines associated with both regeneration and damage of peripheral nerve cells and fibers. Currently, there are no validated methods that can distinguished between neuropathic pain and painless neuropathy. The aim of this study was to search for proinflammatory and anti-inflammatory proteins associated with pain and experimental pain sensitivity in subjects with surgeon-verified nerve injuries in the upper extremities. METHODS One hundred and thirty-one subjects [69 with neuropathic pain, NP; 62 with painless neuropathy, nP] underwent a conditioned pain modulation (CPM) test that included a cold pressor task (CPT) conducted with the non-injured hand submerged in cold water (4 °C) until pain was intolerable. CPM was assessed by pain ratings to pressure stimuli before and after applying the CPT. Efficient CPM effect was defined as the ability of the individual's CS to inhibit at least 29% of pain (eCPM). The subjects were assigned to one of two subgroups: pain sensitive (PS) and pain tolerant (PT) after the time they could tolerate their hand in cold water (PS<40 s and PT=60 s) . Plasma samples were analyzed for 92 proteins incorporated in the inflammation panel using multiplex Protein Extension Array Technology (PEA). Differentially expressed proteins were investigated using both univariate and multivariate analysis (principal component analysis-PCA and orthogonal partial least-squares discriminant analysis-OPLS-DA). RESULTS Significant differences in all protein levels were found between PS and PT subgroups (CV-ANOVA p<0.001), but not between NP and nP groups (p=0.09) or between inefficient CPM (iCPM) and eCPM (p=0.53) subgroups. Several top proteins associated with NP could be detected using multivariate regression analysis such as stromelysin 2 (MMPs), interleukin-2 receptor subunit beta (IL2RB), chemokine (C-X-C motif) ligand 3 (CXCL3), fibroblast growth factor 5 (FGF5), chemokine (C-C motif) ligand 28 (CCL28), CCL25, CCL11, hepatocyte growth factor (HGF), interleukin 4 (IL4), IL13. After adjusting for multiple testing, none of these proteins correlated significantly with pain. Higher levels of CCL20 (p=0.049) and CUB domain-containing protein (CDCP-1; p=0.047) were found to correlate significantly with cold pain sensitivity. CDCP-1 was highly associated with both PS and iCPM (p=0.042). CONCLUSIONS No significant alterations in systemic proteins were found comparing subjects with neuropathic pain and painless neuropathy. An expression of predominant proinflammatory proteins was associated with experimental cold pain sensitivity in both subjects with pain and painless neuropathy. One these proteins, CDC-1 acted as "molecular fingerprint" overlapping both CPM and CPT. This observation might have implications for the study of pain in general and should be addressed in more detail in future experiments.
Collapse
Affiliation(s)
| | - Pontus Granlund
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| | - Stephen Butler
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department Surgical Science, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Lesnak JB, Berardi G, Sluka KA. Influence of routine exercise on the peripheral immune system to prevent and alleviate pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100126. [PMID: 37179769 PMCID: PMC10173010 DOI: 10.1016/j.ynpai.2023.100126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023]
Abstract
Routine physical activity reduces the onset of pain and exercise is a first line treatment for individuals who develop chronic pain. In both preclinical and clinical research regular exercise (routine exercise sessions) produces pain relief through multiple mechanisms such as alterations in the central and peripheral nervous system. More recently, it has been appreciated that exercise can also alter the peripheral immune system to prevent or reduce pain. In animal models, exercise can alter the immune system at the site of injury or pain model induction, in the dorsal root ganglia, and systemically throughout the body to produce analgesia. Most notably exercise shows the ability to dampen the presence of pro-inflammatory immune cells and cytokines at these locations. Exercise decreases M1 macrophages and the cytokines IL-6, IL-1β, and TFNα, while increasing M2 macrophages and the cytokines IL-10, IL-4, and IL-1ra. In clinical research, a single bout of exercise produces an acute inflammatory response, however repeated training can lead to an anti-inflammatory immune profile leading to symptom relief. Despite the clinical and immune benefits of routine exercise, the direct effect of exercise on immune function in clinical pain populations remains unexplored. This review will discuss in more detail the preclinical and clinical research which demonstrates the numerous ways through which multiple types of exercise alter the peripheral immune system. This review closes with the clinical implications of these findings along with suggestions for future research directions.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Giovanni Berardi
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
- Corresponding author.
