1
|
Chang Y, Zhang X, Xiao S, Liu J, Wang Y, Song J, Fu H, Li Y, Su H, Yi H, Su W, Gao N, Zhao J, Wang R, Liu R. Evidence for brain glial activity in chronic migraine patients: a [ 11C] PBR28 PET/MR study. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07282-3. [PMID: 40327090 DOI: 10.1007/s00259-025-07282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/09/2025] [Indexed: 05/07/2025]
Abstract
PURPOSE Although neuroinflammation may play a key role in the pathology of migraine and its progression to chronic migraine (CM), its specific involvement-particularly the role of microglia- remains unclear. We investigated whether neuroinflammation is involved in the pathophysiology of CM and whether pro-inflammatory signals are associated with its clinical features. METHODS Nineteen individuals with CM and 10 healthy controls (HCs) underwent integrated brain positron emission tomography (PET)/magnetic resonance (MR) using the translocator protein (TSPO) radioligand ([11C] PBR28, a marker of glial activation, together with the quantification of blood plasma inflammatory cytokine/chemokine. Volumes in regions of interest (ROI) were calculated based on MRI data and the standardized uptake value ratio (SUVR) for [11C] PBR28 was extracted for each ROI. The Spearman's rank correlation coefficient between [11C] PBR28 SUVR and changes in plasma factors was calculated. RESULTS CM patients had a significantly higher Hamilton Depression Rating Scale (HAMD) and Hamilton Anxiety Rating Scale (HAMA) scores than that in HCs (p < 0.05). Participants with CM also exhibited reduced volume in the thalamus (p = 0.012), compared with HCs. Moreover [11C] PBR28 binding was increased in the midbrain, occipital lobe and vermis, along with increased interictal plasma interleukin-8 (IL-8) and CX3CL1 levels, in individuals with CM compared with HCs. Notably, the midbrain levels of TSPO were negatively correlated with the headache frequency (r=-0.462, p = 0.046). CONCLUSIONS These findings demonstrate increased central inflammation in CM participants compared to HCs, providing imaging evidence for the potential involvement of neuroinflammation in CM pathophysiology. Additionally, the observed reduction in thalamic volume may contribute to the chronification of migraine. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yan Chang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiwan Zhang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Shaobo Xiao
- 920th Hospital of Joint Logistics Support Force of People's Liberation Army of China, Kunming, Yunnan, 650100, China
| | - Jiajin Liu
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuan Wang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jingbin Song
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Huaping Fu
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yungang Li
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hui Su
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Huijie Yi
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenjie Su
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Nan Gao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - JinJing Zhao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, The 305 Hospital of the People's Liberation Army, Beijing, 100017, China
| | - Ruimin Wang
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Ruozhuo Liu
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Mohammadian M, Morrissey EJ, Knight PC, Brusaferri L, Kim M, Efthimiou N, Murphy JP, Alshelh Z, Grmek G, Schnieders JH, Chane CA, Sandström A, Catana C, Gilman JM, Locascio JJ, Edwards RR, Zhang Y, Napadow V, Loggia ML. Investigating the potential of minocycline in reducing brain inflammation in chronic low back pain: a randomized, placebo-controlled mechanistic clinical trial. Pain 2025:00006396-990000000-00872. [PMID: 40228108 DOI: 10.1097/j.pain.0000000000003543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/31/2024] [Indexed: 04/16/2025]
Abstract
ABSTRACT Our group has shown that translocator protein (TSPO) levels, a putative marker of neuroinflammation, are increased in the brain and spinal cord of patients with chronic low back pain (cLBP). Whether neuroinflammation might be a therapeutic target for this condition is unknown. In this phase II double-blind, placebo-controlled, randomized clinical trial, we sought to evaluate whether the tetracycline antibiotic minocycline, which is commonly used as a glial inhibitor in preclinical models, has an effect on brain TSPO levels in adults with cLBP. Participants randomly received 100-mg minocycline or placebo, once a day for 2 weeks. The primary outcome was the change (pretreatment vs posttreatment) in thalamic TSPO levels, measured using [11C]PBR28 positron emission tomography signal (standardized uptake value ratio) and analyzed with a mixed effect model. Secondary outcome measures included the change in Brief Pain Inventory, severity subscore. Among 60 enrolled participants, 48 completed the trial. Of these, 25 received minocycline (age [years], mean ± SD: 44.6 ± 16.9; 9 female), and 23 received placebo (49 ± 17.1; 9 female). The mean thalamic positron emission tomography standard uptake value ratio was very stable across visits in both groups, with no significant group-by-time interaction (P = 0.956). Similarly, both groups demonstrated a comparable decrease over time in Brief Pain Inventory severity scores (P = 0.018) and no significant group-by-time interaction (P = 0.329). Our results suggest that minocycline, at the tested regimen, may neither reduce brain TSPO levels nor have clinically meaningful effects on clinical pain in patients with cLBP.
