1
|
Cuitavi J, Riera-Calabuig A, Campos-Jurado Y, Lorente JD, de Jorge M, Polache A, Hipólito L. Chronic inflammatory pain suppresses alcohol intake and accumbal dopamine response. Neurochem Int 2025; 186:105974. [PMID: 40180247 DOI: 10.1016/j.neuint.2025.105974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Alcohol use disorders (AUDs) are influenced by factors that initiate, maintain, and/or induce relapse. Chronic pain is both a risk factor for and consequence of AUD, sharing neurological pathways that affect the mesolimbic dopaminergic system. This study examines how inflammatory pain impacts long-term alcohol intake and mesolimbic dopamine transmission in alcohol-naïve rats. Inflammatory pain was induced in eight-week-old Sprague Dawley rats using complete Freund adjuvant (CFA), while controls received saline. Two protocols were followed: one group had continuous access to 20 % ethanol for one month (n = 10/sex), and the second group for three months (n = 8/sex) in a two-bottle choice paradigm. Mechanical nociception was assessed weekly using the Von Frey test. Dopamine levels in the nucleus accumbens core were measured through microdialysis during the final 1.5 months of ethanol exposure in the second cohort. Due to experimental limitations animals underwent microdialysis at different time points after alcohol was firstly introduced, this was done in a balanced manner by alternating sex and group. After a month of alcohol exposure, rats showed no differences in alcohol consumption. However, from the second month until the end, rats exhibited a non-sex-dependent decrease in alcohol intake, significantly lower in CFA-animals. This reduction was accompanied by a blunted ethanol-evoked dopamine release in the nucleus accumbens. Moreover, low mechanical nociception was maintained until the end of the experiment in CFA-animal. These findings provide insights into the effect of pain on alcohol-elicited neurochemical responses and drinking behaviour, showing how pain alters dopamine response to alcohol, affecting drinking patterns and prolonging nociception from CFA.
Collapse
Affiliation(s)
- Javier Cuitavi
- University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, C/ Dr. Moliner, 50. 46100, Burjassot, Spain; Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain
| | - Ana Riera-Calabuig
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain
| | - Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain
| | - Jesús D Lorente
- University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, C/ Dr. Moliner, 50. 46100, Burjassot, Spain; Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain
| | - María de Jorge
- University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, C/ Dr. Moliner, 50. 46100, Burjassot, Spain; Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain
| | - Ana Polache
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain
| | - Lucía Hipólito
- University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, C/ Dr. Moliner, 50. 46100, Burjassot, Spain; Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain.
| |
Collapse
|
2
|
Kelley AM, Del Valle EJ, Zaman S, Karkhanis AN. Adolescent ethanol exposure promotes mechanical allodynia and alters dopamine transmission in the nucleus accumbens shell. Pain 2024; 165:e55-e64. [PMID: 37962155 PMCID: PMC11090756 DOI: 10.1097/j.pain.0000000000003097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
ABSTRACT Excessive alcohol consumption in adolescence can disrupt neural development and may augment pain perception. Recent studies have shown that the nucleus accumbens (NAc) shell is involved in mediating pain sensitivity after peripheral inflammation in rodent models of chronic pain and alcohol use disorder. Interestingly, there have been very few studies examining the impact of chronic ethanol exposure during adolescence on pain sensitivity in adulthood. Therefore, in this project, we investigated the impact of adolescent chronic intermittent ethanol (aCIE) exposure on mechanical allodynia. Furthermore, given the involvement of the NAc shell in pain processing and chronic ethanol-mediated changes, we measured changes in accumbal dopamine kinetics during protracted withdrawal. We found that both male and female aCIE rats show mechanical allodynia during withdrawal. Furthermore, male and female aCIE rats show greater evoked tonic dopamine release, maximal rate of dopamine reuptake, and dopamine affinity to the dopamine transporter in the NAc shell compared with controls. With phasic stimulation, aCIE rats also showed greater dopamine release compared with AIR-exposed rats. Inhibition of dopamine transmission targeted in the NAc shell reversed the aCIE-associated facilitation of mechanical allodynia in both sexes. These data suggest that aCIE exposure exacerbates pain sensitivity during withdrawal in an accumbal dopamine-dependent manner.