| |
Collapse
|
10
|
Matesanz-García L, Schmid AB, Cáceres-Pajuelo JE, Cuenca-Martínez F, Arribas-Romano A, González-Zamorano Y, Goicoechea-García C, Fernández-Carnero J. Effect of Physiotherapeutic Interventions on Biomarkers of Neuropathic Pain: A Systematic Review of Preclinical Literature. THE JOURNAL OF PAIN 2022; 23:1833-1855. [PMID: 35768044 PMCID: PMC7613788 DOI: 10.1016/j.jpain.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023]
Abstract
The purpose of this systematic review was to evaluate the effects of physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain (PNP). The search was performed in Pubmed, Web of Science, EMBASE, Cochrane, Cinhal, Psycinfo, Scopus, Medline, and Science Direct. Studies evaluating any type of physiotherapy intervention for PNP (systemic or traumatic) were included. Eighty-one articles were included in this review. The most common PNP model was chronic constriction injury, and the most frequently studied biomarkers were related to neuro-immune processes. Exercise therapy and Electro-acupuncture were the 2 most frequently studied physiotherapy interventions while acupuncture and joint mobilization were less frequently examined. Most physiotherapeutic interventions modulated the expression of biomarkers related to neuropathic pain. Whereas the results seem promising; they have to be considered with caution due to the high risk of bias of included studies and high heterogeneity of the type and anatomical localization of biomarkers reported. The review protocol is registered on PROSPERO (CRD42019142878). PERSPECTIVE: This article presents the current evidence about physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain. Existing findings are reviewed, and relevant data are provided on the effectiveness of each physiotherapeutic modality, as well as its certainty of evidence and clinical applicability.
Collapse
Affiliation(s)
- Luis Matesanz-García
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Annina B Schmid
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Ferran Cuenca-Martínez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain.
| | - Alberto Arribas-Romano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | - Yeray González-Zamorano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Grupo de Investigación de Neurorrehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain; Grupo de Investigación de Neurorrehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain; Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, Madrid, Spain; La Paz Hospital Institute for Health Research, IdiPAZ, Madrid, Spain
| |
Collapse
|
11
|
Schmelz M. Lessons learned - Moving on from QST sensory profiles. Scand J Pain 2022; 22:670-672. [PMID: 36130022 DOI: 10.1515/sjpain-2022-0088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
Quantitative sensory testing (QST) has been optimized to diagnose in particular small fiber neuropathy and has been successfully used for decades. "Sensory phenotypes" have been derived from the QST data in an attempt to stratify patients with chronic pain and to gain mechanistic insights. However, studies consistently show that there is no difference in sensory phenotypes between neuropathy patients with and without pain and no successful stratification has been shown using the current version of "sensory phenotypes". Thus, after falsification of the initial hypothesis it is time to focus on more promising approaches.
Collapse
Affiliation(s)
- Martin Schmelz
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
12
|
Ma X, Chen W, Yang NN, Wang L, Hao XW, Tan CX, Li HP, Liu CZ. Potential mechanisms of acupuncture for neuropathic pain based on somatosensory system. Front Neurosci 2022; 16:940343. [PMID: 36203799 PMCID: PMC9530146 DOI: 10.3389/fnins.2022.940343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Neuropathic pain, caused by a lesion or disease of the somatosensory system, is common and distressing. In view of the high human and economic burden, more effective treatment strategies were urgently needed. Acupuncture has been increasingly used as an adjuvant or complementary therapy for neuropathic pain. Although the therapeutic effects of acupuncture have been demonstrated in various high-quality randomized controlled trials, there is significant heterogeneity in the underlying mechanisms. This review aimed to summarize the potential mechanisms of acupuncture on neuropathic pain based on the somatosensory system, and guided for future both foundational and clinical studies. Here, we argued that acupuncture may have the potential to inhibit neuronal activity caused by neuropathic pain, through reducing the activation of pain-related ion channels and suppressing glial cells (including microglia and astrocytes) to release inflammatory cytokines, chemokines, amongst others. Meanwhile, acupuncture as a non-pharmacologic treatment, may have potential to activate descending pain control system via increasing the level of spinal or brain 5-hydroxytryptamine (5-HT), norepinephrine (NE), and opioid peptides. And the types of endogenously opioid peptides was influenced by electroacupuncture-frequency. The cumulative evidence demonstrated that acupuncture provided an alternative or adjunctive therapy for neuropathic pain.
Collapse
Affiliation(s)
- Xin Ma
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Chen
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Na-Na Yang
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Wan Hao
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Xia Tan
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Ping Li
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Cun-Zhi Liu
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Lunden LK, Kleggetveit IP, Schmelz M, Jorum E. Cold allodynia is correlated to paroxysmal and evoked mechanical pain in complex regional pain syndrome (CRPS). Scand J Pain 2022; 22:533-542. [PMID: 35429156 DOI: 10.1515/sjpain-2021-0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/09/2022] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Mechanisms of complex regional pain syndrome (CRPS) are still debated. Identifying subgroups of patients have been attempted in the hope of linking clinical findings to possible mechanisms. The aim of the present study was to investigate whether subgroups of CRPS (based on quantitative sensory testing (QST)-results) differed with respect to different characteristics of pain like spontaneous ongoing or paroxysmal pain and mechanical dynamic allodynia. METHODS 61 CRPS-patients (type 1 and 2) were examined clinically and with QST, in affected and contralateral extremity, with assessment of thresholds for warmth, cold and heat-and cold pain. RESULTS 43 patients (20 men, 23 men) were diagnosed with CRPS 1 (70.5%) and 18 patients (8 women and 10 men) with CRPS 2 (29.5%). Three subgroups were defined based on thermal thresholds; A (thermal allodynia 22.9%), B (thermal hyposensitivity 37.3%), C (thermal allodynia and hyposensitivity 39.3%). Paroxysmal pain was more prevalent in patients with thermal allodynia (merging group A + C, 25/38-65.8%) compared to patients without thermal allodynia (group B, 5/23-21.7%) (p-value=0.00085). CONCLUSIONS We suggest that cold allodynia is based on hyper-excitability of very superficial skin nociceptors. The correlation between paroxysmal pain, allodynia to light touch and cold allodynia suggests that activity in those peripheral nociceptors can drive both, paroxysmal pain and spinal sensitization leading to stroke evoked allodynia. Mechanistically, the physical cold stimulus can unmask disease-related hyperexcitability by closure of temperature-sensitive potassium channels or induction of resurgent currents. Small fiber degeneration alone may not be the crucial mechanism in CRPS, nor explain pain.
