1
|
Pereira-Silva R, Neto FL, Martins I. Diffuse Noxious Inhibitory Controls in Chronic Pain States: Insights from Pre-Clinical Studies. Int J Mol Sci 2025; 26:402. [PMID: 39796255 PMCID: PMC11722076 DOI: 10.3390/ijms26010402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Diffuse noxious inhibitory control (DNIC), also known as conditioned pain modulation (CPM) in humans, is a paradigm wherein the heterotopic application of a noxious stimulus results in the attenuation of another spatially distant noxious input. The pre-clinical and clinical studies show the involvement of several neurochemical systems in DNIC/CPM and point to a major contribution of the noradrenergic, serotonergic, and opioidergic systems. Here, we thoroughly review the latest data on the monoaminergic and opioidergic studies, focusing particularly on pre-clinical models of chronic pain. We also conduct an in-depth analysis of these systems by integrating the available data with the descending pain modulatory circuits and the neurochemical systems therein to bring light to the mechanisms involved in the regulation of DNIC. The most recent data suggest that DNIC may have a dual outcome encompassing not only analgesic effects but also hyperalgesic effects. This duality might be explained by the underlying circuitry and the receptor subtypes involved therein. Acknowledging this duality might contribute to validating the prognostic nature of the paradigm. Additionally, DNIC/CPM may serve as a robust paradigm with predictive value for guiding pain treatment through more effective targeting of descending pain modulation.
Collapse
Affiliation(s)
- Raquel Pereira-Silva
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto–i3S, R. Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (IMBC), Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Al. Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Fani L. Neto
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto–i3S, R. Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (IMBC), Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Al. Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Isabel Martins
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto–i3S, R. Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (IMBC), Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Al. Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
2
|
Cazuza RA, Zagrai SM, Grieco AR, Avery TD, Abell AD, Wey HY, Loggia ML, Grace PM. 18 kDa Translocator protein (TSPO) is upregulated in rat brain after peripheral nerve injury and downregulated by diroximel fumarate. Brain Behav Immun 2025; 123:11-27. [PMID: 39218234 PMCID: PMC11624078 DOI: 10.1016/j.bbi.2024.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neuroimmune signaling is a key process underlying neuropathic pain. Clinical studies have demonstrated that 18 kDa translocator protein (TSPO), a putative marker of neuroinflammation, is upregulated in discrete brain regions of patients with chronic pain. However, no preclinical studies have investigated TSPO dynamics in the brain in the context of neuropathic pain and in response to analgesic treatments. We used positron emission tomography-computed tomography (PET-CT) and [18F]-PBR06 radioligand to measure TSPO levels in the brain across time after chronic constriction injury (CCI) of the sciatic nerve in both male and female rats. Up to 10 weeks post-CCI, TSPO expression was increased in discrete brain regions, including medial prefrontal cortex, somatosensory cortex, insular cortex, anterior cingulate cortex, motor cortex, ventral tegmental area, amygdala, midbrain, pons, medulla, and nucleus accumbens. TSPO was broadly upregulated across these regions at 4 weeks post CCI in males, and 10 weeks in females, though there were regional differences between the sexes. Using immunohistochemistry, we confirmed TSPO expression in these regions. We further demonstrated that TSPO was upregulated principally in microglia in the nucleus accumbens core, and astrocytes and endothelial cells in the nucleus accumbens shell. Finally, we tested whether TSPO upregulation was sensitive to diroximel fumarate, a drug that induces endogenous antioxidants via nuclear factor E2-related factor 2 (Nrf2). Diroximel fumarate alleviated neuropathic pain and reduced TSPO upregulation. Our findings indicate that TSPO is upregulated over the course of neuropathic pain development and is resolved by an antinociceptive intervention in animals with peripheral nerve injury.
Collapse
Affiliation(s)
- Rafael A Cazuza
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Sever M Zagrai
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Anamaria R Grieco
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, University of Adelaide, Adelaide, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, University of Adelaide, Adelaide, Australia
| | - Hsiao-Ying Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
3
|
Burgess GE, Traynor JR, Jutkiewicz EM. The effects of chronic neuropathic pain on the self-administration of highly potent MOR agonist, fentanyl. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624389. [PMID: 39605379 PMCID: PMC11601644 DOI: 10.1101/2024.11.19.624389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
There is significant overlap between chronic pain and opioid use disorder (OUD) patient populations such that approximately 50-65% of chronic pain patients have OUD. However, we understand relatively little about how chronic, long-lasting pain states alter ongoing self-administration of opioid analgesics. Thus, the goal of this study was to determine if chronic neuropathic pain altered the ongoing self-administration of fentanyl, or a non-opioid drug of abuse, cocaine. Animals were trained to self-administer fentanyl or cocaine in a multi-dose self-administration procedure composed of five 25-min components, exposing animals to multiple doses of drug per day. Operant behavior was established prior to induction of chronic pain via the spared nerve injury (SNI). Animals were allowed 72 hours of post-operative recovery and resumed self-administration on post-operative day 4. All animals dose-dependently self-administered fentanyl prior to surgery. On post-operative day 4, both sham and SNI groups showed a significant decrease in fentanyl self-administration. By post-operative day 9, fentanyl intake was no longer significantly different from pre-surgical intake. Over the course of 4 weeks of self-administration, there was an increase in intake of specifically the 10 ug/kg/inf dose of fentanyl. Cocaine self-administration was not altered at any point following either surgery. Collectively, these results suggest that SNI-induced hypersensitivity failed to alter the reinforcing effects of fentanyl, or non-opioid drug of abuse, cocaine. Future studies should evaluate the abuse potential of lower efficacy MOR agonists such as nalbuphine or buprenorphine, as small changes were observed in fentanyl-maintained behavior over time in both SNI and sham groups.
Collapse
Affiliation(s)
- Gwendolyn E Burgess
- Department of Pharmacology, University of Michigan, Ann Arbor Michigan, 48109
| | - John R Traynor
- Department of Pharmacology, University of Michigan, Ann Arbor Michigan, 48109
| | - Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan, Ann Arbor Michigan, 48109
| |
Collapse
|
4
|
Navratilova E, Qu C, Ji G, Neugebauer V, Guerrero M, Rosen H, Roberts E, Porreca F. Opposing Effects on Descending Control of Nociception by µ and κ Opioid Receptors in the Anterior Cingulate Cortex. Anesthesiology 2024; 140:272-283. [PMID: 37725756 PMCID: PMC11466009 DOI: 10.1097/aln.0000000000004773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND The efficiency of descending pain modulation, commonly assessed with the conditioned pain modulation procedure, is diminished in patients with chronic pain. The authors hypothesized that the efficiency of pain modulation is controlled by cortical opioid circuits. METHODS This study evaluated the effects of µ opioid receptor activation in the anterior cingulate cortex on descending control of nociception, a preclinical correlate of conditioned pain modulation, in male Sprague-Dawley rats with spinal nerve ligation-induced chronic pain or in sham-operated controls. Additionally, the study explored the consequences of respective activation or inhibition of κ opioid receptor in the anterior cingulate cortex of naive rats or animals with neuropathic pain. Descending control of nociception was measured as the hind paw withdrawal response to noxious pressure (test stimulus) in the absence or presence of capsaicin injection in the forepaw (conditioning stimulus). RESULTS Descending control of nociception was diminished in the ipsilateral, but not contralateral, hind paw of rats with spinal nerve ligation. Bilateral administration of morphine in the anterior cingulate cortex had no effect in shams but restored diminished descending control of nociception without altering hypersensitivity in rats with neuropathic pain. Bilateral anterior cingulate cortex microinjection of κ opioid receptor antagonists, including nor-binaltorphimine and navacaprant, also re-established descending control of nociception in rats with neuropathic pain without altering hypersensitivity and with no effect in shams. Conversely, bilateral injection of a κ opioid receptor agonist, U69,593, in the anterior cingulate cortex of naive rats inhibited descending control of nociception without altering withdrawal thresholds. CONCLUSIONS Anterior cingulate cortex κ opioid receptor activation therefore diminishes descending control of nociception both in naive animals and as an adaptive response to chronic pain, likely by enhancing net descending facilitation. Descending control of nociception can be restored by activation of μ opioid receptors in the anterior cingulate cortex, but also by κ opioid receptor antagonists, providing a nonaddictive alternative to opioid analgesics. Navacaprant is now in advanced clinical trials. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Chaoling Qu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Miguel Guerrero
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Hugh Rosen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Edward Roberts
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
5
|
Kerr PL, Gregg JM. The Roles of Endogenous Opioids in Placebo and Nocebo Effects: From Pain to Performance to Prozac. ADVANCES IN NEUROBIOLOGY 2024; 35:183-220. [PMID: 38874724 DOI: 10.1007/978-3-031-45493-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Placebo and nocebo effects have been well documented for nearly two centuries. However, research has only relatively recently begun to explicate the neurobiological underpinnings of these phenomena. Similarly, research on the broader social implications of placebo/nocebo effects, especially within healthcare delivery settings, is in a nascent stage. Biological and psychosocial outcomes of placebo/nocebo effects are of equal relevance. A common pathway for such outcomes is the endogenous opioid system. This chapter describes the history of placebo/nocebo in medicine; delineates the current state of the literature related to placebo/nocebo in relation to pain modulation; summarizes research findings related to human performance in sports and exercise; discusses the implications of placebo/nocebo effects among diverse patient populations; and describes placebo/nocebo influences in research related to psychopharmacology, including the relevance of endogenous opioids to new lines of research on antidepressant pharmacotherapies.