Collapse
Affiliation(s)
- Abigail M Kelley
- Department of Psychology, Developmental Exposure to Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| | | | | | | |
Collapse
|
3
|
Lorente JD, Cuitavi J, Rullo L, Candeletti S, Romualdi P, Hipólito L. Sex-dependent effect of inflammatory pain on negative affective states is prevented by kappa opioid receptors blockade in the nucleus accumbens shell. Neuropharmacology 2024; 242:109764. [PMID: 37879455 DOI: 10.1016/j.neuropharm.2023.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Pain comorbidities include several psychological disorders, such as anxiety and anhedonia. However, the way pain affects male and female individuals and by which mechanism is not well understood. Previous research shows that pain induces alterations in the dynorphinergic pathway within the mesocorticolimbic system (MCLS), together with a relationship between corticotropin-releasing system and dynorphin release in the MCLS. Here, we analyse the sex and time course-dependent effects of pain on negative affect. Additionally, we study the implication of dynorphinergic and corticotropin releasing factor in these pain related behaviours. We used behavioural pharmacology and biochemical tools to characterise negative affective states induced by inflammatory pain in male and female rats, and the alterations in the dynorphinergic and the corticotropin systems within the MCLS. Female rats showed persistent anxiety-like and reversible anhedonia-like behaviours derived from inflammatory pain. Additionally, we found alterations in dynorphin and corticotropin releasing factor in NAc and amygdala, which suggests sex-dependent dynamic adaptations. Finally blockade on the kappa opioid receptor in the NAc confirmed its role in pain-induced anxiety-like behaviour in female rats. Our results show sex and time-dependent anxiety- and anhedonia-like behaviours induced by the presence of pain in female rats. Furthermore, we replicated previous data, pointing to the KOR/DYN recruitment in the NAc as a key neurological substrate mediating pain-induced behavioural alterations. This research studies the mechanisms underlying these behaviours, to better understand the emotional dimension of pain.
Collapse
Affiliation(s)
- J D Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - J Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - L Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - S Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - P Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - L Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain.
| |
Collapse
|
4
|
Huerta-Canseco C, Caba M, Camacho-Morales A. Obesity-mediated Lipoinflammation Modulates Food Reward Responses. Neuroscience 2023; 529:37-53. [PMID: 37591331 DOI: 10.1016/j.neuroscience.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Accumulation of white adipose tissue (WAT) during obesity is associated with the development of chronic low-grade inflammation, a biological process known as lipoinflammation. Systemic and central lipoinflammation accumulates pro-inflammatory cytokines including IL-6, IL-1β and TNF-α in plasma and also in brain, disrupting neurometabolism and cognitive behavior. Obesity-mediated lipoinflammation has been reported in brain regions of the mesocorticolimbic reward circuit leading to alterations in the perception and consumption of ultra-processed foods. While still under investigation, lipoinflammation targets two major outcomes of the mesocorticolimbic circuit during food reward: perception and motivation ("Wanting") and the pleasurable feeling of feeding ("Liking"). This review will provide experimental and clinical evidence supporting the contribution of obesity- or overnutrition-related lipoinflammation affecting the mesocorticolimbic reward circuit and enhancing food reward responses. We will also address neuroanatomical targets of inflammatory profiles that modulate food reward responses during obesity and describe potential cellular and molecular mechanisms of overnutrition linked to addiction-like behavior favored by brain lipoinflammation.
Collapse
Affiliation(s)
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico; Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
| |
Collapse
|
5
|
Campos-Jurado Y, Morón JA. Inflammatory pain affects alcohol intake in a dose-dependent manner in male rats in the intermittent access model. Pain Rep 2023; 8:e1082. [PMID: 37388406 PMCID: PMC10306431 DOI: 10.1097/pr9.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction Epidemiological studies have shown that there is a relation between pain and alcohol use disorder (AUD). Persistent pain is directly correlated with an increment in alcohol consumption and an increased risk of developing an AUD. Greater levels of pain intensity and unpleasantness are associated with higher levels of relapse, an increase in alcohol consumption, rates of hazardous drinking, and delay to seek for treatment. However, this interaction has not been deeply studied in the preclinical setting. Methods Here, we aim to evaluate how inflammatory pain affects levels of alcohol drinking in male and female rats with a history of alcohol. For that, we used an intermittent access 2-bottle choice paradigm combined with the complete Freund Adjuvant (CFA) model of inflammatory pain. Results Our results show that CFA-induced inflammatory pain does not alter total intake of 20% alcohol in male or female rats. Interestingly, in males, the presence of CFA-induced inflammatory pain blunts the decrease of alcohol intake when higher concentrations of alcohol are available, whereas it does not have an effect on intake at any concentration in female rats. Conclusion Altogether, this study provides relevant data and constitutes an important contribution to the study of pain and AUD and it highlights the necessity to design better behavioral paradigms in animal models that are more translational and reflect current epidemiological findings.