Collapse
Affiliation(s)
- Lars Kristian Lunden
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Inge Petter Kleggetveit
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN, University of Heidelberg, Mannheim, Germany
| | - Ellen Jorum
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Omics approaches to discover pathophysiological pathways contributing to human pain. Pain 2022; 163:S69-S78. [PMID: 35994593 PMCID: PMC9557800 DOI: 10.1097/j.pain.0000000000002726] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/19/2022] [Indexed: 10/26/2022]
|
15
|
Fundaun J, Kolski M, Baskozos G, Dilley A, Sterling M, Schmid AB. Nerve pathology and neuropathic pain after whiplash injury: a systematic review and meta-analysis. Pain 2022; 163:e789-e811. [PMID: 35050963 PMCID: PMC7612893 DOI: 10.1097/j.pain.0000000000002509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT There is no clear understanding of the mechanisms causing persistent pain in patients with whiplash-associated disorder (WAD). The aim of this systematic review was to assess the evidence for nerve pathology and neuropathic pain in patients with WAD. EMBASE, PubMed, CINAHL (EBSCO), and MEDLINE were searched from inception to September 1, 2020. Study quality and risk of bias were assessed using the Newcastle-Ottawa Quality Assessment Scales. Fifty-four studies reporting on 390,644 patients and 918 controls were included. Clinical questionnaires suggested symptoms of predominant neuropathic characteristic in 34% of patients (range 25%-75%). The mean prevalence of nerve pathology detected with neurological examination was 13% (0%-100%) and 32% (10%-100%) with electrodiagnostic testing. Patients independent of WAD severity (Quebec Task Force grades I-IV) demonstrated significantly impaired sensory detection thresholds of the index finger compared with controls, including mechanical (SMD 0.65 [0.30; 1.00] P < 0.005), current (SMD 0.82 [0.25; 1.39] P = 0.0165), cold (SMD -0.43 [-0.73; -0.13] P = 0.0204), and warm detection (SMD 0.84 [0.25; 1.42] P = 0.0200). Patients with WAD had significantly heightened nerve mechanosensitivity compared with controls on median nerve pressure pain thresholds (SMD -1.10 [-1.50; -0.70], P < 0.0001) and neurodynamic tests (SMD 1.68 [0.92; 2.44], P = 0.0004). Similar sensory dysfunction and nerve mechanosensitivity was seen in WAD grade II, which contradicts its traditional definition of absent nerve involvement. Our findings strongly suggest a subset of patients with WAD demonstrate signs of peripheral nerve pathology and neuropathic pain. Although there was heterogeneity among some studies, typical WAD classifications may need to be reconsidered and include detailed clinical assessments for nerve integrity.
Collapse
Affiliation(s)
- Joel Fundaun
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, United Kingdom
| | - Melissa Kolski
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Musculoskeletal Outpatient Department, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, United Kingdom
| | - Andrew Dilley
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Michele Sterling
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence in Recovery Following Road Traffic Injuries, The University of Queensland, Brisbane, Queensland, Australia
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Parisien M, Lima LV, Dagostino C, El-Hachem N, Drury GL, Grant AV, Huising J, Verma V, Meloto CB, Silva JR, Dutra GGS, Markova T, Dang H, Tessier PA, Slade GD, Nackley AG, Ghasemlou N, Mogil JS, Allegri M, Diatchenko L. Acute inflammatory response via neutrophil activation protects against the development of chronic pain. Sci Transl Med 2022; 14:eabj9954. [PMID: 35544595 DOI: 10.1126/scitranslmed.abj9954] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transition from acute to chronic pain is critically important but not well understood. Here, we investigated the pathophysiological mechanisms underlying the transition from acute to chronic low back pain (LBP) and performed transcriptome-wide analysis in peripheral immune cells of 98 participants with acute LBP, followed for 3 months. Transcriptomic changes were compared between patients whose LBP was resolved at 3 months with those whose LBP persisted. We found thousands of dynamic transcriptional changes over 3 months in LBP participants with resolved pain but none in those with persistent pain. Transient neutrophil-driven up-regulation of inflammatory responses was protective against the transition to chronic pain. In mouse pain assays, early treatment with a steroid or nonsteroidal anti-inflammatory drug (NSAID) also led to prolonged pain despite being analgesic in the short term; such a prolongation was not observed with other analgesics. Depletion of neutrophils delayed resolution of pain in mice, whereas peripheral injection of neutrophils themselves, or S100A8/A9 proteins normally released by neutrophils, prevented the development of long-lasting pain induced by an anti-inflammatory drug. Analysis of pain trajectories of human subjects reporting acute back pain in the UK Biobank identified elevated risk of pain persistence for subjects taking NSAIDs. Thus, despite analgesic efficacy at early time points, the management of acute inflammation may be counterproductive for long-term outcomes of LBP sufferers.