Collapse
Affiliation(s)
- Patrick L Kerr
- West Virginia University School of Medicine-Charleston, Charleston, WV, USA.
| | - John M Gregg
- Department of Surgery, VTCSOM, Blacksburg, VA, USA
| |
Collapse
|
6
|
Xu Y, Zhu X, Chen Y, Chen Y, Zhu Y, Xiao S, Wu M, Wang Y, Zhang C, Wu Z, He X, Liu B, Shen Z, Shao X, Fang J. Electroacupuncture alleviates mechanical allodynia and anxiety-like behaviors induced by chronic neuropathic pain via regulating rostral anterior cingulate cortex-dorsal raphe nucleus neural circuit. CNS Neurosci Ther 2023; 29:4043-4058. [PMID: 37401033 PMCID: PMC10651964 DOI: 10.1111/cns.14328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 06/17/2023] [Indexed: 07/05/2023] Open
Abstract
AIMS Epidemiological studies in patients with neuropathic pain have demonstrated a strong association between neuropathic pain and psychiatric conditions such as anxiety. Preclinical and clinical work has demonstrated that electroacupuncture (EA) effectively alleviates anxiety-like behaviors induced by chronic neuropathic pain. In this study, a potential neural circuitry underlying the therapeutic action of EA was investigated. METHODS The effects of EA stimulation on mechanical allodynia and anxiety-like behaviors in animal models of spared nerve injury (SNI) were examined. EA plus chemogenetic manipulation of glutamatergic (Glu) neurons projecting from the rostral anterior cingulate cortex (rACCGlu ) to the dorsal raphe nucleus (DRN) was used to explore the changes of mechanical allodynia and anxiety-like behaviors in SNI mice. RESULTS Electroacupuncture significantly alleviated both mechanical allodynia and anxiety-like behaviors with increased activities of glutamatergic neurons in the rACC and serotoninergic neurons in the DRN. Chemogenetic activation of the rACCGlu -DRN projections attenuated both mechanical allodynia and anxiety-like behaviors in mice at day 14 after SNI. Chemogenetic inhibition of the rACCGlu -DRN pathway did not induce mechanical allodynia and anxiety-like behaviors under physiological conditions, but inhibiting this pathway produced anxiety-like behaviors in mice at day 7 after SNI; this effect was reversed by EA. EA plus activation of the rACCGlu -DRN circuit did not produce a synergistic effect on mechanical allodynia and anxiety-like behaviors. The analgesic and anxiolytic effects of EA could be blocked by inhibiting the rACCGlu -DRN pathway. CONCLUSIONS The role of rACCGlu -DRN circuit may be different during the progression of chronic neuropathic pain and these changes may be related to the serotoninergic neurons in the DRN. These findings describe a novel rACCGlu -DRN pathway through which EA exerts analgesic and anxiolytic effects in SNI mice exhibiting anxiety-like behaviors.
Collapse
Affiliation(s)
- Yingling Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain‐Machine Integration, School of Brain Science and Brain MedicineZhejiang UniversityHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Xixiao Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuerong Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yeqing Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yichen Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Siqi Xiao
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Mengwei Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yifang Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Chi Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zenmin Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Boyu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
7
|
Akhilesh, Chouhan D, Ummadisetty O, Verma N, Tiwari V. Bergenin ameliorates chemotherapy-induced neuropathic pain in rats by modulating TRPA1/TRPV1/NR2B signalling. Int Immunopharmacol 2023; 125:111100. [PMID: 38149571 DOI: 10.1016/j.intimp.2023.111100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 12/28/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is one of the most prominent and incapacitating complication associated with chemotherapeutic regimens. The exact mechanisms underlying CINP are not fully understood yet, which hampers the development of effective therapeutics. The current study has been designed to investigate the effect of bergenin on CINP and dissect the underlying cellular and molecular mechanisms. Behavioural responsiveness assays were conducted in rats before and after CINP induction and at different time points post-bergenin treatment. We also measured alterations in tight junction proteins, pro-inflammatory cytokines, microglia activity, transient receptor potential (TRP) channels (TRPV1, TRPA1 and TRPM8) and N-methyl-D-aspartate receptor subtype 2 (NR2B) in dorsal root ganglion (DRG) and spinal tissues of neuropathic rats. Bergenin treatment leads to a significant and dose-dependent reduction in evoked and spontaneous ongoing pain without causing central side effects in neuropathic rats. Furthermore, treatment with bergenin and gabapentin did not affect the baseline pain threshold in healthy, non-chemotherapy-treated rats, as evaluated through tail-flick and tail-clip assays. Chemotherapy administration leads to a significant activation of TRP channels, concurrent with microglial activation, disruption of spinal cord tight junction proteins, and subsequent infiltration of pro-inflammatory cytokines, as well as NR2B activation. Notably, bergenin treatment effectively reversed all of these alterations, with the exception of TRPM8, in both the DRG and spinal cord of neuropathic rats. Findings from the present study suggests that bergenin mitigates neuropathic pain by modulating the TRPA1/TRPV1/NR2B signalling and presents a promising therapeutic avenue for the treatment of chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Nivedita Verma
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
8
|
Ochandarena NE, Niehaus JK, Tassou A, Scherrer G. Cell-type specific molecular architecture for mu opioid receptor function in pain and addiction circuits. Neuropharmacology 2023; 238:109597. [PMID: 37271281 PMCID: PMC10494323 DOI: 10.1016/j.neuropharm.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
Opioids are potent analgesics broadly used for pain management; however, they can produce dangerous side effects including addiction and respiratory depression. These harmful effects have led to an epidemic of opioid abuse and overdose deaths, creating an urgent need for the development of both safer pain medications and treatments for opioid use disorders. Both the analgesic and addictive properties of opioids are mediated by the mu opioid receptor (MOR), making resolution of the cell types and neural circuits responsible for each of the effects of opioids a critical research goal. Single-cell RNA sequencing (scRNA-seq) technology is enabling the identification of MOR-expressing cell types throughout the nervous system, creating new opportunities for mapping distinct opioid effects onto newly discovered cell types. Here, we describe molecularly defined MOR-expressing neuronal cell types throughout the peripheral and central nervous systems and their potential contributions to opioid analgesia and addiction.
