1
|
Lacroix A, Martiné-Fabre G, Plansont B, Buisson A, Guignandon S, Rozette M, Caire F, Calvet B. Predictors for quality of life improvement following rTMS treatment in neuropathic pain patients. Neurol Sci 2025; 46:1359-1367. [PMID: 39602015 DOI: 10.1007/s10072-024-07813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVES Recently, Repetitive Transcranial Magnetic Stimulation (rTMS) has gained attention for its potential in relieving neuropathic pain (NP). NP encompasses central and peripheral neuralgia, characterized by sensory abnormalities and spontaneous pain. Pharmacological treatments often provide partial relief with significant side effects, making rTMS an attractive alternative. This study aimed to assess the efficacy of rTMS in treating NP and its impact on quality of life over three months. METHODS A total of 51 patients with drug-resistant NP were included, undergoing 15 sessions of rTMS targeting motor cortex areas over three weeks. Clinical response was evaluated using various psychometric scales, including VAS for pain and PGIC. Quality of life was assessed using the SF-36 questionnaire. RESULTS Results showed significant clinical improvements in pain severity and quality of life following rTMS treatment. Predictive factors of quality of life improvement were identified, with mental health being crucial across all NP areas. Notably, patients with cerebral NP showed improvements linked to physical dimensions, emphasizing tailored treatment approaches. CONCLUSIONS This study underscores the efficacy of rTMS in managing NP, highlighting sustained improvements in pain severity and quality of life. The findings offer valuable insights for personalized treatment approaches and optimizing patient outcomes in NP management.
Collapse
Affiliation(s)
- Aurélie Lacroix
- EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, OmegaHealth, Limoges, France.
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France.
| | - Gaëlle Martiné-Fabre
- Pain Center, CHU Limoges, Limoges, France
- Pain Center, Polyclinic Chénieux, Limoges, France
| | - Brigitte Plansont
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France
| | - Alexandre Buisson
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France
| | - Sandrine Guignandon
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France
| | | | - François Caire
- Department of Neurosurgery, CHU Limoges, Limoges, France
| | - Benjamin Calvet
- EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, OmegaHealth, Limoges, France
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France
| |
Collapse
|
2
|
Shehab S, Hamad MIK, Emerald BS. A novel approach to completely alleviate peripheral neuropathic pain in human patients: insights from preclinical data. Front Neuroanat 2025; 18:1523095. [PMID: 39839257 PMCID: PMC11747518 DOI: 10.3389/fnana.2024.1523095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
Neuropathic pain is a pervasive health concern worldwide, posing significant challenges to both clinicians and neuroscientists. While acute pain serves as a warning signal for potential tissue damage, neuropathic pain represents a chronic pathological condition resulting from injury or disease affecting sensory pathways of the nervous system. Neuropathic pain is characterized by long-lasting ipsilateral hyperalgesia (increased sensitivity to pain), allodynia (pain sensation in response to stimuli that are not normally painful), and spontaneous unprovoked pain. Current treatments for neuropathic pain are generally inadequate, and prevention remains elusive. In this review, we provide an overview of current treatments, their limitations, and a discussion on the potential of capsaicin and its analog, resiniferatoxin (RTX), for complete alleviation of nerve injury-induced neuropathic pain. In an animal model of neuropathic pain where the fifth lumbar (L5) spinal nerve is unilaterally ligated and cut, resulting in ipsilateral hyperalgesia, allodynia, and spontaneous pain akin to human neuropathic pain. The application of capsaicin or RTX to the adjacent uninjured L3 and L4 nerves completely alleviated and prevented mechanical and thermal hyperalgesia following the L5 nerve injury. The effects of this treatment were specific to unmyelinated fibers (responsible for pain sensation), while thick myelinated nerve fibers (responsible for touch and mechanoreceptor sensations) remained intact. Here, we propose to translate these promising preclinical results into effective therapeutic interventions in humans by direct application of capsaicin or RTX to adjacent uninjured nerves in patients who suffer from neuropathic pain due to peripheral nerve injury, following surgical interventions, diabetic neuropathy, trauma, vertebral disc herniation, nerve entrapment, ischemia, postherpetic lesion, and spinal cord injury.
Collapse
Affiliation(s)
- Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | |
Collapse
|
3
|
Thomas J, Fauchon C, Oriol N, Vassal F, Créac'h C, Quesada C, Peyron R. Effects of multiple transcranial magnetic stimulation sessions on pain relief in patients with chronic neuropathic pain: A French cohort study in real-world clinical practice. Eur J Pain 2025; 29:e4763. [PMID: 39655628 PMCID: PMC11629460 DOI: 10.1002/ejp.4763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Current clinical trials indicate that repetitive transcranial magnetic stimulation (rTMS) is effective in reducing drug-resistant neuropathic pain (NP). However, there is a lack of studies evaluating the long-term feasibility and clinical efficacy of rTMS in large patient cohorts in real-world conditions. METHODS In this retrospective cohort study, we analysed 12 years of clinical data to assess the long-term analgesic effects of 20 Hz rTMS over the primary motor cortex in patients with NP. Subgroup analyses were conducted to identify predictive factors and assess the potential role of epidural motor cortex stimulation (eMCS) as a sustained solution. RESULTS In total, 193 patients completed test period of 4 rTMS sessions and 42% of them reported a pain relief (PR) greater than 30%, with concurrent improvement in their most disabling symptom. Iterative rTMS sessions maintained analgesic effects over 10 years in certain patients identified as responders (≥10% PR) without adverse effects. Success probability was higher in patients with central NP compared to peripheral NP (OR = 2.03[1.04;4.00]), and among those with central post-stroke pain, this probability was higher in ischemic versus hemorrhagic strokes (OR = 3.36[1.17;10.05]). PR obtained with iterative rTMS sessions was an excellent predictor of eMCS efficacy. CONCLUSIONS While rTMS shows promise as a therapeutic option for some patients with drug-resistant NP, it does not benefit all patients. Efficacy varies by NP aetiology, aiding patient selection. For responders, eMCS may offer a permanent solution. These findings support a tailored approach to rTMS in NP management, while recognizing both its potential and limitations across diverse patient profiles. SIGNIFICANCE STATEMENT Multiple rTMS sessions demonstrate long-term efficacy and safety in treating drug-resistant neuropathic pain. Extending session numbers for the test period can enhance responder identification, especially in patients with initial low pain relief. This identification refines patient selection for neurosurgery, reducing non-responders. Central neuropathic pain shows higher success rates than peripheral. For post-stroke central pain, patients with ischemic stroke are more likely to respond than those with hemorrhagic stroke. These results support integrating rTMS into clinical practice for managing neuropathic pain.
Collapse
Affiliation(s)
- Joy Thomas
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
| | - Camille Fauchon
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
| | - Nicolas Oriol
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
- Centre Stéphanois de la Douleur et Département de NeurologieCentre Hospitalier Régional Universitaire de Saint‐EtienneSaint‐EtienneFrance
| | - François Vassal
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
- Service de NeurochirurgieCentre Hospitalier Régional Universitaire de Saint‐EtienneSaint‐EtienneFrance
| | - Christelle Créac'h
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
- Centre Stéphanois de la Douleur et Département de NeurologieCentre Hospitalier Régional Universitaire de Saint‐EtienneSaint‐EtienneFrance
| | - Charles Quesada
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
| | - Roland Peyron
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
- Centre Stéphanois de la Douleur et Département de NeurologieCentre Hospitalier Régional Universitaire de Saint‐EtienneSaint‐EtienneFrance
| |
Collapse
|
4
|
Kontor EK, Wellan C, Maaz HM, Muhammad DG, Al-Qiami A, Sharifan A, Kumah J, Lacey H, Siddiq A, Jain N. Emerging Therapeutic Modalities and Pharmacotherapies in Neuropathic Pain Management: A Systematic Review and Meta-Analysis of Parallel Randomized Controlled Trials. Pain Res Manag 2024; 2024:6782574. [PMID: 39748928 PMCID: PMC11695085 DOI: 10.1155/prm/6782574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/23/2024] [Indexed: 01/04/2025]
Abstract
Background: Neuropathic pain (NP) is a chronic condition caused by abnormal neuronal excitability in the nervous system. Current treatments for NP are often ineffective or poorly tolerated. Hence, we reviewed the efficacy and safety of novel drugs or devices that target neuronal excitability in NP patients compared with placebo, sham, or usual care interventions. Methods: Six databases were searched for parallel randomized controlled trials (RCTs) reporting novel devices (rTMS, SCS, and TENS) or drugs (EMA401, capsaicin 8% patch, and Sativex) for NP. Data were extracted and quality was assessed using the ROB2 tool. The random-effects inverse variance method was used for analysis. Results: In our review of 30 RCTs with 4251 participants, device-based interventions were found to be more effective in reducing pain scores than control interventions (SMD = -1.27, 95% CI: -1.92 to -0.62). However, high heterogeneity was seen (p < 0.01, I 2 = 91%), attributable to the etiology of NP (R 2 = 58.84%) and year of publication (R 2 = 49.49%). Funding source and type of control comparator were ruled out as cause of heterogeneity. Although drug interventions did not differ from placebo interventions in absolute pain reduction (SMD = -1.21, 95% CI: -3.55 to 1.13), when comparing relative change in pain intensity from baseline, drug interventions were found to be effective (SMD = 0.29, 95% CI: 0.04-0.55). Asymmetry in the funnel plot was visualized, suggesting publication bias. Certainty of evidence was very low according to GRADE assessment. Conclusions: Our review indicates that device-based interventions are more effective than control interventions in reducing pain intensity in NP. Nevertheless, available evidence is limited due to heterogeneity and publication bias, prompting the need for more high-quality RCTs to confirm the efficacy and safety of these interventions.
Collapse
Affiliation(s)
- Ernest Kissi Kontor
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Daha Garba Muhammad
- Department of Physiotherapy, Bauchi State Ministry of Health, Bauchi, Nigeria
| | - Almonzer Al-Qiami
- Faculty of Medicine, Kassala University, P.O. Box 1115, Kassala, Sudan
| | - Amin Sharifan
- Department for Evidence-Based Medicine and Evaluation, Universität für Weiterbildung Krems, Dr. Karl Dorrekstrasse 30, Krems 3500, Austria
| | - Jessica Kumah
- Department of Occupational and Environmental Public Health, University of Toronto, Toronto, Canada
| | - Hester Lacey
- Faculty of Medicine, Brighton and Sussex Medical School, University of Sussex, 94 N-S Rd, Falmer, Brighton BN1 9PX, UK
| | | | - Nityanand Jain
- Statistics Unit, Riga Stradinš University, 16 Dzirciema Street, Riga LV-1007, Latvia
| |
Collapse
|
5
|
Liberati G. Advancements in noninvasive brain stimulation: exploring repetitive transcranial magnetic stimulation of the posterior superior insula for pain relief. Pain 2024:00006396-990000000-00791. [PMID: 39679648 DOI: 10.1097/j.pain.0000000000003489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/17/2024]
Affiliation(s)
- Giulia Liberati
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
da Cunha PHM, Lapa JDDS, Hosomi K, de Andrade DC. Neuromodulation for neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:471-502. [PMID: 39580221 DOI: 10.1016/bs.irn.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The treatment of neuropathic pain (NeP) often leads to partial or incomplete pain relief, with up to 40 % of patients being pharmaco-resistant. In this chapter the efficacy of neuromodulation techniques in treating NeP is reviewed. It presents a detailed evaluation of the mechanisms of action and evidence supporting the clinical use of the most common approaches like transcutaneous electrical nerve stimulation (TENS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation (DBS), invasive motor cortex stimulation (iMCS), spinal cord stimulation (SCS), dorsal root ganglion stimulation (DRG-S), and peripheral nerve stimulation (PNS). Current literature suggests that motor cortex rTMS is effective for peripheral and central NeP, and TENS for peripheral NeP. Evidence for tDCS is inconclusive. DBS is reserved for research settings due to heterogeneous results, while iMSC has shown efficacy in a small randomized trial in neuropathic pain due to stroke and brachial plexus avulsion. SCS has moderate evidence for painful diabetic neuropathy and failed back surgery syndrome, but trials were not controlled with sham. DRG-S and PNS have shown positive results for complex regional pain syndrome and post-surgical neuropathic pain, respectively. Adverse effects vary, with non-invasive techniques showing local discomfort, dizziness and headache, and DBS and SCS hardware-related issues. To date, non-invasive techniques have been more extensively studied and some are included in international guidelines, while the evidence level for invasive techniques are less robust, potentially suggesting their use in a case-by-case indication considering patient´s preferences, costs and expected benefits.
