1
|
Guo W, Yang H, Wang Y, Liu T, Pan Y, Chen X, Xu Q, Zhao D, Shan Z, Cai S. Small-molecule natural product sophoricoside reduces peripheral neuropathic pain via directly blocking of NaV1.6 in dorsal root ganglion nociceptive neurons. Neuropsychopharmacology 2025; 50:662-672. [PMID: 39414988 PMCID: PMC11845512 DOI: 10.1038/s41386-024-01998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Peripheral neuropathic pain poses a significant global health challenge. Current drugs for peripheral neuropathic pain often fall short in efficacy or come with severe side effects, emphasizing the critical need for the development of highly effective and well-tolerated alternatives. Sophoricoside (SOP) is a nature product-derived isoflavone that possesses various pharmacological effects on inflammatory and neuropathy diseases. Here, in this study, analgesic effect was investigated by intrathecally administration of SOP/vehicle to spared nerve injury (SNI) or paclitaxel-induced peripheral neuropathic pain (PINP) rodent models, and mechanical allodynia was measured in Von Frey tests. Ipsilateral L4-L6 dorsal root ganglia (DRG) were used for protein expression. In silico molecular docking analysis was applied for assessing compound-target binding affinity. Primary cultured DRG neurons were utilized to investigate SOP's effect on veratridine-triggered nociceptor activities and its selective inhibition of voltage-gated sodium channels subtype 1.6 (NaV1.6). The results showed SOP treatment alleviated mechanical allodynia in SNI and PINP rodent models (paw withdrawal threshold after 1 h of injection: SNI-vehicle: 1.385 ± 0.338 g; SNI-SOP: 9.963 ± 2.029 g, P < 0.001; PINP-vehicle: 5.040 ± 0.985 g; PINP-SOP: 8.287 ± 3.812 g, P = 0.004). SOP presented effects on both inhibiting veratridine-triggered nociceptor activities (oscillatory population: vehicle: 39.9 ± 7.3%; SOP: 30.7 ± 9.8%, P = 0.021) and selectively blocking NaV1.6 in DRG sensory neurons. Molecular docking analysis indicated direct binding between SOP and NaV1.6, leading to its endocytosis in DRG Sensory Neurons. In conclusion, SOP alleviated nociceptive allodynia induced by peripheral nerve injury via selectively blocking of NaV1.6 in DRG nociceptive neurons. we highlight its potential as an analgesic and elucidate its mechanism involving NaV1.6 endocytosis. This research opens avenues for exploring the analgesic effects of SOP and its potential impact on neuropathic pain therapy.
Collapse
Affiliation(s)
- Weijie Guo
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Haoyi Yang
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuwei Wang
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Tao Liu
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Yunping Pan
- Department of Periodontology & Oral Mucosa, Shenzhen Stomatology Hospital, Shenzhen, China
| | - Xiying Chen
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Qiuyin Xu
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Dizhou Zhao
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhiming Shan
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Song Cai
- Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Wang Y, Shu J, Yang H, Hong K, Yang X, Guo W, Fang J, Li F, Liu T, Shan Z, Shi T, Cai S, Zhang J. Nav1.7 Modulator Bearing a 3-Hydroxyindole Backbone Holds the Potential to Reverse Neuropathic Pain. ACS Chem Neurosci 2024; 15:1063-1073. [PMID: 38449097 DOI: 10.1021/acschemneuro.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Chronic pain is a growing global health problem affecting at least 10% of the world's population. However, current chronic pain treatments are inadequate. Voltage-gated sodium channels (Navs) play a pivotal role in regulating neuronal excitability and pain signal transmission and thus are main targets for nonopioid painkiller development, especially those preferentially expressed in dorsal root ganglial (DRG) neurons, such as Nav1.6, Nav1.7, and Nav1.8. In this study, we screened in virtual hits from dihydrobenzofuran and 3-hydroxyoxindole hybrid molecules against Navs via a veratridine (VTD)-based calcium imaging method. The results showed that one of the molecules, 3g, could inhibit VTD-induced neuronal activity significantly. Voltage clamp recordings demonstrated that 3g inhibited the total Na+ currents of DRG neurons in a concentration-dependent manner. Biophysical analysis revealed that 3g slowed the activation, meanwhile enhancing the inactivation of the Navs. Additionally, 3g use-dependently blocked Na+ currents. By combining with selective Nav inhibitors and a heterozygous expression system, we demonstrated that 3g preferentially inhibited the TTX-S Na+ currents, specifically the Nav1.7 current, other than the TTX-R Na+ currents. Molecular docking experiments implicated that 3g binds to a known allosteric site at the voltage-sensing domain IV(VSDIV) of Nav1.7. Finally, intrathecal injection of 3g significantly relieved mechanical pain behavior in the spared nerve injury (SNI) rat model, suggesting that 3g is a promising candidate for treating chronic pain.