Collapse
Affiliation(s)
- Marc Parisien
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Lucas V Lima
- Department of Psychology, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Concetta Dagostino
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Nehme El-Hachem
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Gillian L Drury
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Audrey V Grant
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Jonathan Huising
- Department of Anesthesiology, Pain and Palliative Medicine, Radboudumc, Nijmegen 6525, Netherlands
| | - Vivek Verma
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Carolina B Meloto
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Jaqueline R Silva
- Departments of Anesthesiology and Perioperative Medicine and Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Gabrielle G S Dutra
- Department of Psychology, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Teodora Markova
- Department of Psychology, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Hong Dang
- Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Philippe A Tessier
- Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec G1V 0A6, Canada
| | - Gary D Slade
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrea G Nackley
- Center for Translational Pain Medicine and Departments of Anesthesiology and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nader Ghasemlou
- Departments of Anesthesiology and Perioperative Medicine and Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jeffrey S Mogil
- Department of Psychology, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Massimo Allegri
- Pain Therapy Service, Policlinico of Monza Hospital, Monza 20900, Italy.,Pain Management and Neuromodulation Centre, Ensemble Hospitalier de la Côte, Morges 1110, Switzerland
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| |
Collapse
|
17
|
Inflammation-related molecules in tears of patients with chronic ocular pain and dry eye disease. Exp Eye Res 2022; 219:109057. [DOI: 10.1016/j.exer.2022.109057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/28/2022]
|
18
|
Matesanz-García L, Cuenca-Martínez F, Simón AI, Cecilia D, Goicoechea-García C, Fernández-Carnero J, Schmid AB. Signs Indicative of Central Sensitization Are Present but Not Associated with the Central Sensitization Inventory in Patients with Focal Nerve Injury. J Clin Med 2022; 11:1075. [PMID: 35207360 PMCID: PMC8876893 DOI: 10.3390/jcm11041075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Carpal tunnel syndrome (CTS) is the most common focal nerve injury. People with CTS may show alterations in central processing of nociceptive information. It remains unclear whether the central sensitization inventory (CSI) is capable of detecting such altered central pain processing. METHODS Thirty healthy volunteers were matched with 30 people with unilateral CTS from the orthopaedic waitlist. Changes to central pain processing were established through psychophysical sensory testing (bilateral pressure pain thresholds (PPT), conditioned pain modulation, temporal summation) and pain distribution on body charts. Patients also completed pain severity and function questionnaires, psychological questionnaires and the CSI. RESULTS Compared to healthy volunteers, patients with CTS have lower PPTs over the carpal tunnel bilaterally (t = -4.06, p < 0.0001 ipsilateral and t = -4.58, p < 0.0001 contralateral) and reduced conditioned pain modulation efficacy (t = -7.31, p <0.0001) but no differences in temporal summation (t = 0.52, p = 0.60). The CSI was not associated with psychophysical measures or pain distributions indicative of altered central pain processing. However, there was a correlation of the CSI with the Beck Depression Inventory (r = 0.426; p = 0.019). CONCLUSION Patients with CTS show signs of altered central pain mechanisms. The CSI seems unsuitable to detect changes in central pain processing but is rather associated with psychological factors in people with focal nerve injuries.
Collapse
Affiliation(s)
- Luis Matesanz-García
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain;
- Department of Physiotherap, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
| | - Ferran Cuenca-Martínez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain;
| | - Ana Isabel Simón
- Unit of Elbow-Hand, Service de Traumatología, Hospital Severo Ochoa, 28911 Leganés, Spain;
| | - David Cecilia
- Unit of Elbow-Hand, Service de Traumatología, Hospital 12 de Octubre, 28048 Madrid, Spain;
- Complutense University of Madrid, 28040 Madrid, Spain
- Department of Surgery, Hospital Vithas La Milagrosa, 28010 Madrid, Spain
| | - Carlos Goicoechea-García
- Department Basic Health Sciences, Rey Juan Carlos University, 28922 Alcorcón, Spain;
- Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, 28922 Madrid, Spain
| | - Josué Fernández-Carnero
- Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, 28922 Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
| | - Annina B. Schmid
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
19
|
Pain mechanisms in carpal tunnel syndrome: a systematic review and meta-analysis of quantitative sensory testing outcomes. Pain 2021; 163:e1054-e1094. [PMID: 35050958 DOI: 10.1097/j.pain.0000000000002566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Carpal tunnel syndrome (CTS) is the most common nerve compression in the arm. A mix of peripheral and central contributions on quantitative sensory testing (QST) has been reported in the literature. Thus, this systematic review or meta-analysis aimed to identify the dominant sensory phenotype and draw conclusive evidence about the presence of central sensitization (CS) in CTS. Based on an a priori published protocol and using PRISMA guidelines, 7 databases were searched (Embase, Web of Science, Scopus, PubMed, SAGE, EBSCOhost, and ProQuest). Eligible studies compared the QST findings of individuals with subacute and chronic CTS with those of healthy controls through thermal, mechanical, and vibration detection thresholds; thermal, pressure, and mechanical pain thresholds; mechanical pain sensitivity; presence of allodynia; wind-up ratio; and conditioned pain modulation. Thirty-seven studies were included in the qualitative analysis. Results showed a significant loss of all detection thresholds of hand median nerve territories and hand extramedian areas (little finger and hand dorsum) in CTS (P < 0.05) but no significant difference (P > 0.05) in wind-up ratio, cold, heat, or mechanical pain thresholds of the median nerve territories. Furthermore, there was a significant increase in mechanical pain sensitivity in median nerve territories and remotely in the forearm (P < 0.05) and a significant gain in pressure and heat pain thresholds in the carpal area (P < 0.05). Conditioned pain modulation was impaired in CTS. Hypoesthesia and increased thermal and mechanical pain ratings are the dominant sensory phenotype with inconclusive evidence about CS in CTS due to the heterogenous results of thermal and mechanical pain thresholds.