Collapse
Affiliation(s)
- Nicole E Ochandarena
- Neuroscience Curriculum, Biological and Biomedical Sciences Program, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Gao X, Lin J, Sun L, Hu J, Gao W, Yu J. Activation of the N-methyl-D-aspartate receptor and calcium/calmodulin-dependent protein kinase IIα signal in the rostral anterior cingulate cortex is involved in pain-related aversion in rats with peripheral nerve injury. Behav Brain Res 2023; 452:114560. [PMID: 37394125 DOI: 10.1016/j.bbr.2023.114560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The rostral anterior cingulate cortex (rACC) of rat brain is associated with pain-related emotions. However, the underlying molecular mechanism remains unclear. Here, we investigated the effects of the N-methyl-D-aspartate (NMDA) receptor and Ca2+/Calmodulin-dependent protein kinase type II (CaMKII)α signal on pain-related aversion in the rACC of a rat model of neuropathic pain (NP). Mechanical and thermal hyperalgesia were examined using von Frey and hot plate tests in a rat model of NP induced by spared nerve injury (SNI) of the unilateral sciatic nerve. Bilateral rACC pretreatment with the CaMKII inhibitor tat-CN21 (derived from the cell-penetrating tat sequence and CaM-KIIN amino acids 43-63) or tat-Ctrl (the tat sequence and the scrambled sequence of CN21) was performed on postoperative days 29-35 in Sham rats or rats with SNI. Spatial memory performance was tested using an eight-arm radial maze on postoperative days 34-35. Pain-related negative emotions (aversions) were evaluated using the place escape/avoidance paradigm on postoperative day 35 following the spatial memory performance test. The percentage of time spent in the light area was used to assess pain-related negative emotions (i.e., aversion). The expression levels of the NMDA receptor GluN2B subunit, CaMKIIα, and CaMKII-Threonine at position 286 (Thr286) phosphorylation in contralateral rACC specimens were detected by Western blot or real time PCR following the aversion test. Our data showed that pretreatment of the rACC with tat-CN21 increased determinate behavior but did not alter hyperalgesia or spatial memory performance in rats with SNI. In addition, tat-CN21 reversed the enhanced CaMKII-Thr286 phosphorylation and had no effect on the upregulated expression of GluN2B, CaMKIIα protein, and mRNA. Our data suggested that activation of the NMDA receptor-CaMKIIα signal in rACC is associated with pain-related aversion in rats with NP. These data may provide a new approach for the development of drugs that modulate cognitive and emotional pain aspects.
Collapse
Affiliation(s)
- Xueqi Gao
- Experimental Center for Medical Research, School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Jinhai Lin
- Experimental Center for Medical Research, School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Lin Sun
- School of Psychology, Weifang Medical University, Weifang 261053, China
| | - Jun Hu
- Department of Anesthesiology, Weifang People's Hospital, Weifang 261044, China
| | - Wenjie Gao
- Department of Anesthesiology, Weifang People's Hospital, Weifang 261044, China
| | - Jianfeng Yu
- Experimental Center for Medical Research, School of Anesthesiology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
10
|
Neugebauer V, Presto P, Yakhnitsa V, Antenucci N, Mendoza B, Ji G. Pain-related cortico-limbic plasticity and opioid signaling. Neuropharmacology 2023; 231:109510. [PMID: 36944393 PMCID: PMC10585936 DOI: 10.1016/j.neuropharm.2023.109510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain modulation in clinical and preclinical studies. The amygdala has emerged as a key player in the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic regions have been implicated in pain modulation as well. The cortico-limbic system is rich in opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different regions of this highly interactive system, potentially opposing functions of different opioid receptors, and knowledge gaps will be described here. There is little information about cell type- and circuit-specific functions of opioid receptor subtypes related to pain processing and pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex (ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions in the mesolimbic system appear to be similar but remain to be determined in mPFC regions other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying picture of pain-related neuronal mechanisms of opioid signaling in different elements of the cortico-limbic circuitry has yet to emerge. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brianna Mendoza
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
11
|
Shahbazi Nia S, Hossain MA, Ji G, Jonnalagadda SK, Obeng S, Rahman MA, Sifat AE, Nozohouri S, Blackwell C, Patel D, Thompson J, Runyon S, Hiranita T, McCurdy CR, McMahon L, Abbruscato TJ, Trippier PC, Neugebauer V, German NA. Studies on diketopiperazine and dipeptide analogs as opioid receptor ligands. Eur J Med Chem 2023; 254:115309. [PMID: 37054561 PMCID: PMC10634475 DOI: 10.1016/j.ejmech.2023.115309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Using the structure of gliotoxin as a starting point, we have prepared two different chemotypes with selective affinity to the kappa opioid receptor (KOR). Using medicinal chemistry approaches and structure-activity relationship (SAR) studies, structural features required for the observed affinity were identified, and advanced molecules with favorable Multiparameter Optimization (MPO) and Ligand Lipophilicity (LLE) profiles were prepared. Using the Thermal Place Preference Test (TPPT), we have shown that compound2 blocks the antinociceptive effect of U50488, a known KOR agonist. Multiple reports suggest that modulation of KOR signaling is a promising therapeutic strategy in treating neuropathic pain (NP). As a proof-of-concept study, we tested compound 2 in a rat model of NP and recorded its ability to modulate sensory and emotional pain-related behaviors. Observed in vitro and in vivo results suggest that these ligands can be used to develop compounds with potential application as pain therapeutics.
Collapse
Affiliation(s)
- Siavash Shahbazi Nia
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Mohammad Anwar Hossain
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Samuel Obeng
- Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, AL, 35229, USA
| | - Md Ashrafur Rahman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Collin Blackwell
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Dhavalkumar Patel
- Office of Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Jon Thompson
- Veterinary School of Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | - Scott Runyon
- Reserach Triangle Institute, Research Triangle Park, Durham, NC, 27709, USA
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Lance McMahon
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA; UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
12
|
Bai T, Chen H, Hu W, Liu J, Lin X, Chen S, Luo F, Yang X, Chen J, Li C. Amygdala Metabotropic Glutamate Receptor 1 Influences Synaptic Transmission to Participate in Fentanyl-Induced Hyperalgesia in Rats. Cell Mol Neurobiol 2023; 43:1401-1412. [PMID: 35798932 PMCID: PMC11414450 DOI: 10.1007/s10571-022-01248-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
The underlying mechanisms of opioid-induced hyperalgesia (OIH) remain unclear. Herein, we found that the protein expression of metabotropic glutamate receptor 1 (mGluR1) was significantly increased in the right but not in the left laterocapsular division of central nucleus of the amygdala (CeLC) in OIH rats. In CeLC neurons, the frequency and the amplitude of mini-excitatory postsynaptic currents (mEPSCs) were significantly increased in fentanyl group which were decreased by acute application of a mGluR1 antagonist, A841720. Finally, the behavioral hypersensitivity could be reversed by A841720 microinjection into the right CeLC. These results show that the right CeLC mGluR1 is an important factor associated with OIH that enhances synaptic transmission and could be a potential drug target to alleviate fentanyl-induced hyperalgesia.
Collapse
Affiliation(s)
- Tianyu Bai
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Hengling Chen
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Wenwu Hu
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Jingtao Liu
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Xianguang Lin
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Su Chen
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Fang Luo
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaofei Yang
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chenhong Li
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China.