Collapse
Affiliation(s)
- Yuwei Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jirong Shu
- Guangdong Chiral Drug Engineering Laboratory, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, China
| | - Haoyi Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Kemiao Hong
- Guangdong Chiral Drug Engineering Laboratory, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiangji Yang
- Guangdong Chiral Drug Engineering Laboratory, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, China
| | - Weijie Guo
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jie Fang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Fuyi Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tao Liu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhiming Shan
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen 518020, China
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Taoda Shi
- Guangdong Chiral Drug Engineering Laboratory, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, China
| | - Song Cai
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Waheed S, Ramzan K, Ahmad S, Khan MS, Wajid M, Ullah H, Umar A, Iqbal R, Ullah R, Bari A. Identification and In-Silico study of non-synonymous functional SNPs in the human SCN9A gene. PLoS One 2024; 19:e0297367. [PMID: 38394191 PMCID: PMC10889873 DOI: 10.1371/journal.pone.0297367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
Single nucleotide polymorphisms are the most common form of DNA alterations at the level of a single nucleotide in the genomic sequence. Genome-wide association studies (GWAS) were carried to identify potential risk genes or genomic regions by screening for SNPs associated with disease. Recent studies have shown that SCN9A comprises the NaV1.7 subunit, Na+ channels have a gene encoding of 1988 amino acids arranged into 4 domains, all with 6 transmembrane regions, and are mainly found in dorsal root ganglion (DRG) neurons and sympathetic ganglion neurons. Multiple forms of acute hypersensitivity conditions, such as primary erythermalgia, congenital analgesia, and paroxysmal pain syndrome have been linked to polymorphisms in the SCN9A gene. Under this study, we utilized a variety of computational tools to explore out nsSNPs that are potentially damaging to heath by modifying the structure or activity of the SCN9A protein. Over 14 potentially damaging and disease-causing nsSNPs (E1889D, L1802P, F1782V, D1778N, C1370Y, V1311M, Y1248H, F1237L, M936V, I929T, V877E, D743Y, C710W, D623H) were identified by a variety of algorithms, including SNPnexus, SNAP-2, PANTHER, PhD-SNP, SNP & GO, I-Mutant, and ConSurf. Homology modeling, structure validation, and protein-ligand interactions also were performed to confirm 5 notable substitutions (L1802P, F1782V, D1778N, V1311M, and M936V). Such nsSNPs may become the center of further studies into a variety of disorders brought by SCN9A dysfunction. Using in-silico strategies for assessing SCN9A genetic variations will aid in organizing large-scale investigations and developing targeted therapeutics for disorders linked to these variations.