Collapse
|
20
|
Zhou WBS, Meng J, Zhang J. Does Low Grade Systemic Inflammation Have a Role in Chronic Pain? Front Mol Neurosci 2021; 14:785214. [PMID: 34858140 PMCID: PMC8631544 DOI: 10.3389/fnmol.2021.785214] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
One of the major clinical manifestations of peripheral neuropathy, either resulting from trauma or diseases, is chronic pain. While it significantly impacts patients’ quality of life, the underlying mechanisms remain elusive, and treatment is not satisfactory. Systemic chronic inflammation (SCI) that we are referring to in this perspective is a state of low-grade, persistent, non-infective inflammation, being found in many physiological and pathological conditions. Distinct from acute inflammation, which is a protective process fighting against intruders, SCI might have harmful effects. It has been associated with many chronic non-communicable diseases. We hypothesize that SCI could be a predisposing and/or precipitating factor in the development of chronic pain, as well as associated comorbidities. We reviewed evidence from human clinical studies indicating the coexistence of SCI with various types of chronic pain. We also collated existing data about the sources of SCI and who could have it, showing that those individuals or patients having SCI usually have higher prevalence of chronic pain and psychological comorbidities. We thus elaborate on the need for further research in the connection between SCI and chronic pain. Several hypotheses have been proposed to explain these complex interactions.
Collapse
Affiliation(s)
- Wen Bo Sam Zhou
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - JingWen Meng
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Ji Zhang
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, Faculty of Medicine McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Karl-Schöller F, Kunz M, Kreß L, Held M, Egenolf N, Wiesner A, Dandekar T, Sommer C, Üçeyler N. A translational study: Involvement of miR-21-5p in development and maintenance of neuropathic pain via immune-related targets CCL5 and YWHAE. Exp Neurol 2021; 347:113915. [PMID: 34758342 DOI: 10.1016/j.expneurol.2021.113915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
Neuropathic pain occurs in more than half of the patients suffering from peripheral neuropathies. We investigated the role of microRNA (miR)-21 in neuropathic pain using a murine-human translational approach. We applied the spared nerve injury (SNI) model at the sciatic nerve of mice and assessed the potential analgesic effect of perineurial miR-21-5p inhibitor application. Immune-related targets of miR-21-5p were determined by a qRT-PCR based cytokine and chemokine array. Bioinformatical analysis identified potential miR-21-5p targets interacting with CC-chemokine ligand (CCL)5. We validated CCL5 and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (YWHAE), an interaction partner of miR-21-5p and CCL5, by qRT-PCR in murine common peroneal and tibial nerves. Validated candidates were then investigated in white blood cell and sural nerve biopsy samples of patients with focal to generalized pain syndromes, i.e. small fiber neuropathy (SFN), polyneuropathy (PNP), and nerve lesion (NL). We showed that perineurial miR-21-5p inhibition reverses SNI-induced mechanical and heat hypersensitivity in mice and found a reduction of the SNI-induced increase of the pro-inflammatory mediators CCL5 (p < 0.01), CCL17 (p < 0.05), and IL-12ß (p < 0.05) in miR-21-5p inhibitor-treated mice. In silico analysis revealed several predicted and validated targets for miR-21-5p with CCL5 interaction. Among these, we found lower YWHAE gene expression in mice after SNI and perineurial injections of a scrambled oligonucleotide compared to naïve mice (p < 0.05), but this was not changed by miR-21-5p inhibition. Furthermore, miR-21-5p inhibition led to a further increase of the SNI-induced increase in TGFß (p < 0.01). Patient biomaterial revealed different systemic expression patterns of miR-21-5p, with higher expression in SFN and lower expression in NL. Further, we showed higher systemic expression of pro-inflammatory mediators in white blood cells of SFN patients compared to healthy controls. We have conducted a translational study comparing results from animal models to human patients with three different neuropathic pain syndromes. We identified CCL5 as a miR-21 dependent common player in the mouse SNI model and the human painful disease SFN.