Collapse
Affiliation(s)
| | | | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
7
|
Langford DJ, Mark RP, France FO, Nishtar M, Park M, Sharma S, Shklyar IC, Schnitzer TJ, Conaghan PG, Amtmann D, Reeve BB, Turk DC, Dworkin RH, Gewandter JS. Use of patient-reported global assessment measures in clinical trials of chronic pain treatments: ACTTION systematic review and considerations. Pain 2024; 165:2445-2454. [PMID: 38743561 DOI: 10.1097/j.pain.0000000000003270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
ABSTRACT Establishing clinically meaningful changes in pain experiences remains important for clinical trials of chronic pain treatments. Regulatory guidance and pain measurement initiatives have recommended including patient-reported global assessment measures (eg, Patient-Global Impression of Change [PGIC]) to aid interpretation of within-patient differences in domain-specific clinical trial outcomes (eg, pain intensity). The objectives of this systematic review were to determine the frequency of global assessment measures inclusion, types of measures, domains assessed, number and types of response options, and how measures were analyzed. Of 4172 abstracts screened across 6 pain specialty journals, we reviewed 96 clinical trials of chronic pain treatments. Fifty-two (54.2%) studies included a global assessment measure. The PGIC was most common (n = 28; 53.8%), with relatively infrequent use of other measures. The majority of studies that used a global assessment measure (n = 31; 59.6%) assessed change or improvement in an unspecified domain. Others assessed overall condition severity (n = 9; 17.3%), satisfaction (n = 8; 15.4%), or overall health status/recovery (n = 5; 9.6%). The number, range, and type of response options were variable and frequently not reported. Response options and reference periods even differed within the PGIC. Global assessment measures were most commonly analyzed as continuous variables (n = 24; 46.2%) or as dichotomous variables with positive categories combined to calculate the proportion of participants with a positive response to treatment (n = 18; 34.6%). This review highlights the substantial work necessary to clarify measurement and use of patient global assessment in chronic pain trials and provides short- and long-term considerations for measure selection, reporting and analysis, and measure development.
Collapse
Affiliation(s)
- Dale J Langford
- Department of Anesthesiology, Critical Care and Pain Management, Pain Prevention Research Center at Hospital for Special Surgery, New York, NY, United States
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, United States
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Remington P Mark
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, United States
| | - Fallon O France
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, United States
| | - Mahd Nishtar
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, United States
| | - Meghan Park
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, United States
| | - Sonia Sharma
- Department of Neurosurgery, Neuro Pain Management Center, University of Rochester, Rochester, NY, United States
| | - Isabel C Shklyar
- Department of Anesthesiology, Critical Care and Pain Management, Pain Prevention Research Center at Hospital for Special Surgery, New York, NY, United States
- College of Liberal Arts, The University of Texas at Austin, Austin, TX, United States
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom
| | - Dagmar Amtmann
- Department or Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Bryce B Reeve
- Department of Population Health Sciences, Center for Health Measurement, Duke University School of Medicine, Durham, NC, United States
| | - Dennis C Turk
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Robert H Dworkin
- Department of Anesthesiology, Critical Care and Pain Management, Pain Prevention Research Center at Hospital for Special Surgery, New York, NY, United States
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, United States
| | - Jennifer S Gewandter
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, United States
| |
Collapse
|
8
|
Yang Y, Xia C, Xu Z, Hu Y, Huang M, Li D, Zheng Y, Li Y, Xu F, Wang J. rTMS applied to the PFC relieves neuropathic pain and modulates neuroinflammation in CCI rats. Neuroscience 2024; 554:137-145. [PMID: 38992566 DOI: 10.1016/j.neuroscience.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
The study aimed to assess the analgesic effect of 10 Hz repetitive transcranial magnetic stimulation (rTMS) targeted to the prefrontal cortex (PFC) region on neuropathic pain (NPP) in rats with chronic constriction injury (CCI) of the sciatic nerve, and to investigate the possible underlying mechanism. Rats were randomly divided into three groups: sham operation, CCI, and rTMS. In the latter group, rTMS was applied to the left PFC. Von Frey fibres were used to measure the paw withdrawal mechanical threshold (PWMT). At the end of the treatment, immunofluorescence and western blotting were applied to detect the expression of M1 and M2 polarisation markers in microglia in the left PFC and sciatic nerve. ELISA was further used to detect the concentrations of inflammation-related cytokines. The results showed that CCI caused NPP in rats, reduced the pain threshold, promoted microglial polarisation to the M1 phenotype, and increased the secretion of pro-inflammatory and anti-inflammatory factors. Moreover, 10 Hz rTMS to the PFC was shown to improve NPP induced by CCI, induce microglial polarisation to M2, reduce the secretion of pro-inflammatory factors, and further increase the secretion of anti-inflammatory factors. Our data suggest that 10 Hz rTMS can alleviate CCI-induced neuropathic pain, while the underlying mechanism may potentially be related to the regulation of microglial M1-to-M2-type polarisation to regulate neuroinflammation.
Collapse
Affiliation(s)
- Yue Yang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Cuihong Xia
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Zhangyu Xu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China
| | - Yue Hu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China
| | - Maomao Huang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China
| | - Dan Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China
| | - Yadan Zheng
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Yang Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Fangyuan Xu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China.
| | - Jianxiong Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China.
| |
Collapse
|
9
|
Zhou J, Wang Y, Luo X, Fitzgerald PB, Cash RFH, Fitzgibbon BM, Che X. Revisiting the effects of rTMS over the dorsolateral prefrontal cortex on pain: An updated systematic review and meta-analysis. Brain Stimul 2024; 17:928-937. [PMID: 39089648 DOI: 10.1016/j.brs.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Our previous study synthesized the analgesic effects of repetitive Transcranial Magnetic Stimulation (rTMS) over the dorsolateral prefrontal cortex (DLPFC) trials up to 2019. There has been a significant increase in pain trials in the past few years, along with methodological variabilities such as sample size, stimulation intensity, and rTMS paradigms. OBJECTIVES/METHODS This study therefore updated the effects of DLPFC-rTMS on chronic pain and quantified the impact of methodological differences across studies. RESULTS A total of 36 studies were included. Among them, 26 studies were clinical trials (update = 9, 307/711 patients), and 10 (update = 1, 34/249 participants) were provoked pain studies. The updated meta-analysis does not support an effect on neuropathic pain after including the additional trials (pshort-term = 0.20, pmid-term = 0.50). However, there is medium-to-large analgesic effect in migraine trials extending up to six weeks follow-up (SMDmid-term = -0.80, SMDlong-term = -0.51), that was not previously reported. Methodological differences wthine the studies were considered. DLPFC-rTMS also induces potential improvement in the emotional aspects of pain (SMDshort-term = -0.28). CONCLUSIONS The updated systematic meta-analysis continues to support analgesic effects for chronic pain overall. However, the updated results no longer support DLPFC-rTMS for pain relief in neuropathic pain, and do supports DLPFC-rTMS in the management of migraine. There is also evidence for DLPFC-rTMS to improve emotional aspects of pain.
Collapse
Affiliation(s)
- Jie Zhou
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xi Luo
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Paul B Fitzgerald
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Australia; Monarch Research Institute, Monarch Mental Health Group, Australia
| | - Robin F H Cash
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia
| | - Bernadette M Fitzgibbon
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Australia; Monarch Research Institute, Monarch Mental Health Group, Australia
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
10
|
Mori N, Hosomi K, Nishi A, Miyake A, Yamada T, Matsugi A, Jono Y, Lim C, Khoo HM, Tani N, Oshino S, Saitoh Y, Kishima H. Repetitive transcranial magnetic stimulation focusing on patients with neuropathic pain in the upper limb: a randomized sham-controlled parallel trial. Sci Rep 2024; 14:11811. [PMID: 38782994 PMCID: PMC11116497 DOI: 10.1038/s41598-024-62018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
This study aimed to evaluate the efficacy and safety of navigation-guided repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex in patients with neuropathic pain in the upper limb. This randomized, blinded, sham-controlled, parallel trial included a rTMS protocol (10-Hz, 2000 pulses/session) consisting of five daily sessions, followed by one session per week for the next seven weeks. Pain intensity, as well as pain-related disability, quality of life, and psychological status, were assessed. For the primary outcome, pain intensity was measured daily using a numerical rating scale as a pain diary. Thirty patients were randomly assigned to the active rTMS or sham-stimulation groups. In the primary outcome, the decrease (least square [LS] mean ± standard error) in the weekly average of a pain diary at week 9 compared to the baseline was 0.84 ± 0.31 in the active rTMS group and 0.58 ± 0.29 in the sham group (LS mean difference, 0.26; 95% confidence interval, - 0.60 to 1.13). There was no significant effect on the interaction between the treatment group and time point. Pain-related disability score improved, but other assessments showed no differences. No serious adverse events were observed. This study did not show significant pain relief; however, active rTMS tended to provide better results than sham. rTMS has the potential to improve pain-related disability in addition to pain relief.Clinical Trial Registration number: jRCTs052190110 (20/02/2020).