| |
Collapse
|
13
|
Bannister K, Hughes S. One size does not fit all: towards optimising the therapeutic potential of endogenous pain modulatory systems. Pain 2023; 164:e5-e9. [PMID: 35594517 PMCID: PMC9756434 DOI: 10.1097/j.pain.0000000000002697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Kirsty Bannister
- Central Modulation of Pain Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sam Hughes
- Pain Modulation Lab, Brain Research, and Imaging Centre (BRIC), School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
14
|
Wei H, Chen Z, Lei J, You HJ, Pertovaara A. Reduced mechanical hypersensitivity by inhibition of the amygdala in experimental neuropathy: Sexually dimorphic contribution of spinal neurotransmitter receptors. Brain Res 2022; 1797:148128. [PMID: 36265669 DOI: 10.1016/j.brainres.2022.148128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022]
Abstract
Here we studied spinal neurotransmitter mechanisms involved in the reduction of mechanical hypersensitivity by inhibition of the amygdaloid central nucleus (CeA) in male and female rats with spared nerve injury (SNI) model of neuropathy. SNI induced mechanical hypersensitivity that was stronger in females. Reversible blocking of the CeA with muscimol (GABAA receptor agonist) induced a reduction of mechanical hypersensitivity that did not differ between males and females. Following spinal co-administration of atipamezole (α2-adrenoceptor antagonist), the reduction of mechanical hypersensitivity by CeA muscimol was attenuated more in males than females. In contrast, following spinal co-administration of raclopride (dopamine D2 receptor antagonist) the reduction of hypersensitivity by CeA muscimol was attenuated more in females than males. The reduction of mechanical hypersensitivity by CeA muscimol was equally attenuated in males and females by spinal co-administration of WAY-100635 (5-HT1A receptor antagonist) or bicuculline (GABAA receptor antagonist). The CeA muscimol induced attenuation of ongoing pain-like behavior (conditioned place preference test) that was reversed by spinal co-administration of atipamezole in both sexes. The results support the hypothesis that CeA contributes to mechanical hypersensitivity and ongoing pain-like behavior in SNI males and females. Disinhibition of descending controls acting on spinal α2-adrenoceptors, 5-HT1A, dopamine D2 and GABAA receptors provides a plausible explanation for the reduction of mechanical hypersensitivity by CeA block in SNI. The involvement of spinal dopamine D2 receptors and α2-adrenoceptors in the CeA muscimol-induced reduction of mechanical hypersensitivity is sexually dimorphic, unlike that of spinal α2-adrenoceptors in the reduction of ongoing neuropathic pain.
Collapse
Affiliation(s)
- Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zuyue Chen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Medical Imaging, School of Medicine, Shaoxing University, Shaoxing, PR China
| | - Jing Lei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
15
|
Zhu Y, Sun M, Liu P, Shao W, Xiong M, Xu B. Perioperative stress prolong post-surgical pain via miR-339-5p targeting oprm1 in the amygdala. Korean J Pain 2022; 35:423-432. [PMID: 36175341 PMCID: PMC9530683 DOI: 10.3344/kjp.2022.35.4.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022] Open
Abstract
Background The decreased expression of mu-opioid receptors (MOR) in the amygdala may be a key molecular in chronic post-surgical pain (CPSP). It is known that miR-339-5p expression in the amygdala of a stressed rat model was increased. Analyzed by RNAhybrid, miR-339-5p could target opioid receptor mu 1 (oprm1) which codes MOR directly. So, the authors hypothesized that miR-339-5p could regulate the expression of MOR via targeting oprm1 and cause the effects to CPSP. Methods To simulate perioperative short-term stress, a perioperative stress prolongs incision-induced pain hypersensitivity without changing basal pain perception rat model was built. A pmiR-RB-REPORT™ dual luciferase assay was taken to verify whether miR-339-5p could act on oprm1 as a target. The serum glucocorticoid level of rats was test. Differential expressions of MOR, GFAP, and pERK1/2 in each group of the rats' amygdala were tested, and the expressions of miR-339-5p in each group of rats' amygdalas were also measured. Results Perioperative stress prolonged the recovery time of incision pain. The expression of MOR was down-regulated in the amygdala of rats in stress + incision (S + IN) group significantly compared with other groups (P < 0.050). miR-339-5p was up-regulated in the amygdala of rats in group S + IN significantly compared with other groups (P < 0.050). miR-339-5p acts on oprm1 3'UTR and take MOR mRNA as a target. Conclusions Perioperative stress could increase the expression of miR-339-5p, and miR-339-5p could cause the expression of MOR to decrease via targeting oprm1. This regulatory pathway maybe an important molecular mechanism of CPSP.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Anesthesiology, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| | - Mei Sun
- Department of Anesthesiology, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| | - Peng Liu
- Department of Burns and Plastic Surgery, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| | - Weidong Shao
- Department of Anesthesiology, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| | - Ming Xiong
- Department of Anesthesiology and Peri-Operative Medicine, New Jersey Medical School, Newark, NJ, USA
| | - Bo Xu
- Department of Anesthesiology, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| |
Collapse
|
16
|
Sheng Z, Liu Q, Cheng C, Li M, Barash J, Kofke WA, Shen Y, Xie Z. Fentanyl induces autism-like behaviours in mice by hypermethylation of the glutamate receptor gene Grin2b. Br J Anaesth 2022; 129:544-554. [PMID: 35697546 DOI: 10.1016/j.bja.2022.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Environmental factors contribute to autism spectrum disorder. Fentanyl, one of the most widely used opioid analgesics in anaesthesia, can induce neurotoxicity, but its role in autism remains unknown. We determined whether fentanyl induced autism-like behaviours in young mice and the underlying mechanisms. METHODS Young male and female mice received fentanyl at postnatal days 6, 8, and 10, and performed behavioural tests, including three-chamber social preference, elevated plus maze, grooming behaviour, and open-field test, from postnatal days 30-32. Expression of Grin2b, the gene encoding the GluN2B subunit of the N-methyl-d-aspartate receptor, was assessed in the anterior cingulate cortex of male mice using fluorescence in situ hybridisation histochemistry. We used bisulfite target sequencing to determine Grin2b hypermethylation sites after fentanyl treatment. In the specific activation and rescue experiments, we injected the mu opioid receptor agonist [D-Ala,2 N-MePhe,4 Gly-ol]-enkephalin (DAMGO) or Grin2b overexpression lentivirus into the anterior cingulate cortex of male mice. RESULTS Fentanyl induced autism-like behaviours in both young male and female mice, and downregulated Grin2b expression (0.49-fold [0.08] vs 1.00-fold [0.09]; P<0.01) and GluN2B protein amounts (0.38-fold [0.07] vs 1.00-fold [0.12]; P<0.01) in the anterior cingulate cortex through hypermethylation of Grin2b. The mu-opioid receptor antagonist naloxone and overexpression of Grin2b in anterior cingulate cortex attenuated the fentanyl-induced effects, whereas DAMGO injection into the anterior cingulate cortex induced autism-like behaviours. CONCLUSIONS These data suggest that fentanyl induces autism-like behaviours in young mice via an epigenetic mechanism. Further research is required to determine possible clinical relevance to autism risk.
Collapse
Affiliation(s)
- Zhihao Sheng
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qidong Liu
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chun Cheng
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengzhu Li
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jed Barash
- Department of Medicine, Soldiers' Home, Chelsea, MA, USA
| | - W Andrew Kofke
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuan Shen
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
17
|
Cantu DJ, Kaur S, Murphy AZ, Averitt DL. Sex Differences in the Amygdaloid Projections to the Ventrolateral Periaqueductal Gray and Their Activation During Inflammatory Pain in the Rat. J Chem Neuroanat 2022; 124:102123. [PMID: 35738454 DOI: 10.1016/j.jchemneu.2022.102123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 10/18/2022]
Abstract
Preclinical and clinical studies have reported sex differences in pain and analgesia. These differences may be linked to anatomical structures of the central nervous system pain modulatory circuitry, and/or hormonal milieu. The midbrain periaqueductal gray is a critical brain region for descending inhibition of pain. The PAG projects to the rostral ventromedial medulla (RVM), which projects bilaterally to the spinal cord to inhibit pain. In addition to pain, this descending circuit (or pathway) can be engaged by endogenous opioids (i.e., endorphins) or exogenous opioids (i.e., morphine), and we have previously reported sex differences in the activation of this circuit during pain and analgesia. Forebrain structures, including the amygdala, project to and engage the PAG-RVM circuit during persistent inflammatory pain. However, there are limited studies in females detailing this amygdalar-PAG pathway and its involvement during persistent inflammatory pain. The objective of the present study was to delineate the neural projections from the amygdala to the PAG in male and female rats to determine if they are sexually distinct in their anatomical organization. We also examined the activation of this pathway by inflammatory pain and the co-localization of receptors for estrogen. Injection of the retrograde tracer fluorogold (FG) into the ventrolateral PAG (vlPAG) resulted in dense retrograde labeling in both the central amygdala (CeA) and medial amygdala (MeA). While the number of CeA-vlPAG neurons were comparable between the sexes, there were more MeA-vlPAG neurons in females. Inflammatory pain resulted in greater activation of the amygdala in males; however, females displayed higher Fos expression within CeA-vlPAG projection neurons. Females expressed higher ERα in the MeA and CeA and the same was true of the projection neurons. Together, these data indicate that although the MeA-vlPAG projections are denser in females, inflammatory pain does not significantly activate these projections. In contrast, inflammatory pain resulted in a greater activation of the CeA-vlPAG pathway in females. As females experience a greater number of chronic pain syndromes, the CeA-vlPAG pathway may play a facilitatory (and not inhibitory) role in pain modulation.