Collapse
Affiliation(s)
- Franziska Karl-Schöller
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany.
| | - Meik Kunz
- Department of Bioinformatics, Biocenter University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Luisa Kreß
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Melissa Held
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Nadine Egenolf
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Anna Wiesner
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| |
Collapse
|
22
|
Chang J, Zhang Y, Shen N, Zhou J, Zhang H. MiR-129-5p prevents depressive-like behaviors by targeting MAPK1 to suppress inflammation. Exp Brain Res 2021; 239:3359-3370. [PMID: 34482419 DOI: 10.1007/s00221-021-06203-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Depression is a complex etiological disease with limited effective treatments. Previous studies have indicated the involvement of miRNAs in the pathophysiology of mood disorders. In this study, we focused on the role and mechanisms of miR-129-5p in depression by successfully constructing mice models of depressive-like behavior via chronic unpredictable mild stress (CUMS) exposure. Herein, miR-129-5p expression was decreased in the hippocampus of CUMS mice model. Upregulation of miR-129-5p reduced depressive-like behaviors of CUMS mice, as revealed in sucrose preference test, novelty suppressed feeding test, forced swim test, tail suspension test, social interaction test. MiR-129-5p upregulation decreased the concentrations and protein levels of proinflammatory cytokines (IL-6, IL-1β and TNF-α), indicating the inhibitory role of miR-129-5p in inflammation. Furthermore, miR-129-5p was identified to target MAPK1. MAPK1 was negatively regulated by miR-129-5p, and silencing of MAPK1 attenuated depressive-like behaviors in CUMS mice. Moreover, MAPK1 downregulation decreased inflammation in the hippocampus of CUMS mice. Upregulation of MAPK1 reversed the suppressive effects of miR-129-5p upregulation on depressive-like behaviors and inflammation in CUMS mice. In conclusion, the current study identified that miR-129-5p reduces depressive-like behaviors and suppresses inflammation by targeting MAPK1 in CUMS mice, offering a novel molecular interpretation for depression prevention.
Collapse
Affiliation(s)
- Jie Chang
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China
| | - Yanhong Zhang
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China.
| | - Nianhong Shen
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China.
| | - Jingquan Zhou
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China
| | - Huan Zhang
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China
| |
Collapse
|
23
|
Yu ML, Wei RD, Zhang T, Wang JM, Cheng Y, Qin FF, Fu SP, Lu ZG, Lu SF. Electroacupuncture Relieves Pain and Attenuates Inflammation Progression Through Inducing IL-10 Production in CFA-Induced Mice. Inflammation 2021; 43:1233-1245. [PMID: 32198725 DOI: 10.1007/s10753-020-01203-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The therapeutic effect of electroacupuncture (EA) on inflammatory pain has been well recognized clinically, but the mechanism is unclear. Interleukin-10 (IL-10), which is produced by regulatory T (Treg) cell, is a key anti-inflammatory cytokine for relieving inflammatory pain. Therefore, the aim of this study is to investigate whether EA could inhibit CFA-induced pain and attenuate inflammation progression by regulating the activation of immunocyte and inducing the expression of IL-10. In this study, mice were treated with EA (2/100 Hz, 2 mA) for five consecutive days after 1 day of CFA injection. The behavioral tests were measured and analyzed after the daily EA treatment; then, hind paw, spinal cord, and spleen tissues were prepared for assessment. The results showed that EA treatment significantly increased the mechanical threshold and thermal latency after CFA injection and boosted the expression of IL-10 in paw and spinal cord tissues. EA treatment promoted Treg cells; suppressed macrophage and neutrophils cells; reduced the expression of IL-1β, NLRP3, and TNF-α; and ultimately relieved inflammatory pain. The findings suggested that the analgesic and anti-inflammatory effect of EA treatment could be partially associated with suppression of pro-inflammatory cytokines mediated by induction of IL-10.
Collapse
Affiliation(s)
- Mei-Ling Yu
- Nanjing University of Chinese Medicine, First Clinical Medical College, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui-de Wei
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun-Meng Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Cheng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fen-Fen Qin
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Ping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Gang Lu
- Nanjing University of Chinese Medicine, First Clinical Medical College, Nanjing, China. .,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
24
|
Inyang KE, Folger JK, Laumet G. Can FDA-Approved Immunomodulatory Drugs be Repurposed/Repositioned to Alleviate Chronic Pain? J Neuroimmune Pharmacol 2021; 16:531-547. [PMID: 34041656 DOI: 10.1007/s11481-021-10000-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Pain is among the most widespread chronic health condition confronting society today and our inability to manage chronic pain contributes to the opioid abuse epidemic in America. The immune system is known to contribute to acute and chronic pain, but only limited therapeutic treatments such as non-steroid anti-inflammatory drugs have resulted from this knowledge. The last decade has shed light on neuro-immune interactions mediating the development, maintenance, and resolution of chronic pain. Here, we do not aim to perform a comprehensive review of all immune mechanisms involved in chronic pain, but to briefly review the contribution of the main cytokines and immune cells (macrophages, microglia, mast cells and T cells) to chronic pain. Given the urgent need to address the Pain crisis, we provocatively propose to repurpose/reposition FDA-approved immunomodulatory drugs for their potential to alleviate chronic pain. Repositioning or repurposing offers an attractive way to accelerate the arrival of new analgesics.