Collapse
Affiliation(s)
- Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Neurosurgery, Toyonaka Municipal Hospital, Toyonaka, Japan.
| | - Asaya Nishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akimitsu Miyake
- Department of Medical Innovation, Osaka University Hospital, Suita, Japan
- Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomomi Yamada
- Department of Medical Innovation, Osaka University Hospital, Suita, Japan
| | - Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou, Japan
| | - Yasutomo Jono
- Faculty of Health Sciences, Naragakuen University, Nara, Japan
| | - Chanseok Lim
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Suita, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
- Tokuyukai Rehabilitation Clinic, Toyonaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Naik A, Bah M, Govande M, Palsgaard P, Dharnipragada R, Shaffer A, Air EL, Cramer SW, Croarkin PE, Arnold PM. Optimal Frequency in Repetitive Transcranial Magnetic Stimulation for the Management of Chronic Pain: A Network Meta-Analysis of Randomized Controlled Trials. World Neurosurg 2024; 184:e53-e64. [PMID: 38185460 DOI: 10.1016/j.wneu.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE Repetitive Transcranial Magnetic Stimulation (rTMS) has been shown to be effective for pain modulation in a variety of pathological conditions causing neuropathic pain. The purpose of this study is to conduct a network meta-analysis (NMA) of randomized control trials to identify the most optimal frequency required to achieve chronic pain modulation using rTMS. METHODS A comprehensive search was conducted in electronic databases to identify randomized controlled trials investigating the efficacy of rTMS for chronic pain management. A total of 24 studies met the inclusion criteria, and a NMA was conducted to identify the most effective rTMS frequency for chronic pain management. RESULTS Our analysis revealed that high frequency rTMS (20 Hz) was the most effective frequency for chronic pain modulation. Patients treated with 20 Hz had lower pain levels than those treated at 5 Hz (mean difference [MD] = -3.11 [95% confidence interval {CI}: -5.61 - -0.61], P = 0.032) and control (MD = -1.99 [95% CI: -3.11 - -0.88], P = 0.023). Similarly, treatment with 10 Hz had lower pain levels compared to 5 Hz (MD = -2.56 [95% CI: -5.05 - -0.07], P = 0.045) and control (MD = -1.44 [95% CI: -2.52 - -0.36], P = 0.031). 20 Hz and 10 Hz were not statistically different. CONCLUSIONS This NMA suggests that high frequency rTMS (20 Hz) is the most optimal frequency for chronic pain modulation. These findings have important clinical implications and can guide healthcare professionals in selecting the most effective frequency for rTMS treatment in patients with chronic pain.
Collapse
Affiliation(s)
- Anant Naik
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Momodou Bah
- College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Mukul Govande
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA
| | - Peggy Palsgaard
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA
| | - Rajiv Dharnipragada
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Annabelle Shaffer
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA
| | - Ellen L Air
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Samuel W Cramer
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul M Arnold
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, Illinois, USA
| |
Collapse
|
12
|
Wang Y, Tan B, Shi S, Ye Y, Che X. Dopamine D2 receptor antagonist modulates rTMS-induced pain experiences and corticospinal excitability dependent on stimulation targets. Int J Clin Health Psychol 2024; 24:100413. [PMID: 37954401 PMCID: PMC10632113 DOI: 10.1016/j.ijchp.2023.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 11/14/2023] Open
Abstract
Both the primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) rTMS have the potential to reduce certain chronic pain conditions. However, the analgesic mechanisms remain unclear, in which M1- and DLPFC-rTMS may have different impact on the release of dopamine receptor D2 neurotransmissions (DRD2). Using a double-blind, randomised, sham- and placebo-controlled design, this study investigated the influence of DRD2 antagonist on rTMS-induced analgesia and corticospinal excitability across the M1 and DLPFC. Healthy participants in each group (M1, DLPFC, or Sham) received an oral dose of chlorpromazine or placebo before the delivery of rTMS in two separate sessions. Heat pain and cortical excitability were assessed before drug administration and after rTMS intervention. DRD2 antagonist selectively abolished the increased heat pain threshold induced by DLPFC stimulation and increased pain unpleasantness. The absence of analgesic effects in DLPFC stimulation was not accompanied by plastic changes in the corticospinal pathway. In contrast, DRD2 antagonist increased corticospinal excitability and rebalanced excitation-inhibition relationship following motor cortex stimulation, although there were no clear changes in pain experiences. These novel findings together highlight the influence of dopaminergic neurotransmission on rTMS-induced analgesia and corticospinal excitability dependent on stimulation targets.
Collapse
Affiliation(s)
- Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Bolin Tan
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuyan Shi
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yang Ye
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- TMS Centre, Deqing Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Yang T, Li X, Xia P, Wang X, Lu J, Wang L. Effects of rTMS combined with rPMS on stroke patients with arm paralysis after contralateral seventh cervical nerve transfer: a case-series. Int J Neurosci 2023; 133:999-1007. [PMID: 35094616 DOI: 10.1080/00207454.2022.2032044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/25/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVE We conducted this study to evaluate the effect of rTMS combined with rPMS on stroke patients with arm paralysis after CSCNTS. METHODS A case-series of four stroke patients with arm paralysis, ages ranging from 39 to 51 years, that underwent CSCNTS was conducted. Patients were treated with 10 HZ rTMS on the contralesional primary motor cortex combined with 20 HZ rPMS on groups of elbow and wrist muscles for 15 days. RESULTS The muscle tone of elbow flexor muscle (EFM), elbow extensor muscle (EEM), wrist flexor muscle (WFM) and flexor digitorum (FD) reduced immediately after operation followed by increasing gradually. After rehabilitation, the muscle tone of EEM and EFM reduced by 14% and 11%, respectively. There was a 13% and 45% change ratio in WFM and FD. The numeric rating scale (mean = 5.75 ± 1.71) was significantly lower (mean = 3.25 ± 1.90, t = 8.66, p = .00). Grip and pinch strength (mean = 23.65 ± 4.91; mean = 4.9 ± 0.59) were significantly higher (mean = 34.63 ± 5.23, t = -61.07, p = .00; mean = 7.1 ± 0.73, t = -13.91, p = .00). CONCLUSIONS The rehabilitation of stroke patients with arm paralysis after CSCNTS is a long, complicated process which includes great change of neuropathic pain, muscle tone, and muscle strength. In order to enhance the neural connection between the contralesional hemisphere and the hemiplegic limb, alleviate postoperative complications, as well as accelerate the rehabilitation process, we can consider to use rTMS combined with rPMS.
Collapse
Affiliation(s)
- Ting Yang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoju Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianqiang Lu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lin Wang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
14
|
de Andrade DC, García-Larrea L. Beyond trial-and-error: Individualizing therapeutic transcranial neuromodulation for chronic pain. Eur J Pain 2023; 27:1065-1083. [PMID: 37596980 PMCID: PMC7616049 DOI: 10.1002/ejp.2164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) applied to the motor cortex provides supplementary relief for some individuals with chronic pain who are refractory to pharmacological treatment. As rTMS slowly enters treatment guidelines for pain relief, its starts to be confronted with challenges long known to pharmacological approaches: efficacy at the group-level does not grant pain relief for a particular patient. In this review, we present and discuss a series of ongoing attempts to overcome this therapeutic challenge in a personalized medicine framework. DATABASES AND DATA TREATMENT Relevant scientific publications published in main databases such as PubMed and EMBASE from inception until March 2023 were systematically assessed, as well as a wide number of studies dedicated to the exploration of the mechanistic grounds of rTMS analgesic effects in humans, primates and rodents. RESULTS The main strategies reported to personalize cortical neuromodulation are: (i) the use of rTMS to predict individual response to implanted motor cortex stimulation; (ii) modifications of motor cortex stimulation patterns; (iii) stimulation of extra-motor targets; (iv) assessment of individual cortical networks and rhythms to personalize treatment; (v) deep sensory phenotyping; (vi) personalization of location, precision and intensity of motor rTMS. All approaches except (i) have so far low or moderate levels of evidence. CONCLUSIONS Although current evidence for most strategies under study remains at best moderate, the multiple mechanisms set up by cortical stimulation are an advantage over single-target 'clean' drugs, as they can influence multiple pathophysiologic paths and offer multiple possibilities of individualization. SIGNIFICANCE Non-invasive neuromodulation is on the verge of personalised medicine. Strategies ranging from integration of detailed clinical phenotyping into treatment design to advanced patient neurophysiological characterisation are being actively explored and creating a framework for actual individualisation of care.
Collapse
Affiliation(s)
- Daniel Ciampi de Andrade
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Luís García-Larrea
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
15
|
Garcia-Larrea L. Non-invasive cortical stimulation for drug-resistant pain. Curr Opin Support Palliat Care 2023; 17:142-149. [PMID: 37339516 DOI: 10.1097/spc.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
PURPOSE OF REVIEW Neuromodulation techniques are being increasingly used to alleviate pain and enhance quality of life. Non-invasive cortical stimulation was originally intended to predict the efficacy of invasive (neurosurgical) techniques, but has now gained a place as an analgesic procedure in its own right. RECENT FINDINGS Repetitive transcranial magnetic stimulation (rTMS): Evidence from 14 randomised, placebo-controlled trials (~750 patients) supports a significant analgesic effect of high-frequency motor cortex rTMS in neuropathic pain. Dorsolateral frontal stimulation has not proven efficacious so far. The posterior operculo-insular cortex is an attractive target but evidence remains insufficient. Short-term efficacy can be achieved with NNT (numbers needed to treat) ~2-3, but long-lasting efficacy remains a challenge.Like rTMS, transcranial direct-current stimulation (tDCS) induces activity changes in distributed brain networks and can influence various aspects of pain. Lower cost relative to rTMS, few safety issues and availability of home-based protocols are practical advantages. The limited quality of many published reports lowers the level of evidence, which will remain uncertain until more prospective controlled studies are available. SUMMARY Both rTMS and tDCS act preferentially upon abnormal hyperexcitable states of pain, rather than acute or experimental pain. For both techniques, M1 appears to be the best target for chronic pain relief, and repeated sessions over relatively long periods of time may be required to obtain clinically significant benefits. Patients responsive to tDCS may differ from those improved by rTMS.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Centre for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne
- University Hospital Pain Centre (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
16
|
Bai YW, Yang QH, Chen PJ, Wang XQ. Repetitive transcranial magnetic stimulation regulates neuroinflammation in neuropathic pain. Front Immunol 2023; 14:1172293. [PMID: 37180127 PMCID: PMC10167032 DOI: 10.3389/fimmu.2023.1172293] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Neuropathic pain (NP) is a frequent condition caused by a lesion in, or disease of, the central or peripheral somatosensory nervous system and is associated with excessive inflammation in the central and peripheral nervous systems. Repetitive transcranial magnetic stimulation (rTMS) is a supplementary treatment for NP. In clinical research, rTMS of 5-10 Hz is widely placed in the primary motor cortex (M1) area, mostly at 80%-90% RMT, and 5-10 treatment sessions could produce an optimal analgesic effect. The degree of pain relief increases greatly when stimulation duration is greater than 10 days. Analgesia induced by rTMS appears to be related to reestablishing the neuroinflammation system. This article discussed the influences of rTMS on the nervous system inflammatory responses, including the brain, spinal cord, dorsal root ganglia (DRG), and peripheral nerve involved in the maintenance and exacerbation of NP. rTMS has shown an anti-inflammation effect by decreasing pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and increasing anti-inflammatory cytokines, including IL-10 and BDNF, in cortical and subcortical tissues. In addition, rTMS reduces the expression of glutamate receptors (mGluR5 and NMDAR2B) and microglia and astrocyte markers (Iba1 and GFAP). Furthermore, rTMS decreases nNOS expression in ipsilateral DRGs and peripheral nerve metabolism and regulates neuroinflammation.