Collapse
Affiliation(s)
- Daisy J Cantu
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX 76204
| | - Sukhbir Kaur
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX 76204
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX 76204.
| |
Collapse
|
18
|
Yakhnitsa V, Ji G, Hein M, Presto P, Griffin Z, Ponomareva O, Navratilova E, Porreca F, Neugebauer V. Kappa Opioid Receptor Blockade in the Amygdala Mitigates Pain Like-Behaviors by Inhibiting Corticotropin Releasing Factor Neurons in a Rat Model of Functional Pain. Front Pharmacol 2022; 13:903978. [PMID: 35694266 PMCID: PMC9177060 DOI: 10.3389/fphar.2022.903978] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 01/06/2023] Open
Abstract
Functional pain syndromes (FPS) occur in the absence of identifiable tissue injury or noxious events and include conditions such as migraine, fibromyalgia, and others. Stressors are very common triggers of pain attacks in various FPS conditions. It has been recently demonstrated that kappa opioid receptors (KOR) in the central nucleus of amygdala (CeA) contribute to FPS conditions, but underlying mechanisms remain unclear. The CeA is rich in KOR and encompasses major output pathways involving extra-amygdalar projections of corticotropin releasing factor (CRF) expressing neurons. Here we tested the hypothesis that KOR blockade in the CeA in a rat model of FPS reduces pain-like and nocifensive behaviors by restoring inhibition of CeA-CRF neurons. Intra-CeA administration of a KOR antagonist (nor-BNI) decreased mechanical hypersensitivity and affective and anxiety-like behaviors in a stress-induced FPS model. In systems electrophysiology experiments in anesthetized rats, intra-CeA application of nor-BNI reduced spontaneous firing and responsiveness of CeA neurons to peripheral stimulation. In brain slice whole-cell patch-clamp recordings, nor-BNI increased feedforward inhibitory transmission evoked by optogenetic and electrical stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. Nor-BNI decreased frequency, but not amplitude, of spontaneous inhibitory synaptic currents, suggesting a presynaptic action. Blocking KOR receptors in stress-induced FPS conditions may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Zack Griffin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
19
|
Systemic, Intrathecal, and Intracerebroventricular Antihyperalgesic Effects of the Calcium Channel Blocker CTK 01512–2 Toxin in Persistent Pain Models. Mol Neurobiol 2022; 59:4436-4452. [DOI: 10.1007/s12035-022-02864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
20
|
Ballantyne JC, Sullivan MD. Is Chronic Pain a Disease? THE JOURNAL OF PAIN 2022; 23:1651-1665. [PMID: 35577236 DOI: 10.1016/j.jpain.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
Abstract
It was not until the twentieth century that pain was considered a disease. Before that it was managed medically as a symptom. The motivations for declaring chronic pain a disease, whether of the body or of the brain, include increasing its legitimacy as clinical problem and research focus worthy of attention from healthcare and research organizations alike. But 1 problem with disease concepts is that having a disease favors medical solutions and tends to reduce patient participation. We argue that chronic pain, particularly chronic primary pain (recently designated a first tier pain diagnosis in International Diagnostic Codes 11), is a learned state that is not intransigent even if it has biological correlates. Chronic pain is sometimes a symptom, and may sometimes be its own disease. But here we question the value of a disease focus for much of chronic pain for which patient involvement is essential, and which may need a much broader societal approach than is suggested by the disease designation. PERSPECTIVE: This article examines whether designating chronic pain a disease of the body or brain is helpful or harmful to patients. Can the disease designation help advance treatment, and is it needed to achieve future therapeutic breakthrough? Or does it make patients over-reliant on medical intervention and reduce their engagement in the process of recovery?
Collapse
Affiliation(s)
- Jane C Ballantyne
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington.
| | - Mark D Sullivan
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
21
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
22
|
Shen CL, Watkins BA, Kahathuduwa C, Chyu MC, Zabet-Moghaddam M, Elmassry MM, Luk HY, Brismée JM, Knox A, Lee J, Zumwalt M, Wang R, Wager TD, Neugebauer V. Tai Chi Improves Brain Functional Connectivity and Plasma Lysophosphatidylcholines in Postmenopausal Women With Knee Osteoarthritis: An Exploratory Pilot Study. Front Med (Lausanne) 2022; 8:775344. [PMID: 35047525 PMCID: PMC8761802 DOI: 10.3389/fmed.2021.775344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Objective: A pre/post pilot study was designed to investigate neurobiological mechanisms and plasma metabolites in an 8-week Tai-Chi (TC) group intervention in subjects with knee osteoarthritis. Methods: Twelve postmenopausal women underwent Tai-Chi group exercise for 8 weeks (60 min/session, three times/week). Outcomes were measured before and after Tai Chi intervention including pain intensity (VAS), Brief Pain Inventory (BPI), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), plasma metabolites (amino acids and lipids), as well as resting-state functional magnetic resonance imaging (rs-fMRI, 10 min, eyes open), diffusion tensor imaging (DTI, 12 min), and structural MRI (4.5 min) in a subgroup. Clinical data was analyzed using paired t-tests; plasma metabolites were analyzed using Wilcoxon signed-rank tests; and rs-fMRI data were analyzed using seed-based correlations of the left and right amygdala in a two-level mixed-effects model (FSL software). Correlations between amygdala-medial prefrontal cortex (mPFC) connectivity and corresponding changes in clinical outcomes were examined. DTI connectivity of each amygdala was modeled using a Bayesian approach and probabilistic tractography. The associations between neurobiological effects and pain/physical function were examined. Results: Significant pre/post changes were observed with reduced knee pain (VAS with most pain: p = 0.018; WOMAC-pain: p = 0.021; BPI with worst level: p = 0.018) and stiffness (WOMAC-stiffness, p = 0.020), that likely contributed to improved physical function (WOMAC-physical function: p = 0.018) with TC. Moderate to large effect sizes pre/post increase in rs-fMRI connectivity were observed between bilateral mPFC and the amygdala seed regions (i.e., left: d = 0.988, p = 0.355; right: d = 0.600, p = 0.282). Increased DTI connectivity was observed between bilateral mPFC and left amygdala (d = 0.720, p = 0.156). There were moderate-high correlations (r = 0.28–0.60) between TC-associated pre-post changes in amygdala-mPFC functional connectivity and pain/physical function improvement. Significantly higher levels of lysophosphatidylcholines were observed after TC but lower levels of some essential amino acids. Amino acid levels (alanine, lysine, and methionine) were lower after 8 weeks of TC and many of the lipid metabolites were higher after TC. Further, plasma non-HDL cholesterol levels were lower after TC. Conclusion: This pilot study showed moderate to large effect sizes, suggesting an important role that cortico-amygdala interactions related to TC have on pain and physical function in subjects with knee osteoarthritis pain. Metabolite analyses revealed a metabolic shift of higher lyso-lipids and lower amino acids that might suggest greater fatty acid catabolism, protein turnover and changes in lipid redistribution in response to TC exercise. The results also support therapeutic strategies aimed at strengthening functional and structural connectivity between the mPFC and the amygdala. Controlled clinical trials are warranted to confirm these observed preliminary effects.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Chanaka Kahathuduwa
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Laboratory Sciences and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ming-Chien Chyu
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Medical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Moamen M Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Hui-Ying Luk
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Jean-Michel Brismée
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Rehabilitation Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ami Knox
- Clinical Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jaehoon Lee
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Educational Psychology and Leadership, Texas Tech University, Lubbock, TX, United States
| | - Mimi Zumwalt
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Orthopedic Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
23
|
Cooper AH, Hedden NS, Corder G, Lamerand SR, Donahue RR, Morales-Medina JC, Selan L, Prasoon P, Taylor BK. Endogenous µ-opioid receptor activity in the lateral and capsular subdivisions of the right central nucleus of the amygdala prevents chronic postoperative pain. J Neurosci Res 2022; 100:48-65. [PMID: 33957003 PMCID: PMC8571119 DOI: 10.1002/jnr.24846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
Tissue injury induces a long-lasting latent sensitization (LS) of spinal nociceptive signaling that is kept in remission by an opposing µ-opioid receptor (MOR) constitutive activity. To test the hypothesis that supraspinal sites become engaged, we induced hindpaw inflammation, waited 3 weeks for mechanical hypersensitivity to resolve, and then injected the opioid receptor inhibitors naltrexone, CTOP or β-funaltrexamine subcutaneously, and/or into the cerebral ventricles. Intracerebroventricular injection of each inhibitor reinstated hypersensitivity and produced somatic signs of withdrawal, indicative of LS and endogenous opioid dependence, respectively. In naïve or sham controls, systemic naloxone (3 mg/kg) produced conditioned place aversion, and systemic naltrexone (3 mg/kg) increased Fos expression in the central nucleus of the amygdala (CeA). In LS animals tested 3 weeks after plantar incision, systemic naltrexone reinstated mechanical hypersensitivity and produced an even greater increase in Fos than in sham controls, particularly in the capsular subdivision of the right CeA. One third of Fos+ profiles co-expressed protein kinase C delta (PKCδ), and 35% of PKCδ neurons co-expressed tdTomato+ in Oprm1Cre ::tdTomato transgenic mice. CeA microinjection of naltrexone (1 µg) reinstated mechanical hypersensitivity only in male mice and did not produce signs of somatic withdrawal. Intra-CeA injection of the MOR-selective inhibitor CTAP (300 ng) reinstated hypersensitivity in both male and female mice. We conclude that MORs in the capsular subdivision of the right CeA prevent the transition from acute to chronic postoperative pain.