Collapse
Affiliation(s)
- Mehrbod Mohammadian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Erin J Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paulina C Knight
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ludovica Brusaferri
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Nikolaos Efthimiou
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jennifer P Murphy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Grace Grmek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jack H Schnieders
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Courtney A Chane
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Angelica Sandström
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jodi M Gilman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Joseph J Locascio
- Harvard Catalyst Biostatistical Consulting Group, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Maccioni L, Brusaferri L, Barzon L, Schubert JJ, Nettis MA, Cousins O, Rosenzweig I, Mizuno Y, Vicente-Rodríguez M, Singh N, Marques TR, Harrison NA, Fryer T, Bullmore ET, Cash D, Mondelli V, Pariante C, Howes O, Turkheimer FE, Loggia ML, Veronese M. A novel blood-free analytical framework for the quantification of neuroinflammatory load from TSPO PET Imaging. RESEARCH SQUARE 2025:rs.3.rs-5924801. [PMID: 39975931 PMCID: PMC11838776 DOI: 10.21203/rs.3.rs-5924801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Positron Emission Tomography (PET) of the 18 kDa translocator protein (TSPO) is critical for neuroinflammation studies but faces substantial methodological challenges. These include issues with arterial blood sampling for kinetic modeling, the absence of suitable reference regions, genetic polymorphisms affecting tracer affinity, altered blood-to-brain tracer delivery in inflammatory conditions, and high signal variability. This study presents a novel blood-free reference-free method for TSPO PET quantification, leveraging a logistic regression model to estimate the probability of TSPO overexpression across brain regions. Validation was performed on 323 human brain scans from five datasets and three radiotracers. The quantified TSPO topology in healthy controls showed strong concordance with the constitutive TSPO gene expression for all tracers. When using [11C]PBR28 PET data, the method replicated previous findings in schizophrenia, Alzheimer's disease, chronic pain, and XBD173 blocking. However, model extension to [18F]DPA-714 and [11C]-(R)-PK11195 revealed small effect sizes and high variability, suggesting the need for tracer-specific model optimization. Finally, validation in a rat model of lipopolysaccharide-induced neuroinflammation confirmed previous evidence of increased brain TSPO uptake after a systemic challenge. This novel non-invasive method provides individualized TSPO PET quantification, demonstrating broad applicability across TSPO PET tracers and imaging sites, assuming sufficient training data for model development.
Collapse
Affiliation(s)
- Lucia Maccioni
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Ludovica Brusaferri
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Computer Science and Informatics, School of Engineering, London South Bank University, London, UK
| | - Leonardo Barzon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Julia J. Schubert
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Maria A. Nettis
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Oliver Cousins
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Ivana Rosenzweig
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Yuya Mizuno
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Marta Vicente-Rodríguez
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Nisha Singh
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Tiago Reis Marques
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, Imperial College London, London, UK
| | - Neil A. Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Tim Fryer
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Edward T. Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Diana Cash
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Valeria Mondelli
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Carmine Pariante
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Oliver Howes
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | | | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Mattia Veronese
- Department of Information Engineering, University of Padova, Padova, Italy
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| |
Collapse
|
4
|
Cazuza RA, Zagrai SM, Grieco AR, Avery TD, Abell AD, Wey HY, Loggia ML, Grace PM. 18 kDa Translocator protein (TSPO) is upregulated in rat brain after peripheral nerve injury and downregulated by diroximel fumarate. Brain Behav Immun 2025; 123:11-27. [PMID: 39218234 PMCID: PMC11624078 DOI: 10.1016/j.bbi.2024.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neuroimmune signaling is a key process underlying neuropathic pain. Clinical studies have demonstrated that 18 kDa translocator protein (TSPO), a putative marker of neuroinflammation, is upregulated in discrete brain regions of patients with chronic pain. However, no preclinical studies have investigated TSPO dynamics in the brain in the context of neuropathic pain and in response to analgesic treatments. We used positron emission tomography-computed tomography (PET-CT) and [18F]-PBR06 radioligand to measure TSPO levels in the brain across time after chronic constriction injury (CCI) of the sciatic nerve in both male and female rats. Up to 10 weeks post-CCI, TSPO expression was increased in discrete brain regions, including medial prefrontal cortex, somatosensory cortex, insular cortex, anterior cingulate cortex, motor cortex, ventral tegmental area, amygdala, midbrain, pons, medulla, and nucleus accumbens. TSPO was broadly upregulated across these regions at 4 weeks post CCI in males, and 10 weeks in females, though there were regional differences between the sexes. Using immunohistochemistry, we confirmed TSPO expression in these regions. We further demonstrated that TSPO was upregulated principally in microglia in the nucleus accumbens core, and astrocytes and endothelial cells in the nucleus accumbens shell. Finally, we tested whether TSPO upregulation was sensitive to diroximel fumarate, a drug that induces endogenous antioxidants via nuclear factor E2-related factor 2 (Nrf2). Diroximel fumarate alleviated neuropathic pain and reduced TSPO upregulation. Our findings indicate that TSPO is upregulated over the course of neuropathic pain development and is resolved by an antinociceptive intervention in animals with peripheral nerve injury.