Collapse
Affiliation(s)
- Yolanda Campos-Jurado
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Departments of Neuroscience and
- Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
6
|
Andrade-Gonzalez RD, Perrusquia-Hernández E, Zepeda-Reyes KI, Campos Me H, Perez-Martinez IO. Sensory-motor response elicited by first time intraoral administered ethanol after trigeminal neuropathic injury. Alcohol 2022; 103:9-17. [PMID: 35714863 DOI: 10.1016/j.alcohol.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Recent findings have shown a relationship between alcohol use disorders (AUD) and chronic pain. Preclinical models have demonstrated that chronic pain, including trigeminal nerve injury, increases ethanol consumption throughout extended administration periods. Nevertheless, it remains unclear whether chronic pain induces a greater susceptibility to developing AUD by altering motor control consumption regardless of the symptomatology of neuropathic pain and if sex influences this susceptibility. We used a former prolonged pain experience model induced by a constriction of the mental nerve (mNC) to answer this question. We analyzed ethanol consumption in a short access protocol to reduce the post-ingestional effects and compared licking microstructure between groups. The constriction of the mental nerve induced evoked and spontaneous pain and reduction in the hedonic value of sucrose. The differences in alcohol consumption were not reflective of the former prolonged pain experience. Female mice showed a more efficient dynamic of consumption of alcohol reflected in a long burst of licking and a less variable licking rate within a cluster.
Collapse
Affiliation(s)
- R D Andrade-Gonzalez
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - E Perrusquia-Hernández
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - K I Zepeda-Reyes
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Bioquímica Diagnóstica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México Av. 1ro. De Mayo S/N, Col. Santa María De Las Torres Cuautitlán Izcalli, 54740, Mexico
| | - Hernandez Campos Me
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - I O Perez-Martinez
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México.
| |
Collapse
|
7
|
Lorente JD, Cuitavi J, Campos-Jurado Y, Montón-Molina R, González-Romero JL, Hipólito L. Kappa opioid receptor blockade in the nucleus accumbens shell prevents sex-dependent alcohol deprivation effect induced by inflammatory pain. Pain 2022; 163:e137-e147. [PMID: 34393203 DOI: 10.1097/j.pain.0000000000002332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Pain-induced negative affect reduces life quality of patients by increasing psychiatric comorbidities, including alcohol use disorders (AUDs). Indeed, clinical data suggest pain as a risk factor to suffer AUDs, predicting relapse drinking in abstinent patients. Here, we analyse the impact of pain on alcohol relapse and the role of kappa opioid receptor (KOR) activation in mediating these pain-induced effects because KORs play an important role in pain-driven negative affect and AUD. Female and male Sprague-Dawley rats underwent 2 alcohol intermittent access periods separated by a forced abstinence period. The complete Freund adjuvant model of inflammatory pain was introduced during abstinence, and alcohol intake before and after alcohol reintroduction was assessed. In addition, we used behavioural approaches to measure stress and memory impairment and biochemical assays to measure KOR expression in abstinence and reintroduction periods. Only female CFA-treated rats increased alcohol intake during the reintroduction period. Concomitantly, this group showed enhanced anxiety-like behaviour and increased KOR expression in the nucleus accumbens shell that was developed during abstinence and remained during the reintroduction period. Finally, KOR antagonist norbinaltorphimine was administered in the nucleus accumbens shell during abstinence to prevent a pain-induced alcohol deprivation effect, a phenomenon observed in CFA-female rats. The administration of norbinaltorphimine effectively blocked a pain-induced alcohol deprivation effect in female rats. Our data evidenced that inflammatory pain constitutes a risk factor to increase alcohol consumption during a reintroduction phase only in female rats by the rise and maintenance of stress probably mediated by KOR signalling in the nucleus accumbens.