Collapse
Affiliation(s)
- Andrew H. Cooper
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naomi S. Hedden
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gregory Corder
- Department of Psychiatry and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sydney R. Lamerand
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neurosciences at the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Renee R. Donahue
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | | | - Lindsay Selan
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Kimmey BA, McCall NM, Wooldridge LM, Satterthwaite T, Corder G. Engaging endogenous opioid circuits in pain affective processes. J Neurosci Res 2022; 100:66-98. [PMID: 33314372 PMCID: PMC8197770 DOI: 10.1002/jnr.24762] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023]
Abstract
The pervasive use of opioid compounds for pain relief is rooted in their utility as one of the most effective therapeutic strategies for providing analgesia. While the detrimental side effects of these compounds have significantly contributed to the current opioid epidemic, opioids still provide millions of patients with reprieve from the relentless and agonizing experience of pain. The human experience of pain has long recognized the perceived unpleasantness entangled with a unique sensation that is immediate and identifiable from the first-person subjective vantage point as "painful." From this phenomenological perspective, how is it that opioids interfere with pain perception? Evidence from human lesion, neuroimaging, and preclinical functional neuroanatomy approaches is sculpting the view that opioids predominately alleviate the affective or inferential appraisal of nociceptive neural information. Thus, opioids weaken pain-associated unpleasantness rather than modulate perceived sensory qualities. Here, we discuss the historical theories of pain to demonstrate how modern neuroscience is revisiting these ideas to deconstruct the brain mechanisms driving the emergence of aversive pain perceptions. We further detail how targeting opioidergic signaling within affective or emotional brain circuits remains a strong avenue for developing targeted pharmacological and gene-therapy analgesic treatments that might reduce the dependence on current clinical opioid options.
Collapse
Affiliation(s)
- Blake A. Kimmey
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Equal contributions
| | - Nora M. McCall
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Equal contributions
| | - Lisa M. Wooldridge
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Martins CP, Paes RS, Baldasso GM, Ferrarini EG, Scussel R, Zaccaron RP, Machado-de-Ávila RA, Lock Silveira PC, Dutra RC. Pramipexole, a dopamine D3/D2 receptor-preferring agonist, attenuates reserpine-induced fibromyalgia-like model in mice. Neural Regen Res 2022; 17:450-458. [PMID: 34269222 PMCID: PMC8463993 DOI: 10.4103/1673-5374.317984] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibromyalgia (FM) is a complex pathology described as persistent hyperalgesia including somatic and mood dysfunctions, depression and anxiety. Although the etiology of FM is still unknown, a significant decrease in biogenic amines is a common characteristic in its pathogenesis. Here, our main objective was to investigate the role of dopamine D3/D2 receptor during the reserpine-induced pain in mice. Our results showed that pramipexole (PPX) - a dopaminergic D3/D2 receptor agonist - inhibited mechanical allodynia and thermal sensitivity induced by reserpine. Relevantly, PPX treatment decreased immobility time and increased the number of grooming in the forced swimming test and splash test, respectively. Animals that received PPX remained longer in the open arms than the reserpine group using elevated plus-maze apparatus. The repeated PPX administration, given daily for 4 days, significantly blocked the mechanical and thermal allodynia during FM model, similarly to pregabalin, although it failed to affect the reserpine-induced thermal nociception. Reserpine administration induced significant downregulation of dopamine concentration in the central nervous system, and repeated treatment with PPX restored dopamine levels in the frontal cortex and spinal cord tissues. Moreover, PPX treatment inhibited oxidants production such as DCFH (2',7'-dichlorodihydrofluorescein) and nitrite, also decreased oxidative damage (carbonyl), and upregulated the activity of superoxide dismutase in the spinal cord. Together, our findings demonstrated the ability of dopamine D3/D2 receptor-preferring agonist in reducing pain and mood dysfunction allied to FM in mice. All experimental protocols were approved by the Universidade Federal de Santa Catarina (UFSC) Ethics Committee (approval No. 2572210218) on May 10, 2018.
Collapse
Affiliation(s)
- Carlos Pereira Martins
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rodrigo Sebben Paes
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | - Gabriela Mantovani Baldasso
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | - Eduarda Gomes Ferrarini
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
26
|
Walker SM. Developmental Mechanisms of CPSP: Clinical Observations and Translational Laboratory Evaluations. Can J Pain 2021; 6:49-60. [PMID: 35910395 PMCID: PMC9331197 DOI: 10.1080/24740527.2021.1999796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Understanding mechanisms that underly the transition from acute to chronic pain and identifying potential targets for preventing or minimizing this progression have specific relevance for chronic postsurgical pain (CPSP). Though it is clear that multiple psychosocial, family, and environmental factors may influence CPSP, this review will focus on parallels between clinical observations and translational laboratory studies investigating the acute and long-term effects of surgical injury on nociceptive pathways. This includes data related to alterations in sensitivity at different points along nociceptive pathways from the periphery to the brain; age- and sex-dependent mechanisms underlying the transition from acute to persistent pain; potential targets for preventive interventions; and the impact of prior surgical injury. Ongoing preclinical studies evaluating age- and sex-dependent mechanisms will also inform comparative efficacy and preclinical safety assessments of potential preventive pharmacological interventions aimed at reducing the risk of CPSP. In future clinical studies, more detailed and longitudinal peri-operative phenotyping with patient- and parent-reported chronic pain core outcomes, alongside more specialized evaluations of somatosensory function, modulation, and circuitry, may enhance understanding of individual variability in postsurgical pain trajectories and improve recognition and management of CPSP.