Collapse
Affiliation(s)
- Rafael A Cazuza
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Sever M Zagrai
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Anamaria R Grieco
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, University of Adelaide, Adelaide, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, University of Adelaide, Adelaide, Australia
| | - Hsiao-Ying Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
5
|
Loggia ML. "Neuroinflammation": does it have a role in chronic pain? Evidence from human imaging. Pain 2024; 165:S58-S67. [PMID: 39560416 PMCID: PMC11729497 DOI: 10.1097/j.pain.0000000000003342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Despite hundreds of studies demonstrating the involvement of neuron-glia-immune interactions in the establishment and/or maintenance of persistent pain behaviors in animals, the role (or even occurrence) of so-called "neuroinflammation" in human pain has been an object of contention for decades. Here, I present the results of multiple positron emission tomography (PET) studies measuring the levels of the 18 kDa translocator protein (TSPO), a putative neuroimmune marker, in individuals with various pain conditions. Overall, these studies suggest that brain TSPO PET signal: (1) is elevated, compared to healthy volunteers, in individuals with chronic low back pain (with additional elevations in spinal cord and neuroforamina), fibromyalgia, migraine and other conditions characterized by persistent pain; (2) has a spatial distribution exhibiting a degree of disorder specificity; (3) is parametrically linked to pain characteristics or comorbid symptoms (eg, nociplastic pain, fatigue, depression), as well as measures of brain function (ie, functional connectivity), in a regionally-specific manner. In this narrative, I also discuss important caveats to consider in the interpretation of this work (eg, regarding the cellular source of the signal and the complexities inherent in its acquisition and analysis). While the biological and clinical significance of these findings awaits further work, this emerging preclinical literature supports a role of neuron-glia-immune interactions as possible pathophysiological underpinnings of human chronic pain. Gaining a deeper understanding of the role of neuroimmune function in human pain would likely have important practical implications, possibly paving the way for novel interventions.
Collapse
Affiliation(s)
- Marco L. Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Emvalomenos GM, Kang JWM, Jupp B, Mychasiuk R, Keay KA, Henderson LA. Recent developments and challenges in positron emission tomography imaging of gliosis in chronic neuropathic pain. Pain 2024; 165:2184-2199. [PMID: 38713812 DOI: 10.1097/j.pain.0000000000003247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 05/09/2024]
Abstract
ABSTRACT Understanding the mechanisms that underpin the transition from acute to chronic pain is critical for the development of more effective and targeted treatments. There is growing interest in the contribution of glial cells to this process, with cross-sectional preclinical studies demonstrating specific changes in these cell types capturing targeted timepoints from the acute phase and the chronic phase. In vivo longitudinal assessment of the development and evolution of these changes in experimental animals and humans has presented a significant challenge. Recent technological advances in preclinical and clinical positron emission tomography, including the development of specific radiotracers for gliosis, offer great promise for the field. These advances now permit tracking of glial changes over time and provide the ability to relate these changes to pain-relevant symptomology, comorbid psychiatric conditions, and treatment outcomes at both a group and an individual level. In this article, we summarize evidence for gliosis in the transition from acute to chronic pain and provide an overview of the specific radiotracers available to measure this process, highlighting their potential, particularly when combined with ex vivo / in vitro techniques, to understand the pathophysiology of chronic neuropathic pain. These complementary investigations can be used to bridge the existing gap in the field concerning the contribution of gliosis to neuropathic pain and identify potential targets for interventions.