Collapse
Affiliation(s)
- Yi-Wen Bai
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
17
|
Wang H, Hu YZ, Che XW, Yu L. Motor cortex transcranial magnetic stimulation to reduce intractable postherpetic neuralgia with poor response to other threapies: Report of two cases. World J Clin Cases 2023; 11:2015-2020. [PMID: 36998964 PMCID: PMC10044954 DOI: 10.12998/wjcc.v11.i9.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Postherpetic neuralgia (PHN) is a typical neuropathic pain condition that appears in the lesioned skin regions following the healing of shingles. The pain condition tends to persist, which is often accompanied by negative emotions (e.g., anxiety and depression) and substantially reduces the quality of life. In addition to analgesia (e.g., pregabalin and gabapentin), nerve radiofrequency technology is an effective treatment for intractable PHN. However, there is still a significant portion of patients who do not benefit from this treatment. As a non-invasive form of brain stimulation, repetitive transcranial magnetic stimulation (rTMS) targeting the motor cortex is able to reduce neuropathic pain with grade A evidence.
CASE SUMMARY Here we report two cases in which motor cortex rTMS was used to treat intractable PHN that did not respond to initial drug and radiofrequency therapies. Moreover, we specifically investigated rTMS efficacy at 3 mo following treatment.
CONCLUSION Motor cortex rTMS can treat intractable PHN that did not respond to initial drug and radiofrequency therapies.
Collapse
Affiliation(s)
- Huan Wang
- Department of Anesthesiology, Zhejiang Chinese Medicine University, Hangzhou 310000, Zhejiang Province, China
| | - Yu-Zhong Hu
- Department of Anesthesiology, Zhejiang Chinese Medicine University, Hangzhou 310000, Zhejiang Province, China
| | - Xian-Wei Che
- Transcranial Magnetic Stimulation Centre, Deqing Hospital of Hangzhou Normal University, Hangzhou 310000, Zhejiang Province, China
| | - Liang Yu
- Department of Anesthesiology, Zhejiang Chinese Medicine University, Hangzhou 310000, Zhejiang Province, China
- Department of Pain, Hangzhou First People's Hospital, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
18
|
Cheng M, Che X, Ye Y, He C, Yu L, Lv Y, Fitzgerald PB, Cash RFH, Fitzgibbon BM. Analgesic efficacy of theta-burst stimulation for postoperative pain. Clin Neurophysiol 2023; 149:81-87. [PMID: 36933324 DOI: 10.1016/j.clinph.2023.02.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) may be a relevant method to assist postoperative pain. However, studies to date have only used conventional 10 Hz rTMS and targeted the DLPFC for postoperative pain. A more recent form of rTMS, termed intermittent Theta Burst Stimulation (iTBS), enables to increase cortical excitability in a short period of time. This preliminary double-blind, randomised, sham controlled study was designed to evaluate the efficacy of iTBS in postoperative care across two distinct stimulation targets. METHODS A group of 45 patients post laparoscopic surgery were randomised to receive a single session of iTBS over either the dorsolateral prefrontal cortex (DLPFC), primary motor cortex (M1), or Sham stimulation (1:1:1 ratio). Outcome measurements were number of pump attempts, total anaesthetic volume used, and self-rated pain experience, assessed at 1 hour, 6 hours, 24 hours, and 48 hours post stimulation. All randomised patients were analysed (n = 15 in each group). RESULTS Compared to Sham stimulation, DLPFC-iTBS reduced pump attempts at 6 (DLPFC = 0.73 ± 0.88, Sham = 2.36 ± 1.65, P = 0.031), 24 (DLPFC = 1.40 ± 1.24, Sham = 5.03 ± 3.87, P = 0.008), and 48 (DLPFC = 1.47 ± 1.41, Sham = 5.87 ± 4.34, P = 0.014) hours post-surgery, whereby M1 stimulation had no effect. No group effect was observed on total anaesthetics, which was mainly provided through the continuous administration of opioids at a set speed for each group. There was also no group or interaction effect on pain ratings. Pump attempts were positively associated with pain ratings in the DLPFC (r = 0.59, P = 0.02) and M1 (r = 0.56, P = 0.03) stimulation. CONCLUSIONS Our findings show that iTBS to the DLPFC reduces pump attempts for additional anaesthetics following a laparoscopic surgery. However, reduced pump attempts by DLPFC stimulation did not translate into a significantly smaller volume of total anaesthetic, due to the continuous administration of opioids at a set speed for each group. SIGNIFICANCE Our findings therefore provide preliminary evidence for iTBS targeting the DLPFC to be used to improve postoperative pain management.
Collapse
Affiliation(s)
- Ming Cheng
- Anaesthesiologic Department, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.
| | - Yang Ye
- Centre for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Changlin He
- Anaesthesiologic Department, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Liang Yu
- Department of Pain, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yating Lv
- Centre for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Paul B Fitzgerald
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Australia
| | - Robin F H Cash
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia; Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Bernadette M Fitzgibbon
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Australia; Monarch Research Institute, Monarch Mental Health Group, Australia; Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
19
|
André-Obadia N, Hodaj H, Hodaj E, Simon E, Delon-Martin C, Garcia-Larrea L. Better Fields or Currents? A Head-to-Head Comparison of Transcranial Magnetic (rTMS) Versus Direct Current Stimulation (tDCS) for Neuropathic Pain. Neurotherapeutics 2023; 20:207-219. [PMID: 36266501 PMCID: PMC10119368 DOI: 10.1007/s13311-022-01303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 10/24/2022] Open
Abstract
While high-frequency transcranial magnetic stimulation (HF-rTMS) is now included in the armamentarium to treat chronic neuropathic pain (NP), direct-current anodal stimulation (a-tDCS) to the same cortical targets may represent a valuable alternative in terms of feasibility and cost. Here we performed a head-to-head, randomized, single-blinded, cross-over comparison of HF-rTMS versus a-tDCS over the motor cortex in 56 patients with drug-resistant NP, who received 5 daily sessions of each procedure, with a washout of at least 4 weeks. Daily scores of pain, sleep, and fatigue were obtained during 5 consecutive weeks, and functional magnetic resonance imaging (fMRI) to a motor task was performed in a subgroup of 31 patients. The percentage of responders, defined by a reduction in pain scores of > 2 SDs from pre-stimulus levels, was similar to both techniques (42.0% vs. 42.3%), while the magnitude of "best pain relief" was significantly skewed towards rTMS. Mean pain ratings in responders decreased by 32.6% (rTMS) and 29.6% (tDCS), with half of them being sensitive to only one technique. Movement-related fMRI showed significant activations in motor and premotor areas, which did not change after 5 days of stimulation, and did not discriminate responders from non-responders. Both HF-rTMS and a-tDCS showed efficacy at 1 month in drug-resistant NP, with magnitude of relief slightly favoring rTMS. Since a significant proportion of patients responded to one procedure only, both modalities should be tested before declaring a patient as unresponsive.
Collapse
Affiliation(s)
- Nathalie André-Obadia
- Neurophysiology & Epilepsy Unit, Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677, Bron Cedex, France.
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France.
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France.
| | - Hasan Hodaj
- Pain Center, Department of Anaesthesia and Intensive Care, Grenoble Alpes University Hospital, Grenoble, France
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Enkelejda Hodaj
- Clinical Pharmacology Department, Inserm CIC1406, Grenoble Alpes University Hospital, Grenoble, France
| | - Emile Simon
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France
- Functional and Stereotactic Neurosurgical Unit, Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Chantal Delon-Martin
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Luis Garcia-Larrea
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
20
|
Saitoh Y, Hosomi K, Mano T, Takeya Y, Tagami S, Mori N, Matsugi A, Jono Y, Harada H, Yamada T, Miyake A. Randomized, sham-controlled, clinical trial of repetitive transcranial magnetic stimulation for patients with Alzheimer's dementia in Japan. Front Aging Neurosci 2022; 14:993306. [PMID: 36313021 PMCID: PMC9606646 DOI: 10.3389/fnagi.2022.993306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Several medications have been applied to Alzheimer's dementia patients (AD) but their efficacies have been insufficient. The efficacy and safety of 4 weeks of repetitive transcranial magnetic stimulation (rTMS) in Japanese AD were evaluated in this exploratory clinical trial. Methods Forty-two patients, aged 60-93 years (average, 76.4 years), who were taking medication (> 6 months) and had Mini-Mental State Examination (MMSE) scores ≤ 25 and Clinical Dementia Rating Scale scores (CDR-J) of 1 or 2, were enrolled in this single-center, prospective, randomized, three-arm study [i.e., 120% resting motor threshold (120% RMT), 90% RMT for the bilateral dorsolateral prefrontal cortex, and Sham]. Alzheimer's Disease Assessment Scale-Japanese Cognitive (ADAS-J cog), Montreal Cognitive Assessment (MoCA-J), Clinical Global Impression of Change (CGIC), Neuropsychiatric inventory (NPI), and EuroQOL 5 Dimensions 5-Level (EQ-5D-5L) were administered. The primary endpoint was the mean change from baseline in the MMSE score (week 4). An active rTMS session involved applying 15 trains bilaterally (40 pulses/train at 10 Hz; intertrain interval, 26 s). Participants received ≥ 8 interventions within the first 2 weeks and at least one intervention weekly in the 3rd and 4th weeks. Full Analysis set (FAS) included 40 patients [120% RMT (n = 15), 90% RMT (n = 13), and Sham (n = 12)]. Results In the FAS, MMSE, ADAS-J cog, MoCA-J, CDR-J, CGIC, NPI, and EQ-5D-5L scores between the three groups were not significantly different. Two patients were erroneously switched between the 120% RMT and 90% RMT groups, therefore, "as treated" patients were mainly analyzed. Post hoc analysis revealed significant treatment efficacy in participants with MMSE scores ≥ 15, favoring the 120% RMT group over the Sham group. Responder analysis revealed 41.7% of the 120% RMT group had a ≥ 3-point improvement in the ADAS-J cog versus 0% in the Sham group (Fisher's exact test, p = 0.045). The MoCA-J showed the same tendency but was not significant. Efficacy disappeared in week 20, based on the ADAS-cog and MoCA-J. No intervention-related serious adverse events occurred. Conclusion This paper is the first report of using rTMS in Japanese AD patients. The treatment seems safe and moderate-mild stage AD should be target population of pivotal clinical trial with 120% RMT rTMS.
Collapse
Affiliation(s)
- Youichi Saitoh
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Hosomi
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoo Mano
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Takeya
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Tagami
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuhiko Mori
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka, Japan
| | - Yasutomo Jono
- Faculty of Health Sciences, Naragakuen University, Nara, Japan
| | - Hideaki Harada
- Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Tomomi Yamada
- Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Akimitsu Miyake
- Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| |
Collapse
|
21
|
Tomeh A, Yusof Khan AHK, Wan Sulaiman WA. Repetitive transcranial magnetic stimulation of the primary motor cortex in stroke survivors-more than motor rehabilitation: A mini-review. Front Aging Neurosci 2022; 14:897837. [PMID: 36225893 PMCID: PMC9549351 DOI: 10.3389/fnagi.2022.897837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a leading cause of morbidity and mortality among elderly populations worldwide. During the early phase of stroke, restoring blood circulation is of utmost importance to protect neurons from further injury. Once the initial condition is stabilized, various rehabilitation techniques can be applied to help stroke survivors gradually regain their affected functions. Among these techniques, transcranial magnetic stimulation (TMS) has emerged as a novel method to assess and modulate cortical excitability non-invasively and aid stroke survivors in the rehabilitation process. Different cortical regions have been targeted using TMS based on the underlying pathology and distorted function. Despite the lack of a standard operational procedure, repetitive TMS (rTMS) of the primary motor cortex (M1) is considered a promising intervention for post-stroke motor rehabilitation. However, apart from the motor response, mounting evidence suggests that M1 stimulation can be employed to treat other symptoms such as dysphagia, speech impairments, central post-stroke pain, depression, and cognitive dysfunction. In this mini-review, we summarize the therapeutic uses of rTMS stimulation over M1 in stroke survivors and discuss the potential mechanistic rationale behind it.