Collapse
Affiliation(s)
- Suellen M. Walker
- Clinical Neurosciences (Pain Research), Developmental Neurosciences, UCL GOS Institute of Child Health, London, UK; Department of Paediatric Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
27
|
Abstract
Managing chronic pain remains a major unmet clinical challenge. Patients can be treated with a range of interventions, but pharmacotherapy is the most common. These include opioids, antidepressants, calcium channel modulators, sodium channel blockers, and nonsteroidal anti-inflammatory drugs. Many of these drugs target a particular mechanism; however, chronic pain in many diseases is multifactorial and induces plasticity throughout the sensory neuroaxis. Furthermore, comorbidities such as depression, anxiety, and sleep disturbances worsen quality of life. Given the complexity of mechanisms and symptoms in patients, it is unsurprising that many fail to achieve adequate pain relief from a single agent. The efforts to develop novel drug classes with better efficacy have not always proved successful; a multimodal or combination approach to analgesia is an important strategy in pain control. Many patients frequently take more than one medication, but high-quality evidence to support various combinations is often sparse. Ideally, combining drugs would produce synergistic action to maximize analgesia and reduce side effects, although sub-additive and additive analgesia is still advantageous if additive side-effects can be avoided. In this review, we discuss pain mechanisms, drug actions, and the rationale for mechanism-led treatment selection.Abbreviations: COX - cyclooxygenase, CGRP - calcitonin gene-related peptide, CPM - conditioned pain modulation, NGF - nerve growth factor, NNT - number needed to treat, NMDA - N-methyl-d-aspartate, NSAID - nonsteroidal anti-inflammatory drugs, TCA - tricyclic antidepressant, SNRI - serotonin-noradrenaline reuptake inhibitor, QST - quantitative sensory testing.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| |
Collapse
|
28
|
Tan LL, Kuner R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci 2021; 22:458-471. [PMID: 34127843 DOI: 10.1038/s41583-021-00468-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The sensory, associative and limbic neocortical structures play a critical role in shaping incoming noxious inputs to generate variable pain perceptions. Technological advances in tracing circuitry and interrogation of pathways and complex behaviours are now yielding critical knowledge of neocortical circuits, cellular contributions and causal relationships between pain perception and its abnormalities in chronic pain. Emerging insights into neocortical pain processing suggest the existence of neocortical causality and specificity for pain at the level of subdomains, circuits and cellular entities and the activity patterns they encode. These mechanisms provide opportunities for therapeutic intervention for improved pain management.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
29
|
Bannister K, Kucharczyk MW, Graven-Nielsen T, Porreca F. Introducing descending control of nociception: a measure of diffuse noxious inhibitory controls in conscious animals. Pain 2021; 162:1957-1959. [PMID: 33470750 PMCID: PMC8205930 DOI: 10.1097/j.pain.0000000000002203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/10/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Kirsty Bannister
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE1 1UL. UK
| | - Mateusz W. Kucharczyk
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE1 1UL. UK
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, Arizona, AZ 85721. USA
| |
Collapse
|
30
|
Šimić G, Tkalčić M, Vukić V, Mulc D, Španić E, Šagud M, Olucha-Bordonau FE, Vukšić M, R. Hof P. Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules 2021; 11:biom11060823. [PMID: 34072960 PMCID: PMC8228195 DOI: 10.3390/biom11060823] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Emotions arise from activations of specialized neuronal populations in several parts of the cerebral cortex, notably the anterior cingulate, insula, ventromedial prefrontal, and subcortical structures, such as the amygdala, ventral striatum, putamen, caudate nucleus, and ventral tegmental area. Feelings are conscious, emotional experiences of these activations that contribute to neuronal networks mediating thoughts, language, and behavior, thus enhancing the ability to predict, learn, and reappraise stimuli and situations in the environment based on previous experiences. Contemporary theories of emotion converge around the key role of the amygdala as the central subcortical emotional brain structure that constantly evaluates and integrates a variety of sensory information from the surroundings and assigns them appropriate values of emotional dimensions, such as valence, intensity, and approachability. The amygdala participates in the regulation of autonomic and endocrine functions, decision-making and adaptations of instinctive and motivational behaviors to changes in the environment through implicit associative learning, changes in short- and long-term synaptic plasticity, and activation of the fight-or-flight response via efferent projections from its central nucleus to cortical and subcortical structures.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
- Correspondence:
| | - Mladenka Tkalčić
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Rijeka, 51000 Rijeka, Croatia;
| | - Vana Vukić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Damir Mulc
- University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia;
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Marina Šagud
- Department of Psychiatry, Clinical Hospital Center Zagreb and University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | | | - Mario Vukšić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 07305, USA;
| |
Collapse
|
31
|
Kucharczyk MW, Valiente D, Bannister K. Developments in Understanding Diffuse Noxious Inhibitory Controls: Pharmacological Evidence from Pre-Clinical Research. J Pain Res 2021; 14:1083-1095. [PMID: 33907456 PMCID: PMC8068490 DOI: 10.2147/jpr.s258602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Bulbospinal pathways regulate nociceptive processing, and inhibitory modulation of nociception can be achieved via the activity of diffuse noxious inhibitory controls (DNIC), a unique descending pathway activated upon application of a conditioning stimulus (CS). Numerous studies have investigated the effects of varied pharmacological systems on the expression status of a) DNIC (as measured in anaesthetised animals) and b) the descending control of nociception (DCN), a surrogate measure of DNIC-like effects in conscious animals. However, the complexity of the underlying circuitry that governs initiation of a top-down inhibitory response in reaction to a CS, coupled with the methodological limitations associated with using pharmacological tools for its study, has often obscured the exact role(s) of a given drug. In this literature review, we discuss the pharmacological manipulation interrogation strategies that have hitherto been used to examine the functionality of DNIC and DCN. Discreet administration of a substance in the spinal cord or brain is considered in the context of action on one of four hypothetical systems that underlie the functionality of DNIC/DCN, where interpreting the outcome is often complicated by overlapping qualities. Systemic pharmacological modulation of DNIC/DCN is also discussed despite the fact that the precise location of drug action(s) cannot be pinpointed. Chiefly, modulation of the noradrenergic, serotonergic and opioidergic transmission systems impacts DNIC/DCN in a manner that relates to drug class, route of administration and health/disease state implicated. The advent of increasingly sophisticated interrogation tools will expedite our full understanding of the circuitries that modulate naturally occurring pain-inhibiting pathways.
Collapse
Affiliation(s)
- Mateusz Wojciech Kucharczyk
- Central Modulation of Pain Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL., UK
| | - Diego Valiente
- Central Modulation of Pain Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL., UK
| | - Kirsty Bannister
- Central Modulation of Pain Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL., UK
| |
Collapse
|
32
|
Pretreatment with High Mobility Group Box-1 Monoclonal Antibody Prevents the Onset of Trigeminal Neuropathy in Mice with a Distal Infraorbital Nerve Chronic Constriction Injury. Molecules 2021; 26:molecules26072035. [PMID: 33918407 PMCID: PMC8038245 DOI: 10.3390/molecules26072035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Persistent pain following orofacial surgery is not uncommon. High mobility group box 1 (HMGB1), an alarmin, is released by peripheral immune cells following nerve injury and could be related to pain associated with trigeminal nerve injury. Distal infraorbital nerve chronic constriction injury (dIoN-CCI) evokes pain-related behaviors including increased facial grooming and hyper-responsiveness to acetone (cutaneous cooling) after dIoN-CCI surgery in mice. In addition, dIoN-CCI mice developed conditioned place preference to mirogabalin, suggesting increased neuropathic pain-related aversion. Treatment of the infraorbital nerve with neutralizing antibody HMGB1 (anti-HMGB1 nAb) before dIoN-CCI prevented both facial grooming and hyper-responsiveness to cooling. Pretreatment with anti-HMGB1 nAb also blocked immune cell activation associated with trigeminal nerve injury including the accumulation of macrophage around the injured IoN and increased microglia activation in the ipsilateral spinal trigeminal nucleus caudalis. The current findings demonstrated that blocking of HMGB1 prior to nerve injury prevents the onset of pain-related behaviors, possibly through blocking the activation of immune cells associated with the nerve injury, both within the CNS and on peripheral nerves. The current findings further suggest that blocking HMGB1 before tissue injury could be a novel strategy to prevent the induction of chronic pain following orofacial surgeries.