Collapse
Affiliation(s)
- Jesús D Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Cuitavi J, Lorente JD, Campos-Jurado Y, Polache A, Hipólito L. Neuroimmune and Mu-Opioid Receptor Alterations in the Mesocorticolimbic System in a Sex-Dependent Inflammatory Pain-Induced Alcohol Relapse-Like Rat Model. Front Immunol 2021; 12:689453. [PMID: 34616393 PMCID: PMC8488159 DOI: 10.3389/fimmu.2021.689453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Evidence concerning the role of alcohol-induced neuroinflammation in alcohol intake and relapse has increased in the last few years. It is also proven that mu-opioid receptors (MORs) mediate the reinforcing properties of alcohol and, interestingly, previous research suggests that neuroinflammation and MORs could be related. Our objective is to study neuroinflammatory states and microglial activation, together with adaptations on MOR expression in the mesocorticolimbic system (MCLS) during the abstinence and relapse phases. To do so, we have used a sex-dependent rat model of complete Freund's adjuvant (CFA)-induced alcohol deprivation effect (ADE). Firstly, our results confirm that only CFA-treated female rats, the only experimental group that showed relapse-like behavior, exhibited specific alterations in the expression of phosphorylated NFκB, iNOS, and COX2 in the PFC and VTA. More interestingly, the analysis of the IBA1 expression revealed a decrease of the microglial activation in PFC during abstinence and an increase of its expression in the relapse phase, together with an augmentation of this activation in the NAc in both phases that only occur in female CFA-treated rats. Additionally, the expression of IL1β also evidenced these dynamic changes through these two phases following similar expression patterns in both areas. Furthermore, the expression of the cytokine IL10 showed a different profile than that of IL1β, indicating anti-inflammatory processes occurring only during abstinence in the PFC of CFA-female rats but neither during the reintroduction phase in PFC nor in the NAc. These data indicate a downregulation of microglial activation and pro-inflammatory processes during abstinence in the PFC, whereas an upregulation can be observed in the NAc during abstinence that is maintained during the reintroduction phase only in CFA-female rats. Secondly, our data reveal a correlation between the alterations observed in IL1β, IBA1 levels, and MOR levels in the PFC and NAc of CFA-treated female rats. Although premature, our data suggest that neuroinflammatory processes, together with neural adaptations involving MOR, might play an important role in alcohol relapse in female rats, so further investigations are warranted.
Collapse
Affiliation(s)
| | | | | | | | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Spain
| |
Collapse
|
9
|
Cuitavi J, Hipólito L, Canals M. The Life Cycle of the Mu-Opioid Receptor. Trends Biochem Sci 2021; 46:315-328. [PMID: 33127216 DOI: 10.1016/j.tibs.2020.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Opioid receptors (ORs) are undisputed targets for the treatment of pain. Unfortunately, targeting these receptors therapeutically poses significant challenges including addiction, dependence, tolerance, and the appearance of side effects, such as respiratory depression and constipation. Moreover, misuse of prescription and illicit narcotics has resulted in the current opioid crisis. The mu-opioid receptor (MOR) is the cellular mediator of the effects of most commonly used opioids, and is a prototypical G protein-coupled receptor (GPCR) where new pharmacological, signalling and cell biology concepts have been coined. This review summarises the knowledge of the life cycle of this therapeutic target, including its biogenesis, trafficking to and from the plasma membrane, and how the regulation of these processes impacts its function and is related to pathophysiological conditions.
Collapse
Affiliation(s)
- Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, the Midlands, UK.
| |
Collapse
|
10
|
Lorente JD, Cuitavi J, Campos-Jurado Y, Hipólito L. Pain-induced alterations in the dynorphinergic system within the mesocorticolimbic pathway: Implication for alcohol addiction. J Neurosci Res 2020; 100:165-182. [PMID: 32770601 DOI: 10.1002/jnr.24703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
Latest studies have revealed that pain negatively impacts on reward processing and motivation leading to negative affective states and stress. These states not only reduce quality of life of patients by increasing the appearance of psychiatric comorbidities, but also have an important impact on vulnerability to drug abuse, including alcohol. In fact, clinical, epidemiological but also preclinical studies have revealed that the presence of pain is closely related to alcohol use disorders (AUDs). All this evidence suggests that pain is a factor that increases the risk of suffering AUD, predicting heavy drinking behavior and relapse drinking in those patients with a previous history of AUD. The negative consequences of chronic pain and its impact on stress and AUD are likely mediated by alterations in the central nervous system, especially in the stress and reward systems. Therefore, pain and stress impact on dopaminergic mesolimbic pathway can lead to an increase in drug abuse liability. In this mini review we analyze the interaction between pain, stress, and alcohol addiction, and how dynamic changes in the kappa opioid system might play a crucial role in the development of compulsive alcohol drinking in chronic pain patients.
Collapse
Affiliation(s)
- Jesús David Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| |
Collapse
|