Collapse
Affiliation(s)
- Abdulhameed Tomeh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, Serdang, Malaysia
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Wan Aliaa Wan Sulaiman,
| |
Collapse
|
22
|
Zhu Y, Li D, Zhou Y, Hu Y, Xu Z, Lei L, Xu F, Wang J. Systematic Review and Meta-Analysis of High-Frequency rTMS over the Dorsolateral Prefrontal Cortex .on Chronic Pain and Chronic-Pain-Accompanied Depression. ACS Chem Neurosci 2022; 13:2547-2556. [PMID: 35969469 DOI: 10.1021/acschemneuro.2c00395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The effect of high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS) on the dorsolateral prefrontal cortex (DLPFC) can relieve chronic pain and accompanying depressive symptoms. However, in recent years, some high-quality studies have challenged this view. Therefore, it is necessary to update the data and analyze the effects of HF rTMS on the DLPFC on chronic pain and accompanying depression. We performed a systematic review and meta-analysis to evaluate the effect of HF rTMS on the DLPFC on chronic pain and accompanying depression. We searched PubMed, Medline, Web of Science, and Cochrane through September 2021. The search strings searched were : "pain" AND ("TMS" OR "transcranial magnetic stimulation") AND "prefrontal cortex". The inclusion criteria according to PICOS was as follows: P, patient with chronic pain; I, HF (≥5 Hz) rTMS on the DLPFC; C, included a sham treatment condition; O, pain indicators; S, pre-/poststudies, crossover, or parallel-group. We extracted the pain and accompanying depression evaluation indicators. The short-term analgesic effect of HF rTMS over the left DLPFC is not significant (WMD = 0.34, 95% CI: [-1.60, 2.28]) but has a significant mid-term and long-term analgesic effect on chronic pain (WMD = -0.50, 95% CI: [-0.99, -0.01]; WMD = -1.10, 95% CI: [-2.00, -0.19], respectively). HF rTMS over the DLPFC can effectively alleviate the depressive symptoms of patients with chronic pain (WMD = -0.83, 95% CI: [-3.01, 1.36]). Thus, HF rTMS on the left DLPFC can relieve chronic pain and accompanying depressive symptoms.
Collapse
Affiliation(s)
- Yuanliang Zhu
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Rehabilitation Medicine Department, NO.1 Orthopedics Hospital of Chengdu, Chengdu, Sichuan 610015, People's Republic of China
| | - Dan Li
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yucheng Zhou
- Graduate School of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yue Hu
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Zhangyu Xu
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Lei Lei
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Fangyuan Xu
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Jianxiong Wang
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
23
|
Matsugi A, Mori N, Hosomi K, Saitoh Y. Cerebellar repetitive transcranial magnetic stimulation modulates the motor learning of visually guided voluntary postural control task. Neurosci Lett 2022; 788:136859. [PMID: 36038031 DOI: 10.1016/j.neulet.2022.136859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
We investigated whether vermal cerebellar low-frequency repetitive transcranial magnetic stimulation (crTMS) affects motor learning of visually guided postural tracking training (VTT) using foot center of pressure (COP) as well as the stability and sensory contribution of upright standing. Twenty-one healthy volunteers participated (10 in the sham-crTMS group and 11 in the active-crTMS group). For VTT, participants stood on the force plate 1.5 m from the monitor on which the COP and target moved in a circle. Participants tracked the target with their own COP for 1 min, and 10 VTT sessions were conducted. The tracking error (TE) was compared between trials. Active- or sham-crTMS sessions were conducted prior to VTT. At baseline (before crTMS), pre-VTT (after crTMS), and post-VTT, the COP trajectory during upright static standing under four conditions (eyes, open/closed; surface, hard/rubber) was recorded. Comparison of the length of the COP trajectory or path and sensory-contribution-rate showed no significant difference between baseline and pre- and post-VTT. There was a significant decrease in TE in the sham-crTMS but not in the active-crTMS group. VTT and crTMS did not immediately affect the stability and sensory contribution of upright standing; however, crTMS immediately affected motor learning. The vermal cerebellum may contribute to motor learning of voluntary postural control.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Hojo 5-11-10, Daitou City, Osaka 574-0011, Japan.
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Machikaneyama 1-3, Toyonaka City, Osaka 560-8531, Japan; Tokuyukai Rehabilitation Clinic, Shinsenri-nishimachi 2-24-18, Toyonaka City, Osaka 560-0083, Japan
| |
Collapse
|
24
|
The Effectiveness of High-Frequency Repetitive Transcranial Magnetic Stimulation on Patients with Neuropathic Orofacial Pain: A Systematic Review of Randomized Controlled Trials. Neural Plast 2022; 2022:6131696. [PMID: 36061584 PMCID: PMC9433245 DOI: 10.1155/2022/6131696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) has been widely used in the treatment of neuropathic orofacial pain (NOP). The consistency of its therapeutic efficacy with the optimal protocol is highly debatable. Objective To assess the effectiveness of rTMS on pain intensity, psychological conditions, and quality of life (QOL) in individuals with NOP based on randomized controlled trials (RCTs). Methods We carefully screened and browsed 5 medical databases from inception to January 1, 2022. The study will be included that use of rTMS as the intervention for patients with NOP. Two researchers independently completed record retrieval, data processing, and evaluation of methodological quality. Quality and evidence were assessed using the PEDro scores and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. Results Six RCTs with 214 participants were included in this systematic review: 2 studies were considered level 1 evidence, and 4 were considered level 2 evidence. Six studies found that high-frequency rTMS had a pain-relieving effect, while 4 studies found no improvement in psychological conditions and QOL. Quality of evidence (GRADE system) ranged from moderate to high. No significant side effects were found. Conclusions There is moderate-to-high evidence to prove that high-frequency rTMS is effective in reducing pain in individuals with NOP, but it has no significant positive effect on psychological conditions and QOL. High-frequency rTMS can be used as an alternative treatment for pain in individuals with NOP, but further studies will be conducted to unify treatment parameters, and the sample size will be expanded to explore its influence on psychological conditions and QOL.
Collapse
|
25
|
Mori N, Hosomi K, Nishi A, Oshino S, Kishima H, Saitoh Y. Analgesic Effects of Repetitive Transcranial Magnetic Stimulation at Different Stimulus Parameters for Neuropathic Pain: A Randomized Study. Neuromodulation 2022; 25:520-527. [PMID: 35670062 DOI: 10.1111/ner.13328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of the present study was to investigate the analgesic effects of repetitive transcranial magnetic stimulation over the primary motor cortex (M1-rTMS) using different stimulation parameters to explore the optimal stimulus condition for treating neuropathic pain. MATERIALS AND METHODS We conducted a randomized, blinded, crossover exploratory study. Four single sessions of M1-rTMS at different parameters were administered in random order. The tested stimulation conditions were as follows: 5-Hz with 500 pulses per session, 10-Hz with 500 pulses per session, 10-Hz with 2000 pulses per session, and sham stimulation. Analgesic effects were assessed by determining the visual analog scale (VAS) pain intensity score and Short-Form McGill Pain Questionnaire 2 (SF-MPQ2) score immediately before and immediately after intervention. RESULTS We enrolled 22 adults (age: 59.8 ± 12.1 years) with intractable neuropathic pain. Linear-effects models showed significant effects of the stimulation condition on changes in VAS pain intensity (p = 0.03) and SF-MPQ2 (p = 0.01). Tukey multiple comparison tests revealed that 10-Hz rTMS with 2000 pulses provided better pain relief than sham stimulation, with greater decreases in VAS pain intensity (p = 0.03) and SF-MPQ2 (p = 0.02). CONCLUSIONS The results of this study suggest that high-dose stimulation (specifically, 10-Hz rTMS at 2000 pulses) is more effective than lower-dose stimulation for treating neuropathic pain.
Collapse
Affiliation(s)
- Nobuhiko Mori
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Koichi Hosomi
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Asaya Nishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Youichi Saitoh
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| |
Collapse
|
26
|
Tang Y, Chen H, Zhou Y, Tan ML, Xiong SL, Li Y, Ji XH, Li YS. Analgesic Effects of Repetitive Transcranial Magnetic Stimulation in Patients With Advanced Non-Small-Cell Lung Cancer: A Randomized, Sham-Controlled, Pilot Study. Front Oncol 2022; 12:840855. [PMID: 35372024 PMCID: PMC8969560 DOI: 10.3389/fonc.2022.840855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Current pharmacological intervention for the cancer-related pain is still limited. The aim of this study was to explore whether repetitive transcranial magnetic stimulation (rTMS) could be an effective adjuvant therapy to reduce pain in patients with advanced non-small cell lung cancer (NSCLC). Methods This was a randomized, sham–controlled study. A total of 41 advanced NSCLC patients with uncontrolled pain (score≥4 on pain intensity assessed with an 11-point numeric rating scale) were randomized to receive active (10 Hz, 2000 stimuli) (n = 20) or sham rTMS (n = 20) for 3 weeks. Pain was the primary outcome and was assessed with the Numeric Rating Scale (NRS). Secondary outcomes were oral morphine equivalent (OME) daily dose, quality of life (WHO Quality of Life-BREF), and psychological distress (the Hospital Depression and Anxiety Scale). All outcomes were measured at baseline, 3 days, 1 week, 2 weeks, and 3 weeks. Results The pain intensity in both groups decreased gradually from day 3 and decreased to the lowest at the week 3, with a decrease rate of 41.09% in the rTMS group and 23.23% in the sham group. The NRS score of the rTMS group was significantly lower than that of the sham group on the week 2 (p < 0.001, Cohen’s d =1.135) and week 3 (p=0.017, Cohen’s d = -0.822). The OME daily dose, physiology and psychology domains of WHOQOL-BREF scores, as well as the HAM-A and HAM-D scores all were significantly improved at week 3 in rTMS group. Conclusion Advanced NSCL patients with cancer pain treated with rTMS showed better greater pain relief, lower dosage of opioid, and better mood states and quality of life. rTMS is expected to be a new effective adjuvant therapy for cancer pain in advanced NSCLC patients.