Collapse
Affiliation(s)
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
25
|
Dietz C, Reinhold AK, Escolano-Lozano F, Mehling K, Forer L, Kress M, Üçeyler N, Sommer C, Dimova V, Birklein F, Rittner HL. Complex regional pain syndrome: role of contralateral sensitisation. Br J Anaesth 2021; 127:e1-e3. [PMID: 33941363 DOI: 10.1016/j.bja.2021.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022] Open
Affiliation(s)
- Christopher Dietz
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Ann-Kristin Reinhold
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | | | - Katharina Mehling
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Lukas Forer
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Division of Physiology, Department of Physiology and Medical Physics, University of Innsbruck, Innsbruck, Austria
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Violeta Dimova
- Department of Neurology, University Hospital of Mainz, Mainz, Germany
| | - Frank Birklein
- Department of Neurology, University Hospital of Mainz, Mainz, Germany
| | - Heike L Rittner
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
26
|
Matesanz L, Hausheer AC, Baskozos G, Bennett DL, Schmid AB. Somatosensory and psychological phenotypes associated with neuropathic pain in entrapment neuropathy. Pain 2021; 162:1211-1220. [PMID: 33044393 PMCID: PMC7977619 DOI: 10.1097/j.pain.0000000000002102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
ABSTRACT It currently remains unclear why some patients with entrapment neuropathies develop neuropathic pain (neuP), whereas others have non-neuP, presumably of nociceptive character. Studying patients with carpal tunnel syndrome (CTS), this cross-sectional cohort study investigated changes in somatosensory structure and function as well as emotional well-being specific to the presence and severity of neuP. Patients with CTS (n = 108) were subgrouped by the DN4 questionnaire into those without and with neuP. The latter group was further subdivided into mild and moderate/severe neuP using a pain visual analogue scale. N = 32 participants served as healthy controls. All participants underwent a clinical examination, quantitative sensory testing, electrodiagnostic testing (EDT), and skin biopsy to determine the structural integrity of dermal and intraepidermal nerve fibres. Patients also completed questionnaires evaluating symptom severity and functional deficits, pain distribution, sleep quality, and emotional well-being. The overall prevalence of neuP in patients with CTS was 80%, of which 63% had mild neuP. Symptom severity and functional deficits as well as somatosensory dysfunction was more pronounced with the presence and increasing severity of neuP. No difference was identified among patient groups for EDT and nerve fibre integrity on biopsies. The severity of neuP was accompanied by more pronounced deficits in emotional well-being and sleep quality. Intriguingly, extraterritorial spread of symptoms was more prevalent in patients with moderate/severe neuP, indicating the presence of central mechanisms. NeuP is common in patients with CTS, and its severity is related to the extent of somatosensory dysfunction and a compromise of emotional well-being.
Collapse
Affiliation(s)
- Luis Matesanz
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Andrea C Hausheer
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- School of Health Professions, Institute of Physiotherapy, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Georgios Baskozos
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David L.H. Bennett
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Annina B. Schmid
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Prolonged time of after-sensation after experimental pain stimuli despite efficient conditioned pain modulation in patients with chronic neuropathic pain after traumatic nerve injuries in upper extremity. Pain Rep 2021; 6:e908. [PMID: 33688603 PMCID: PMC7935643 DOI: 10.1097/pr9.0000000000000908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 11/26/2022] Open
Abstract
Prolonged time of after-sensation after experimental pain stimuli despite efficient conditioned pain modulation was observed in patients with neuropathic pain after traumatic nerve injuries As yet, there is limited research that can identify factors that differentiate between painful and nonpainful neuropathies after traumatic nerve injury. The aim of this study was to compare subjects with pain and without pain, all after operative nerve repair in the upper extremities.
Collapse
|
28
|
Schmelz M. What can we learn from the failure of quantitative sensory testing? Pain 2021; 162:663-664. [PMID: 32868753 DOI: 10.1097/j.pain.0000000000002059] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Martin Schmelz
- Department Experimental Pain Research, MCTN, Mannheim, Heidelberg University, Germany
| |
Collapse
|
29
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
30
|
Ellwardt E, Geber C, Lotz J, Birklein F. Heterogeneous presentation of caspr2 antibody-associated peripheral neuropathy - A case series. Eur J Pain 2020; 24:1411-1418. [PMID: 32279412 DOI: 10.1002/ejp.1572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022]
Abstract
Contactin-associated protein 2-like (caspr2) antibodies have been discovered recently. Since then a multitude of patients with caspr2 antibodies presenting with different neurological symptoms have been reported. Here, we describe three patients with caspr2 antibodies with different types of pain/no pain in combination with peripheral neuropathy. The first patient, a 33-year-old woman, presented with erythromelalgia-like pain and autonomic symptoms; the second patient, a 58-year-old man, with paresthesia and pain while walking together with signs of peripheral motor neuron hyperexcitability in combination with optic neuritis, and the third patient, a 74-year-old man, without any pain but with polyneuropathy and encephalopathy. These cases illustrate the spectrum of symptoms in anti-caspr2 diseases. The pain in such cases can be treated causally.