Collapse
Affiliation(s)
- Sana Waheed
- Faculty of Life Science, Department of Zoology, University of Okara, Okara, Pakistan
| | - Kainat Ramzan
- Faculty of Life Science, Department of Biochemistry, University of Okara, Okara, Pakistan
| | - Sibtain Ahmad
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saleem Khan
- Faculty of Life Science, Department of Zoology, University of Okara, Okara, Pakistan
| | - Muhammad Wajid
- Faculty of Life Science, Department of Zoology, University of Okara, Okara, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Ali Umar
- Faculty of Life Science, Department of Zoology, University of Okara, Okara, Pakistan
| | - Rashid Iqbal
- Faculty of Agriculture and Environment, Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Yang H, Shan Z, Guo W, Wang Y, Cai S, Li F, Huang Q, Liu JA, Cheung CW, Cai S. Reversal of Peripheral Neuropathic Pain by the Small-Molecule Natural Product Narirutin via Block of Na v1.7 Voltage-Gated Sodium Channel. Int J Mol Sci 2022; 23:ijms232314842. [PMID: 36499167 PMCID: PMC9738487 DOI: 10.3390/ijms232314842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Neuropathic pain is a refractory chronic disease affecting millions of people worldwide. Given that present painkillers have poor efficacy or severe side effects, developing novel analgesics is badly needed. The multiplex structure of active ingredients isolated from natural products provides a new source for phytochemical compound synthesis. Here, we identified a natural product, Narirutin, a flavonoid compound isolated from the Citrus unshiu, showing antinociceptive effects in rodent models of neuropathic pain. Using calcium imaging, whole-cell electrophysiology, western blotting, and immunofluorescence, we uncovered a molecular target for Narirutin's antinociceptive actions. We found that Narirutin (i) inhibits Veratridine-triggered nociceptor activities in L4-L6 rat dorsal root ganglion (DRG) neurons, (ii) blocks voltage-gated sodium (NaV) channels subtype 1.7 in both small-diameter DRG nociceptive neurons and human embryonic kidney (HEK) 293 cell line, (iii) does not affect tetrodotoxin-resistant (TTX-R) NaV channels, and (iv) blunts the upregulation of Nav1.7 in calcitonin gene-related peptide (CGRP)-labeled DRG sensory neurons after spared nerve injury (SNI) surgery. Identifying Nav1.7 as a molecular target of Narirutin may further clarify the analgesic mechanism of natural flavonoid compounds and provide an optimal idea to produce novel selective and efficient analgesic drugs.
Collapse
Affiliation(s)
- Haoyi Yang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhiming Shan
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Department of Anesthesiology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen 518020, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen 518020, China
| | - Weijie Guo
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yuwei Wang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Shuxian Cai
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Fuyi Li
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Qiaojie Huang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jessica Aijia Liu
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Correspondence: (C.W.C.); (S.C.)
| | - Song Cai
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
- Correspondence: (C.W.C.); (S.C.)
| |
Collapse
|
5
|
Salavatian S, Hoang JD, Yamaguchi N, Lokhandwala ZA, Swid MA, Armour JA, Ardell JL, Vaseghi M. Myocardial infarction reduces cardiac nociceptive neurotransmission through the vagal ganglia. JCI Insight 2022; 7:155747. [PMID: 35015733 PMCID: PMC8876456 DOI: 10.1172/jci.insight.155747] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/05/2022] Open
Abstract
Myocardial infarction causes pathological changes in the autonomic nervous system, which exacerbate heart failure and predispose to fatal ventricular arrhythmias and sudden death. These changes are characterized by sympathetic activation and parasympathetic dysfunction (reduced vagal tone). Reasons for the central vagal withdrawal and, specifically, whether myocardial infarction causes changes in cardiac vagal afferent neurotransmission that then affect efferent tone, remain unknown. The objective of this study was to evaluate whether myocardial infarction causes changes in vagal neuronal afferent signaling. Using in vivo neural recordings from the inferior vagal (nodose) ganglia and immunohistochemical analyses, structural and functional alterations in vagal sensory neurons were characterized in a chronic porcine infarct model and compared with normal animals. Myocardial infarction caused an increase in the number of nociceptive neurons but a paradoxical decrease in functional nociceptive signaling. No changes in mechanosensitive neurons were observed. Notably, nociceptive neurons demonstrated an increase in GABAergic expression. Given that nociceptive signaling through the vagal ganglia increases efferent vagal tone, the results of this study suggest that a decrease in functional nociception, possibly due to an increase in expression of inhibitory neurotransmitters, may contribute to vagal withdrawal after myocardial infarction.
Collapse
Affiliation(s)
- Siamak Salavatian
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - Jonathan D Hoang
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - Naoko Yamaguchi
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | | | - Mohammed Amer Swid
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - J Andrew Armour
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| |
Collapse
|
6
|
Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels. Pflugers Arch 2020; 472:865-880. [PMID: 32601768 PMCID: PMC7351857 DOI: 10.1007/s00424-020-02419-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs.
Collapse
|