Collapse
Affiliation(s)
- Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Han Chen
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Zhou
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ming-Liang Tan
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shuang-Long Xiong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yan Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiao-Hui Ji
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong-Sheng Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
27
|
Garcia-Larrea L, Quesada C. Cortical stimulation for chronic pain: from anecdote to evidence. Eur J Phys Rehabil Med 2022; 58:290-305. [PMID: 35343176 PMCID: PMC9980528 DOI: 10.23736/s1973-9087.22.07411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidural stimulation of the motor cortex (eMCS) was devised in the 1990's, and has now largely supplanted thalamic stimulation for neuropathic pain relief. Its mechanisms of action involve activation of multiple cortico-subcortical areas initiated in the thalamus, with involvement of endogenous opioids and descending inhibition toward the spinal cord. Evidence for clinical efficacy is now supported by at least seven RCTs; benefits may persist up to 10 years, and can be reasonably predicted by preoperative use of non-invasive repetitive magnetic stimulation (rTMS). rTMS first developed as a means of predicting the efficacy of epidural procedures, then as an analgesic method on its own right. Reasonable evidence from at least six well-conducted RCTs favors a significant analgesic effect of high-frequency rTMS of the motor cortex in neuropathic pain (NP), and less consistently in widespread/fibromyalgic pain. Stimulation of the dorsolateral frontal cortex (DLPFC) has not proven efficacious for pain, so far. The posterior operculo-insular cortex is a new and attractive target but evidence remains inconsistent. Transcranial direct current stimulation (tDCS) is applied upon similar targets as rTMS and eMCS; it does not elicit action potentials but modulates the neuronal resting membrane state. tDCS presents practical advantages including low cost, few safety issues, and possibility of home-based protocols; however, the limited quality of most published reports entails a low level of evidence. Patients responsive to tDCS may differ from those improved by rTMS, and in both cases repeated sessions over a long time may be required to achieve clinically significant relief. Both invasive and non-invasive procedures exert their effects through multiple distributed brain networks influencing the sensory, affective and cognitive aspects of chronic pain. Their effects are mainly exerted upon abnormally sensitized pathways, rather than on acute physiological pain. Extending the duration of long-term benefits remains a challenge, for which different strategies are discussed in this review.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France - .,University Hospital Pain Center (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France -
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France.,Department of Physiotherapy, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
28
|
Liu Y, Yu L, Che X, Yan M. Prolonged Continuous Theta Burst Stimulation to Demonstrate a Larger Analgesia as Well as Cortical Excitability Changes Dependent on the Context of a Pain Episode. Front Aging Neurosci 2022; 13:804362. [PMID: 35153723 PMCID: PMC8833072 DOI: 10.3389/fnagi.2021.804362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
A series of neuropathic pain conditions have a prevalence in older adults potentially associated with declined functioning of the peripheral and/or central nervous system. Neuropathic pain conditions demonstrate defective cortical excitability and intermissions, which raises questions of the impact of pain on cortical excitability changes and when to deliver repetitive transcranial magnetic stimulation (rTMS) to maximize the analgesic effects. Using prolonged continuous theta-burst stimulation (pcTBS), a relatively new rTMS protocol to increase excitability, this study was designed to investigate pcTBS analgesia and cortical excitability in the context of pain. With capsaicin application, twenty-nine healthy participants received pcTBS or Sham stimulation either in the phase of pain initialization (capsaicin applied) or pain ascending (20 min after capsaicin application). Pain intensity was measured with a visual-analogic scale (VAS). Cortical excitability was assessed by motor-evoked potential (MEP) and cortical silent period (CSP) which evaluates corticospinal excitability and GABAergic intracortical inhibition, respectively. Our data on pain dynamics demonstrated that pcTBS produced a consistent analgesic effect regardless of the time frame of pcTBS. More importantly, pcTBS delivered at pain initialization induced a larger pain reduction and a higher response rate compared to the stimulation during pain ascending. We further provide novel findings indicating distinct mechanisms of pcTBS analgesia dependent on the context of pain, in which pcTBS delivered at pain initialization was able to reverse depressed MEP, whereby pcTBS during pain ascending was associated with increased CSP. Overall, our data indicate pcTBS to be a potential protocol in pain management that could be delivered before the initialization of a pain episode to improve rTMS analgesia, potentially through inducing early corticospinal excitability changes that would be suppressed by nociceptive transmission.
Collapse
Affiliation(s)
- Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xianwei Che, ;
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Min Yan,
| |
Collapse
|
29
|
Ye Y, Wang J, Che X. Concurrent TMS-EEG to Reveal the Neuroplastic Changes in the Prefrontal and Insular Cortices in the Analgesic Effects of DLPFC-rTMS. Cereb Cortex 2022; 32:4436-4446. [DOI: 10.1093/cercor/bhab493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Abstract
The dorsolateral prefrontal cortex (DLPFC) is an important target for repetitive transcranial magnetic stimulation (rTMS) to reduce pain. However, the analgesic efficacy of DLPFC-rTMS needs to be optimized, in which the mechanisms of action remain unclear. Concurrent TMS and electroencephalogram (TMS-EEG) is able to evaluate neuroplastic changes beyond the motor cortex. Using TMS-EEG, this study was designed to investigate the local and distributed neuroplastic changes associated with DLPFC analgesia. Thirty-four healthy adults received DLPFC or sham stimulation in a randomized, crossover design. In each session, participants underwent cold pain and TMS-EEG assessment both before and after 10-Hz rTMS. We provide novel findings that DLPFC analgesia is associated with a smaller N120 amplitude in the contralateral prefrontal cortex as well as with a larger N120 peak in the ipsilateral insular cortex. Furthermore, there was a strong negative correlation between N120 changes of these two regions whereby the amplitude changes of this dyad were associated with increased pain threshold. In addition, DLPFC stimulation enhanced coherence between the prefrontal and somatosensory cortices oscillating in the gamma frequency. Overall, our data present novel evidence on local and distributed neuroplastic changes associated with DLPFC analgesia.
Collapse
|
30
|
Ueno S, Sekino M. Figure-Eight Coils for Magnetic Stimulation: From Focal Stimulation to Deep Stimulation. Front Hum Neurosci 2022; 15:805971. [PMID: 34975440 PMCID: PMC8716496 DOI: 10.3389/fnhum.2021.805971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
This article reviews the evolution and recent developments of transcranial magnetic brain stimulation using figure-eight coils to stimulate localized areas in the human brain. Geometric variations of figure-eight coils and their characteristics are reviewed and discussed for applications in neuroscience and medicine. Recent topics of figure-eight coils, such as focality of figure-eight coils, tradeoff between depth and focality, and approaches for extending depth, are discussed.
Collapse
Affiliation(s)
- Shoogo Ueno
- Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Sekino
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Xu Z, Zhu Y, Hu Y, Huang M, Xu F, Wang J. Bibliometric and visualized analysis of Neuropathic pain based on Web of Science and CiteSpace over the last 20 years. World Neurosurg 2021; 162:e21-e34. [PMID: 34906754 DOI: 10.1016/j.wneu.2021.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The purpose of this bibliometric analysis was to explore disciplinary hotspots and collaborative networks in research on neuropathic pain (NPP) research in the past 20 years. METHODS The articles related to NPP were obtained from Web of Science database. Global publications on neuropathic pain were analyzed in terms of different aspects such as number of papers, citation rates, authors, institutions, countries/regions, journals, and funding, as well as relevant partnerships and topic hotspots RESULTS: From 2001 to 2020, 6905 articles related to NPP research were published worldwide. The number of publications had increased over the last 20 years continually. Pain was the most productive and the most frequently co-cited journal. Baron R was the most productive and influential author. The most productive country and institution were USA and Harvard University respectively. Researchers and institutions from the USA, Japan and China were the core research forces. There was a broad and close cooperation in the field worldwide. The top authors and top institutions had collaborated relatively closely with others. CONCLUSIONS The research of NPP is a well-developed and prospective field of medical study. Pain, European Journal of Pain, and Molecular Pain show more interested in this field. The USA, Harvard University, and Ralf Baron were the top country, institution, and author, respectively. Global research collaboration is extensive. Top institutions and authors had cooperation.
Collapse
Affiliation(s)
- Zhangyu Xu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, People's Republic of China
| | - Yuanliang Zhu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, People's Republic of China
| | - Yue Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, People's Republic of China
| | - Maomaom Huang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, People's Republic of China
| | - Fangyuan Xu
- Department of Rehabilitation Medicine, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, People's Republic of China
| | - Jianxiong Wang
- Department of Rehabilitation Medicine, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, People's Republic of China, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, People's Republic of China, Laboratory of Neurological Diseases and Brain Function, 646000, Luzhou, Sichuan, People's Republic of China.
| |
Collapse
|
32
|
Analgesic Effects of Navigated Repetitive Transcranial Magnetic Stimulation in Patients With Acute Central Poststroke Pain. Pain Ther 2021; 10:1085-1100. [PMID: 33866522 PMCID: PMC8586137 DOI: 10.1007/s40122-021-00261-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 10/27/2022] Open
Abstract
INTRODUCTION Central poststroke pain (CPSP) develops commonly after stroke, which impairs the quality of life, mood, and social functioning. Current pharmacological approaches for the treatment of CPSP are not satisfactory. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique which has been recommended for the treatment of chronic CPSP. However, few studies have evaluated the analgesic effects of rTMS in patients with acute neuropathic pain after stroke. METHODS We evaluated the analgesic effects of rTMS applied over the upper extremity area of the motor cortex (M1) in patients with acute CPSP. Forty patients were randomized to receive either rTMS (10 Hz, 2000 stimuli) (n = 20) or a sham intervention (n = 20) for 3 weeks. The Numeric Rating Scale (NRS), Short-form McGill Pain Questionnaire-2 (SF-MPQ-2, Chinese version), Hamilton Anxiety Scale (HAM-A), Hamilton Depression Scale (HAM-D), brain-derived neurotrophic factor (BDNF) levels, and motor-evoked potentials (MEP) were analyzed at baseline, 3 days, 1 week, 2 weeks, and 3 weeks. RESULTS Significant treatment-time interactions were found for pain intensity. Compared with the sham group, the NRS and SF-MPQ-2 scores were significantly lower on the seventh day of treatment in the rTMS group (P < 0.001, Cohen's d = 1.302) (P = 0.003, Cohen's d = 0.771), and this effect lasted until the third week (P = 0.001, Cohen's d = 0.860) (P = 0.027, Cohen's d = 0.550). The HAM-A and HAM-D scores did not change in the rTMS group when compared with the sham group (P = 0.341, Cohen's d = 0.224) (P = 0.356, Cohen's d = 0.217). The serum BDNF levels were significantly higher in the treated group (P = 0.048, Cohen's d = -0.487), and the resting motor threshold (RMT) decreased by 163.65%. CONCLUSION Our findings indicate that rTMS applied over the upper extremity area of the motor cortex can effectively alleviate acute CPSP, possibly by influencing cortical excitability and serum BDNF secretion. TRIAL REGISTRATION This trial is registered with Clinical Trial Registry of China: Reg. No. ChiCTR-INR-17012880.
Collapse
|
33
|
Zhang M, Zhang Y, Mu Y, Wei Z, Kong Y. Gender discrimination facilitates fMRI responses and connectivity to thermal pain. Neuroimage 2021; 244:118644. [PMID: 34637906 DOI: 10.1016/j.neuroimage.2021.118644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023] Open
Abstract
Gender discrimination is a serious social issue that has been shown to increase negative consequences, especially in females when accompanied by acute or chronic pain. Experiencing social pain through discrimination can increase an individual's evaluation of evoked physical pain. However, few studies have explored the mechanism underlying how gender discrimination modulates brain responses when individuals experience physical pain evoked by noxious stimuli. In this study, we addressed this issue using a gender discrimination fMRI paradigm with thermal pain stimulation. We found that discrimination indeed affected participants' own behavioral self-evaluation of noxious stimuli. Discrimination-encoded brain activations were identified in the temporopolar cortex, while brain activations to thermal stimuli after viewing pictures of discrimination were found in the dorsal anterior cingulate cortex (dACC). Brain activations in the temporopolar cortex and the dACC were correlated. Furthermore, pain perception-specific functional connectivity of the dACC-SII in the cue stage and the dACC-frontal in the pain stage were identified, suggesting a facilitative effect of gender discrimination on females' experience of physical pain. Our results indicate that the dACC may play a central role in mediating the affective aspect of physical pain after experiencing discrimination. These findings provide novel insights into the underlying mechanism of how gender discrimination facilitates females' experience of physical pain.