Collapse
Affiliation(s)
- Erik Ellwardt
- Focus Program Translational Neurosciences (FTN), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Christian Geber
- Focus Program Translational Neurosciences (FTN), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.,DRK Schmerz-Zentrum, Mainz, Germany
| | - Johannes Lotz
- Institute of Laboratory Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Frank Birklein
- Focus Program Translational Neurosciences (FTN), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
31
|
Neurotoxicity of nanoparticles entering the brain via sensory nerve-to-brain pathways: injuries and mechanisms. Arch Toxicol 2020; 94:1479-1495. [DOI: 10.1007/s00204-020-02701-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
|
32
|
Reinhold AK, Rittner HL. Characteristics of the nerve barrier and the blood dorsal root ganglion barrier in health and disease. Exp Neurol 2020; 327:113244. [PMID: 32057794 DOI: 10.1016/j.expneurol.2020.113244] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/17/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
A variety of barriers ensures the protection of the peripheral nervous system from noxious blood-borne or surrounding stimuli. In this review, anatomy and functioning of the blood nerve barrier (BNB) and the blood DRG barrier (BDB) will be presented and key tight junction proteins described: ZO-1, claudin-1, -3, -5, -11, -12, -19, occludin, and tricellulin. Different diseases can lead to or be accompanied by nerve barrier disruption; impairment of nerve barriers in turn worsens pathology. Peripheral nerve injury, diabetic neuropathy and inflammatory polyneuropathy cause an increased permeability of BNB and BDB. Knowledge and understanding of these mechanisms might ultimately lead to the invention of drugs to control barrier function and help ameliorating neurological diseases.
Collapse
Affiliation(s)
- A K Reinhold
- Dept Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospitals Wuerzburg, Germany
| | - H L Rittner
- Dept Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospitals Wuerzburg, Germany.
| |
Collapse
|
33
|
Takenaka S, Sukenaga N, Ohmuraya M, Matsuki Y, Maeda L, Takao Y, Hirose M. Association between neuropathic pain characteristics and DNA methylation of transient receptor potential ankyrin 1 in human peripheral blood. Medicine (Baltimore) 2020; 99:e19325. [PMID: 32080151 PMCID: PMC7034692 DOI: 10.1097/md.0000000000019325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Elucidation of epigenetic mechanisms correlating with neuropathic pain in humans is crucial for the prevention and treatment of this treatment-resistant pain state. In the present study, associations between neuropathic pain characteristics and DNA methylation of the transient receptor potential ankyrin 1 (TRPA1) gene were evaluated in chronic pain patients and preoperative patients. Pain and psychological states were prospectively assessed in patients who suffered chronic pain or were scheduled for thoracic surgery. Neuropathic characteristics were assessed using the Douleur Neuropathique 4 (DN4) questionnaire. DNA methylation levels of the CpG islands in the TRPA1 gene were examined using whole blood. Forty-eight adult patients were enrolled in this study. Increases in DNA methylation rates at CpG -51 showed positive correlations with increases in the DN4 score both in preoperative and chronic pain patients. Combined methylation rates at CpG -51 in these patients also significantly increased together with increase in DN4 scores. Neuropathic pain characteristics are likely associated with methylation rates at the promoter region of the TRPA1 gene in human peripheral blood.
Collapse
Affiliation(s)
| | | | | | - Yuka Matsuki
- Department of Anesthesiology and Reanimatology, Faculty of Medicine Sciences, University of Fukui, Fukui
| | - Lynn Maeda
- Department of Anesthesiology and Pain Management, Nishinomiya Municipal Central Hospital, Hyogo, Japan
| | | | | |
Collapse
|
34
|
Laumet G, Ma J, Robison AJ, Kumari S, Heijnen CJ, Kavelaars A. T Cells as an Emerging Target for Chronic Pain Therapy. Front Mol Neurosci 2019; 12:216. [PMID: 31572125 PMCID: PMC6749081 DOI: 10.3389/fnmol.2019.00216] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
The immune system is critically involved in the development and maintenance of chronic pain. However, T cells, one of the main regulators of the immune response, have only recently become a focus of investigations on chronic pain pathophysiology. Emerging clinical data suggest that patients with chronic pain have a different phenotypic profile of circulating T cells compared to controls. At the preclinical level, findings on the function of T cells are mixed and differ between nerve injury, chemotherapy, and inflammatory models of persistent pain. Depending on the type of injury, the subset of T cells and the sex of the animal, T cells may contribute to the onset and/or the resolution of pain, underlining T cells as a major player in the transition from acute to chronic pain. Specific T cell subsets release mediators such as cytokines and endogenous opioid peptides that can promote, suppress, or even resolve pain. Inhibiting the pain-promoting functions of T cells and/or enhancing the beneficial effects of pro-resolution T cells may offer new disease-modifying strategies for the treatment of chronic pain, a critical need in view of the current opioid crisis.
Collapse
Affiliation(s)
- Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States.,Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jiacheng Ma
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Susmita Kumari
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|