Collapse
|
33
|
Pantazis CB, Gonzalez LA, Tunstall BJ, Carmack SA, Koob GF, Vendruscolo LF. Cues conditioned to withdrawal and negative reinforcement: Neglected but key motivational elements driving opioid addiction. SCIENCE ADVANCES 2021; 7:7/15/eabf0364. [PMID: 33827822 PMCID: PMC8026136 DOI: 10.1126/sciadv.abf0364] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 05/07/2023]
Abstract
Opioid use disorder (OUD) is a debilitating disorder that affects millions of people. Neutral cues can acquire motivational properties when paired with the positive emotional effects of drug intoxication to stimulate relapse. However, much less research has been devoted to cues that become conditioned to the aversive effects of opioid withdrawal. We argue that environmental stimuli promote motivation for opioids when cues are paired with withdrawal (conditioned withdrawal) and generate opioid consumption to terminate conditioned withdrawal (conditioned negative reinforcement). We review evidence that cues associated with pain drive opioid consumption, as patients with chronic pain may misuse opioids to escape physical and emotional pain. We highlight sex differences in withdrawal-induced stress reactivity and withdrawal cue processing and discuss neurocircuitry that may underlie withdrawal cue processing in dependent individuals. These studies highlight the importance of studying cues associated with withdrawal in dependent individuals and point to areas for exploration in OUD research.
Collapse
Affiliation(s)
- Caroline B Pantazis
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Luis A Gonzalez
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephanie A Carmack
- Center for Adaptive Systems of Brain-Body Interactions, George Mason University, Fairfax, VA, USA
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
34
|
Hein M, Ji G, Tidwell D, D'Souza P, Kiritoshi T, Yakhnitsa V, Navratilova E, Porreca F, Neugebauer V. Kappa opioid receptor activation in the amygdala disinhibits CRF neurons to generate pain-like behaviors. Neuropharmacology 2021; 185:108456. [PMID: 33444637 PMCID: PMC7887082 DOI: 10.1016/j.neuropharm.2021.108456] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that kappa opioid receptors (KOR) in limbic brain regions such as the amygdala contribute to pain conditions, but underlying mechanisms remain to be determined. The amygdala is an important player in averse-affective aspects of pain and pain modulation. The central nucleus (CeA) serves output functions through projection neurons that include corticotropin releasing factor (CRF) expressing neurons. The CeA is also rich in KOR. Here we tested the novel hypothesis that KOR activation in the CeA generates pain-like behaviors through a mechanism that involves inhibition of synaptic inhibition (disinhibition) of CRF neurons. Intra-CeA administration of a KOR agonist (U-69,593) increased vocalizations of naïve rats to noxious stimuli, and induced anxiety-like behaviors in the open field test (OFT) and avoidance in the conditioned place preference test, without affecting mechanosensory thresholds. Optogenetic silencing of CeA-CRF neurons blocked the facilitatory effects of systemically applied U-69,593 in naïve rats. Patch-clamp recordings of CRF neurons in rat brain slices found that U-69,593 decreased feedforward inhibitory transmission evoked by optogenetic stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. U-69,593 decreased frequency, but not amplitude, of inhibitory synaptic currents, suggesting a presynaptic action. Multiphoton imaging of CeA-CRF neurons in rat brain slices showed that U-69,593 increased calcium signals evoked by electrical stimulation of presumed parabrachial input. This study shows for the first time that KOR activation increases activity of amygdala CRF neurons through synaptic disinhibition, resulting in averse-affective pain-like behaviors. Blocking KOR receptors may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dalton Tidwell
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Preston D'Souza
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
35
|
Ji G, Neugebauer V. Kappa opioid receptors in the central amygdala modulate spinal nociceptive processing through an action on amygdala CRF neurons. Mol Brain 2020; 13:128. [PMID: 32948219 PMCID: PMC7501648 DOI: 10.1186/s13041-020-00669-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The amygdala plays an important role in the emotional-affective aspects of behaviors and pain, but can also modulate sensory aspect of pain ("nociception"), likely through coupling to descending modulatory systems. Here we explored the functional coupling of the amygdala to spinal nociception. We found that pharmacological activation of neurons in the central nucleus of the amygdala (CeA) increased the activity of spinal dorsal horn neurons; and this effect was blocked by optogenetic silencing of corticotropin releasing factor (CRF) positive CeA neurons. A kappa opioid receptor (KOR) agonist (U-69,593) was administered into the CeA by microdialysis. KOR was targeted because of their role in averse-affective behaviors through actions in limbic brain regions. Extracellular single-unit recordings were made of CeA neurons or spinal dorsal horn neurons in anesthetized transgenic Crh-Cre rats. Neurons responded more strongly to noxious than innocuous stimuli. U-69,593 increased the responses of CeA and spinal neurons to innocuous and noxious mechanical stimulation of peripheral tissues. The facilitatory effect of the agonist was blocked by optical silencing of CRF-CeA neurons though light activation of halorhodopsin expressed in these neurons by viral-vector. The CRF system in the amygdala has been implicated in aversiveness and pain modulation. The results suggest that the amygdala can modulate spinal nociceptive processing in a positive direction through CRF-CeA neurons and that KOR activation in the amygdala (CeA) has pro-nociceptive effects.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th St, Lubbock, TX, 79430-6592, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
36
|
Tsagareli N, Tsiklauri N, Kvachadze I, Tsagareli MG. Endogenous opioid and cannabinoid systems contribute to antinociception produced by administration of NSAIDs into the insular cortex of rats. Biomed Pharmacother 2020; 131:110722. [PMID: 32916536 DOI: 10.1016/j.biopha.2020.110722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/29/2022] Open
Abstract
Pain sensation is characterized as a complex experience, dependent on sensory processes as well as the activation of limbic brain areas involved in emotion, among them anterior insula. This cortical area is involved in the perception and response to painful stimuli. We investigated if this area contributes to antinociception produced by NSAIDs, and underlying mechanisms. We found that administration of NSAIDs into the anterior insular cortex in rats reduced mechanical and heat hyperalgesia produced by intraplantar injection of formalin, and this was attenuated by pre- or post-treatment with the opioid receptor antagonists, naloxone and CTOP, and the cannabinoid receptor (CB1) antagonist AM-251. These data support the concept that NSAID-evoked antinociception is mediated via descending endogenous opioid and cannabinoid systems inhibiting spinal paw withdrawal reflexes in rodents.
Collapse
Affiliation(s)
- Natia Tsagareli
- Department of Pain and Analgesia, Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia; Department of Physiology, Tbilisi State Medial University, Tbilisi, Georgia
| | - Nana Tsiklauri
- Department of Pain and Analgesia, Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia
| | - Irine Kvachadze
- Department of Physiology, Tbilisi State Medial University, Tbilisi, Georgia
| | - Merab G Tsagareli
- Department of Pain and Analgesia, Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia; Department of Physiology, Tbilisi State Medial University, Tbilisi, Georgia.
| |
Collapse
|
37
|
Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 2020; 170:108052. [PMID: 32188569 DOI: 10.1016/j.neuropharm.2020.108052] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Neuropeptides play important modulatory roles throughout the nervous system, functioning as direct effectors or as interacting partners with other neuropeptide and neurotransmitter systems. Limbic brain areas involved in learning, memory and emotions are particularly rich in neuropeptides. This review will focus on the amygdala, a limbic region that plays a key role in emotional-affective behaviors and pain modulation. The amygdala is comprised of different nuclei; the basolateral (BLA) and central (CeA) nuclei and in between, the intercalated cells (ITC), have been linked to pain-related functions. A wide range of neuropeptides are found in the amygdala, particularly in the CeA, but this review will discuss those neuropeptides that have been explored for their role in pain modulation. Calcitonin gene-related peptide (CGRP) is a key peptide in the afferent nociceptive pathway from the parabrachial area and mediates excitatory drive of CeA neurons. CeA neurons containing corticotropin releasing factor (CRF) and/or somatostatin (SOM) are a source of long-range projections and serve major output functions, but CRF also acts locally to excite neurons in the CeA and BLA. Neuropeptide S (NPS) is associated with inhibitory ITC neurons that gate amygdala output. Oxytocin and vasopressin exert opposite (inhibitory and excitatory, respectively) effects on amygdala output. The opioid system of mu, delta and kappa receptors (MOR, DOR, KOR) and their peptide ligands (β-endorphin, enkephalin, dynorphin) have complex and partially opposing effects on amygdala function. Neuropeptides therefore serve as valuable targets to regulate amygdala function in pain conditions. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryce Cragg
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|