Collapse
Affiliation(s)
- Ming Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqi Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Mu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoxing Wei
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
34
|
Sorkpor SK, Ahn H. Transcranial direct current and transcranial magnetic stimulations for chronic pain. Curr Opin Anaesthesiol 2021; 34:781-785. [PMID: 34419991 DOI: 10.1097/aco.0000000000001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Chronic pain is debilitating and difficult to treat with pharmacotherapeutics alone. Consequently, exploring alternative treatment methods for chronic pain is essential. Noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are increasingly being investigated for their neuropharmacological effects in the treatment of chronic pain. This review aims to examine and evaluate the present state of evidence regarding the use of tDCS and TMS in the treatment of chronic pain. RECENT FINDINGS Despite conflicting evidence in the early literature, evidence from recent rigorous research supports the use of tDCS and TMS in treating chronic pain conditions. For both tDCS and TMS, standardized stimulation parameters have been identified with the recommendation for repeated maintenance stimulation to ensure that the analgesic effect is sustained beyond discontinuation of therapy. SUMMARY Due to a lack of defined stimulation protocols, early findings on the efficacy of tDCS and TMS are mixed. Although the application of tDCS and TMS as pain relief approaches is still in its early stages, the introduction of standardized stimulation protocols is paving the way for more robust and informed research.
Collapse
Affiliation(s)
- Setor K Sorkpor
- Cizik School of Nursing, University of Texas Health Science Center, Houston, Texas
| | - Hyochol Ahn
- College of Nursing, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
35
|
Mori N, Hosomi K, Nishi A, Dong D, Yanagisawa T, Khoo HM, Tani N, Oshino S, Saitoh Y, Kishima H. Difference in Analgesic Effects of Repetitive Transcranial Magnetic Stimulation According to the Site of Pain. Front Hum Neurosci 2021; 15:786225. [PMID: 34899224 PMCID: PMC8662379 DOI: 10.3389/fnhum.2021.786225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023] Open
Abstract
High-frequency repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex for neuropathic pain has been shown to be effective, according to systematic reviews and therapeutic guidelines. However, our large, rigorous, investigator-initiated, registration-directed clinical trial failed to show a positive primary outcome, and its subgroup analysis suggested that the analgesic effect varied according to the site of pain. The aim of this study was to investigate the differences in analgesic effects of rTMS for neuropathic pain between different pain sites by reviewing our previous clinical trials. We included three clinical trials in this mini meta-analysis: a multicenter randomized controlled trial at seven hospitals (N = 64), an investigator-initiated registration-directed clinical trial at three hospitals (N = 142), and an exploratory clinical trial examining different stimulation parameters (N = 22). The primary efficacy endpoint (change in pain scale) was extracted for each patient group with pain in the face, upper limb, or lower limb, and a meta-analysis of the efficacy of active rTMS against sham stimulation was performed. Standardized mean difference (SMD) with 95% confidence interval (CI) was calculated for pain change using a random-effects model. The analgesic effect of rTMS for upper limb pain was favorable (SMD = -0.45, 95% CI: -0.77 to -0.13). In contrast, rTMS did not produce significant pain relief on lower limb pain (SMD = 0.04, 95% CI: -0.33 to 0.41) or face (SMD = -0.24, 95% CI: -1.59 to 1.12). In conclusion, these findings suggest that rTMS provides analgesic effects in patients with neuropathic pain in the upper limb, but not in the lower limb or face, under the conditions of previous clinical trials. Owing to the main limitation of small number of studies included, many aspects should be clarified by further research and high-quality studies in these patients.
Collapse
Affiliation(s)
- Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan,*Correspondence: Koichi Hosomi,
| | - Asaya Nishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Dong Dong
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan,Osaka University Institute for Advanced Co-Creation Studies, Suita, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan,Tokuyukai Rehabilitation Clinic, Toyonaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
36
|
Jiang X, Yan W, Wan R, Lin Y, Zhu X, Song G, Zheng K, Wang Y, Wang X. Effects of repetitive transcranial magnetic stimulation on neuropathic pain: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 132:130-141. [PMID: 34826512 DOI: 10.1016/j.neubiorev.2021.11.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
Neuropathic pain (NP) is a chronic pain condition caused by lesion or disease of the somatosensory nervous system. Repetitive transcranial magnetic stimulation (rTMS) is a neuroregulatory tool that uses pulsed magnetic fields to modulate the cerebral cortex. This review aimed to ascertain the therapeutic effect of rTMS on NP and potential factors regulating the therapeutic effect of rTMS. Database search included Web of Science, Embase, Pubmed, and Cochrane Library from inception to July 2021. Eligible studies included randomized controlled studies of the analgesic effects of rTMS in patients with NP. Thirty-eight studies were included. Random effect analysis showed effect sizes of -0.66 (95 % CI, -0.87 to -0.46), indicating that real rTMS was better than sham condition in reducing pain (P < 0.001). This comprehensive review indicated that stimulation frequency, intervention site, and location of lesion were important factors affecting the therapeutic effect. The findings of this study may guide clinical decisions and future research.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wangwang Yan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruihan Wan
- Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Kangyong Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China.
| |
Collapse
|
37
|
Iihara K, Saito N, Suzuki M, Date I, Fujii Y, Houkin K, Inoue T, Iwama T, Kawamata T, Kim P, Kinouchi H, Kishima H, Kohmura E, Kurisu K, Maruyama K, Matsumaru Y, Mikuni N, Miyamoto S, Morita A, Nakase H, Narita Y, Nishikawa R, Nozaki K, Ogasawara K, Ohata K, Sakai N, Sakamoto H, Shiokawa Y, Takahashi JC, Ueki K, Wakabayashi T, Yoshimoto K, Arai H, Tominaga T. The Japan Neurosurgical Database: Statistics Update 2018 and 2019. Neurol Med Chir (Tokyo) 2021; 61:675-710. [PMID: 34732592 PMCID: PMC8666296 DOI: 10.2176/nmc.st.2021-0254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Each year, the Japan Neurosurgical Society (JNS) reports up-to-date statistics from the Japan Neurosurgical Database regarding case volume, patient demographics, and in-hospital outcomes of the overall cohort and neurosurgical subgroup according to the major classifications of main diagnosis. We hereby report patient demographics, in-hospital mortality, length of hospital stay, purpose of admission, number of medical management, direct surgery, endovascular treatment, and radiosurgery of the patients based on the major classifications and/or main diagnosis registered in 2018 and 2019 in the overall cohort (523283 and 571143 patients, respectively) and neurosurgical subgroup (177184 and 191595 patients, respectively). The patient demographics, disease severity, proportion of purpose of admission (e.g., operation, 33.9-33.5%) and emergent admission (68.4-67.8%), and in-hospital mortality (e.g., cerebrovascular diseases, 6.3-6.5%; brain tumor, 3.1-3%; and neurotrauma, 4.3%) in the overall cohort were comparable between 2018 and 2019. In total, 207783 and 225217 neurosurgical procedures were performed in the neurosurgical subgroup in 2018 and 2019, respectively, of which endovascular treatment comprised 19.1% and 20.3%, respectively. Neurosurgical management of chronic subdural hematoma (19.4-18.9%) and cerebral aneurysm (15.4-14.8%) was most common. Notably, the proportion of management of ischemic stroke/transient ischemic attack, including recombinant tissue plasminogen activator infusion and endovascular acute reperfusion therapy, increased from 7.5% in 2018 to 8.8% in 2019. The JNS statistical update represents a critical resource for the lay public, policy makers, media professionals, neurosurgeons, healthcare administrators, researchers, health advocates, and others seeking the best available data on neurosurgical practice.
Collapse
Affiliation(s)
- Koji Iihara
- Department of Neurosurgery, National Cerebral and Cardiovascular Center
| | | | - Michiyasu Suzuki
- Department of Advanced ThermoNeuroBiology, Yamaguchi University Graduate School of Medicine
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine
| | - Tooru Inoue
- Department of Neurosurgery, Fukuoka University School of Medicine
| | - Toru Iwama
- Department of Neurosurgery, Gifu University School of Medicine
| | | | - Phyo Kim
- Department of Neurologic Surgery, Utsunomiya Neurospine Center
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, University of Yamanashi Interdisciplinary Graduate School of Medicine
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Eiji Kohmura
- Kinki Central Hospital of the Mutual Aid Association of Public School Teachers
| | - Kaoru Kurisu
- Department of Neurosurgery, Chugoku Rosai Hospital
| | - Keisuke Maruyama
- Department of Neurosurgery, Kyorin University, School of Medicine
| | - Yuji Matsumaru
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba
| | | | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Akio Morita
- Department of Neurological Surgery, Nippon Medical School
| | | | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science
| | | | | | - Nobuyuki Sakai
- Department of Neurosurgery, Kobe City Medical Center General Hospital
| | - Hiroaki Sakamoto
- Department of Pediatric Neurosurgery, Osaka City General Hospital
| | | | - Jun C Takahashi
- Department of Neurosurgery, Kindai University Faculty of Medicine
| | - Keisuke Ueki
- Department of Neurologic Surgery, Dokkyo Medical University
| | | | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University
| | | | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | | |
Collapse
|
38
|
Mori N, Hosomi K, Nishi A, Matsugi A, Dong D, Oshino S, Kishima H, Saitoh Y. Exploratory study of optimal parameters of repetitive transcranial magnetic stimulation for neuropathic pain in the lower extremities. Pain Rep 2021; 6:e964. [PMID: 34667918 PMCID: PMC8517292 DOI: 10.1097/pr9.0000000000000964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Pain relief from repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) is particularly poor in patients with leg pain. The optimal parameters for relieving leg pain remain poorly understood. The purpose of this study was to explore the optimal stimulation parameters of M1-rTMS for patients with leg pain. Methods Eleven patients with neuropathic pain in the leg randomly underwent 6 conditions of M1-rTMS with different stimulation intensities, sites, and coil directions, including sham stimulation. The 5 active conditions were as follows: 90% or 110% of the resting motor threshold (RMT) on the M1 hand with an anteroposterior coil direction, 90% or 110% RMT on the M1 foot in the anteroposterior direction, and 90% RMT on the M1 foot in the mediolateral direction. Each condition was administered for 3 days. Pain intensity was evaluated using the Visual Analogue Scale and Short-Form McGill Pain Questionnaire 2 at baseline and up to 7 days after each intervention. Results Visual Analogue Scale scores were significantly reduced after the following active rTMS conditions: 90% RMT on the M1 hand, 90% RMT on the M1 foot with any coil direction, and 110% RMT on the M1 foot. The Short-Form McGill Pain Questionnaire 2 results were similar to those obtained using the Visual Analogue Scale. The analgesic effect of rTMS with stimulus intensity above the RMT was not superior to that below the RMT. Conclusion We suggest that the optimal stimulation parameters of rTMS for patients with neuropathic pain in the leg may target the M1 foot or M1 hand with an intensity below the RMT.
Collapse
Affiliation(s)
- Nobuhiko Mori
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Hosomi
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Asaya Nishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka, Japan
| | - Dong Dong
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Youichi Saitoh
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
39
|
Attal N, Poindessous-Jazat F, De Chauvigny E, Quesada C, Mhalla A, Ayache SS, Fermanian C, Nizard J, Peyron R, Lefaucheur JP, Bouhassira D. Repetitive transcranial magnetic stimulation for neuropathic pain: a randomized multicentre sham-controlled trial. Brain 2021; 144:3328-3339. [PMID: 34196698 DOI: 10.1093/brain/awab208] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed to treat neuropathic pain but the quality of evidence remains low. We aimed to assess the efficacy and safety of neuronavigated rTMS to the motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC) in neuropathic pain over 25 weeks. We did a randomised double-blind, placebo-controlled trial at four outpatient clinics in France. Patients aged 18-75 years with peripheral neuropathic pain were randomly assigned in a 1:1 ratio to M1 or DLPFC-rTMS and re-randomised in a 2:1 ratio to active or sham rTMS (10 Hz, 3000 pulses/session, 15 sessions over 22 weeks). Patients and investigators were blind to treatment allocation. The primary endpoint was the comparison between active M1-rTMS, active DLPCF-rTMS and sham-rTMS for the change over the course of 25 weeks (group by time interaction) in average pain intensity (from 0 no pain to 10 maximal pain) on the Brief Pain Inventory (BPI), using a mixed model repeated measures analysis in patients who received at least one rTMS session (modified ITT population). Secondary outcomes included other measures of pain intensity and relief, sensory and affective dimensions of pain, quality of pain, self reported pain intensity and fatigue (patients diary), patient and clinician global impression of change (PGIC, CGIC), quality of life, sleep, mood and catastrophizing. This study is registered with ClinicalTrials.gov NCT02010281. A total of 152 patients were randomised and 149 received treatment (49 for M1; 52 for DLPFC; 48 for sham). M1-rTMS reduced pain intensity versus sham-rTMS (estimate for group x session interaction: -0.048 ± 0.02; 95% CI: -0.09 to -0.01; p = 0.01). DLPFC-rTMS was not better than sham (estimate: -0.003 ± 0.01; 95% CI:-0.04 to 0.03, p = 0.9). M1-rRMS, but not DLPFC-rTMS, was also superior to sham-rTMS on pain relief, sensory dimenson of pain, self reported pain intensity and fatigue, PGIC and CGIC. There were no effect on quality of pain, mood, sleep and quality of life as all groups improved similarly over time. Headache was the most common side effect and occurred in 17 (34.7%), 23 (44.2%) and 13 (27.1%) patients from M1, DLPFC and sham groups respectively (p = 0.2). Our results support the clinical relevance of M1-rTMS, but not of DLPFC-rTMS, for peripheral neuropathic pain with an excellent safety profile.
Collapse
Affiliation(s)
- Nadine Attal
- INSERM U 987, CETD, Hôpital Ambroise Paré, APHP, 92100 Boulogne-Billancourt, France.,UVSQ, Paris Saclay University, 78000 Versailles, France
| | | | - Edwige De Chauvigny
- Pain, Palliative and Supportive Care Department, UIC22 and EA3826, University Hospital Nantes, 44000 Nantes, France
| | - Charles Quesada
- INSERM U1028 & CETD, CHU Bellevue, 42100 Saint Etienne, France
| | - Alaa Mhalla
- Clinical Neurophysiology Unit, Hôpital Henri Mondor, APHP, 94000 Creteil, France
| | - Samar S Ayache
- Clinical Neurophysiology Unit, Hôpital Henri Mondor, APHP, 94000 Creteil, France.,EA 4391, Paris Est Creteil University, 94000 Creteil, France
| | | | - Julien Nizard
- Pain, Palliative and Supportive Care Department, UIC22 and EA3826, University Hospital Nantes, 44000 Nantes, France
| | - Roland Peyron
- INSERM U1028 & CETD, CHU Bellevue, 42100 Saint Etienne, France
| | - Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Hôpital Henri Mondor, APHP, 94000 Creteil, France.,EA 4391, Paris Est Creteil University, 94000 Creteil, France
| | - Didier Bouhassira
- INSERM U 987, CETD, Hôpital Ambroise Paré, APHP, 92100 Boulogne-Billancourt, France.,UVSQ, Paris Saclay University, 78000 Versailles, France
| |
Collapse
|
40
|
Attia M, McCarthy D, Abdelghani M. Repetitive Transcranial Magnetic Stimulation for Treating Chronic Neuropathic Pain: a Systematic Review. Curr Pain Headache Rep 2021; 25:48. [PMID: 33978846 DOI: 10.1007/s11916-021-00960-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Given pharmacological interventions' limited efficacy and abundance of its adverse effects, the repetitive transcranial magnetic stimulation (rTMS) is considered a viable non-invasive option for managing chronic neuropathic pain of different origins with promising outcomes. PURPOSE OF REVIEW: The provision of a systematic review of current literature on rTMS for managing chronic neuropathic pain of different origins, and assess its efficacy and outcomes, highlighting the need for standard protocols for utilizing rTMS. RECENT FINDINGS: Variable stimulation modalities were trialed targeting the M1, DLPFC, and somatosensory cortices S1 and S2. The M1 yielded the best results in 11 of the studies. Frequency of stimulation was variable; however, optimal outcome was with higher frequencies ranging 10-20 Hz rather than low-frequency 1 Hz. Repetitive TMS can produce significant relief from chronic neuropathic pain. The lack of standard methods for rTMS, stimulatory parameters, and target stimulation site precludes concluding the optimal modality for stimulation. The practical algorithm by Lefaucheur and Nguyen (Neurophysiol Clin. 49(4):301-7, 2019) can guide setting standardized algorithms for rTMS. Defining optimal stimulation sites, frequencies, and pulses to maximize patient's pain relief and minimize required rTMS sessions requires further research.
Collapse
Affiliation(s)
- Mohamed Attia
- Department of Anaesthesia and Pain Medicine, Manchester University Foundation Trust, Manchester, UK.
| | - David McCarthy
- Department of Anaesthesia and Pain Medicine, Manchester University Foundation Trust, Manchester, UK
| | - Mowafak Abdelghani
- Department of Anaesthesia and Pain Medicine, Manchester University Foundation Trust, Manchester, UK
| |
Collapse
|
41
|
Jiang N, Wang L, Huang Z, Li G. Mapping Responses of Lumbar Paravertebral Muscles to Single-Pulse Cortical TMS Using High-Density Surface Electromyography. IEEE Trans Neural Syst Rehabil Eng 2021; 29:831-840. [PMID: 33905333 DOI: 10.1109/tnsre.2021.3076095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motor evoked potential (MEP), which was elicited by transcranial magnetic stimulation (TMS), has been widely used to detect corticospinal projection from TMS cortical site to trunk muscles. It can help to find the stimulation hotspot in the scalp. However, it fails to precisely describe coordinated activities of trunk muscle groups with only single-channel myoelectric signal. In this study, we aimed to use high-density surface electromyography (sEMG) to explore the effect of cortical TMS on lumbar paravertebral muscles in healthy subjects. The cortical site at 1 cm anterior and 4 cm lateral to vertex was chosen to simulate using a single-pulse TMS with different intensities and forward-bending angles. A high-density electrode array (45 channels) was placed on the surface of lumbar paravertebral muscles to record sEMG signals during a TMS experiment. MEP signals elicited by TMS were extracted from 45-channel recordings and one topographic map of the MEP amplitudes with six spatial features was constructed at each sampling point. The results showed TMS could successfully evoke an oval area with high intensity in the MEP topographic map, while this area mainly located in ipsilateral side of the TMS site. Intensity features related to the high intensity area rose significantly with TMS intensity and forward-bending angle increasing, but location features showed no change. The optimal stimulation parameters were 80% of maximum stimulator output (MSO) for TMS intensity and 30/60 degree for forward-bending angle. This study provided a potentially effective mapping tool to explore the hotspot for transcranial stimulation on trunk muscles.
Collapse
|
42
|
Repetitive transcranial magnetic stimulation restores altered functional connectivity of central poststroke pain model monkeys. Sci Rep 2021; 11:6126. [PMID: 33731766 PMCID: PMC7969937 DOI: 10.1038/s41598-021-85409-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
Central poststroke pain (CPSP) develops after a stroke around the somatosensory pathway. CPSP is hypothesized to be caused by maladaptive reorganization between various brain regions. The treatment for CPSP has not been established; however, repetitive transcranial magnetic stimulation (rTMS) to the primary motor cortex has a clinical effect. To verify the functional reorganization hypothesis for CPSP development and rTMS therapeutic mechanism, we longitudinally pursued the structural and functional changes of the brain by using two male CPSP model monkeys (Macaca fuscata) developed by unilateral hemorrhage in the ventral posterolateral nucleus of the thalamus. Application of rTMS to the ipsilesional primary motor cortex relieved the induced pain of the model monkeys. A tractography analysis revealed a decrease in the structural connectivity in the ipsilesional thalamocortical tract, and rTMS had no effect on the structural connectivity. A region of interest analysis using resting-state functional magnetic resonance imaging revealed inappropriately strengthened functional connectivity between the ipsilesional mediodorsal nucleus of the thalamus and the amygdala, which are regions associated with emotion and memory, suggesting that this may be the cause of CPSP development. Moreover, rTMS normalizes this strengthened connectivity, which may be a possible therapeutic mechanism of rTMS for CPSP.
Collapse
|
43
|
Meeker TJ, Jupudi R, Lenz FA, Greenspan JD. New Developments in Non-invasive Brain Stimulation in Chronic Pain. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:280-292. [PMID: 33473332 DOI: 10.1007/s40141-020-00260-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose of Review The goal of this review is to present a summary of the recent literature of a non-invasive brain stimulation (NIBS) to alleviate pain in people with chronic pain syndromes. This article reviews the current evidence for the use of transcranial direct current (tDCS) and repetitive transcranial magnetic stimulation (rTMS) to improve outcomes in chronic pain. Finally, we introduce the reader to novel stimulation methods that may improve therapeutic outcomes in chronic pain. Recent Findings While tDCS is approved for treatment of fibromyalgia in Canada and the European Union, no NIBS method is currently approved for chronic pain in the United States. Increasing sample sizes in randomized clinical trials (RCTs) seems the most efficient way to increase confidence in initial promising results. Trends at funding agencies reveal increased interest and support for NIBS such as recent Requests for Application from the National Institutes of Health. NIBS in conjunction with cognitive behavioral therapy and physical therapy may enhance outcomes in chronic pain. Novel stimulation methods, such as transcranial ultrasound stimulation, await rigorous study in chronic pain.
Collapse
Affiliation(s)
- Timothy J Meeker
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.,Dept. of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, Univ. of Maryland Baltimore, Baltimore, MD, USA
| | - Rithvic Jupudi
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Frederik A Lenz
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Joel D Greenspan
- Dept. of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, Univ. of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|