Collapse
Affiliation(s)
- Gaelle M Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - James W M Kang
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Bianca Jupp
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Kevin A Keay
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Luke A Henderson
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Knox PJ, Simon CB, Hicks GE. Preliminary Characterization of Age and Chronic Low Back Pain Effects on Multimodal Pain Sensitivity: A Comparison Study in Older Adults with and Without Chronic Low Back Pain. THE JOURNAL OF PAIN 2024; 25:104509. [PMID: 38484855 PMCID: PMC11283989 DOI: 10.1016/j.jpain.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/29/2024]
Abstract
Though pain sensitivity impairments contribute to chronic pain in younger adults, it is unclear if pain hypersensitivity manifests with aging and is heightened in the geriatric chronic low back pain population. The cross-sectional study preliminarily addressed this gap by measuring pain sensitivity in older adults with chronic low back pain (n = 25) as well as pain-free sex-matched older (n = 25) and younger adults (n = 25). Pain sensitivity was quantified by 8 distinct measures that were subdivided as static (ie, pressure pain thresholds, heat pain thresholds, fixed mechanical pain, and fixed cold pain) and dynamic pain sensitivity (ie, mechanical temporal summation, thermal ramp and hold, heat pain aftersensations, and conditioned pain modulation). Test-retest reliability values for pain sensitivity ranged from moderate to excellent (intraclass correlation coefficients ≥ .500; p's < .05). The main effect for the group was significant (partial η2 = .413, P < .001), revealing between-group differences in pain sensitivity on 5 out of 8 tests (p's ≤ .043). Predominantly, both older adult groups demonstrated increased pain facilitation and decreased pain inhibition during dynamic pain sensitivity testing compared to pain-free younger adults (p's ≤ .044). Despite qualitative differences, static and dynamic pain sensitivity responses were statistically similar between older adults with and without chronic LBP (p's > .05). Findings suggest pain sensitivity can be reliably measured in older adults and that pain hypersensitivity develops with chronological aging, providing partial support for the theory that pain hypersensitivity may impact geriatric chronic pain populations. Further study is needed to more definitively parse out whether pain hypersensitivity is comparatively heightened in older adults with chronic LBP beyond the influence of chronological aging. PERSPECTIVE: This article establishes that surrogate measures of centrally mediated pain sensitization are heightened with aging. Impaired endogenous pain modulation may influence chronic pain development, maintenance, treatment efficacy, and/or ensuing disability, necessitating research to comprehensively characterize how pain hypersensitivity contributes to geriatric chronic pain conditions.
Collapse
Affiliation(s)
- Patrick J. Knox
- Department of Physical Therapy, University of Delaware, Newark, DE
| | - Corey B. Simon
- Department of Orthopaedic Surgery, Physical Therapy Division, Duke University, Durham, NC
| | - Gregory E. Hicks
- Department of Physical Therapy, University of Delaware, Newark, DE
| |
Collapse
|
8
|
Dalkara T, Kaya Z, Erdener ŞE. Unraveling the interplay of neuroinflammatory signaling between parenchymal and meningeal cells in migraine headache. J Headache Pain 2024; 25:124. [PMID: 39080518 PMCID: PMC11290240 DOI: 10.1186/s10194-024-01827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The initiation of migraine headaches and the involvement of neuroinflammatory signaling between parenchymal and meningeal cells remain unclear. Experimental evidence suggests that a cascade of inflammatory signaling originating from neurons may extend to the meninges, thereby inducing neurogenic inflammation and headache. This review explores the role of parenchymal inflammatory signaling in migraine headaches, drawing upon recent advancements. BODY: Studies in rodents have demonstrated that sterile meningeal inflammation can stimulate and sensitize meningeal nociceptors, culminating in headaches. The efficacy of relatively blood-brain barrier-impermeable anti-calcitonin gene-related peptide antibodies and triptans in treating migraine attacks, both with and without aura, supports the concept of migraine pain originating in meninges. Additionally, PET studies utilizing inflammation markers have revealed meningeal inflammatory activity in patients experiencing migraine with aura, particularly over the occipital cortex generating visual auras. The parenchymal neuroinflammatory signaling involving neurons, astrocytes, and microglia, which eventually extends to the meninges, can link non-homeostatic perturbations in the insensate brain to pain-sensitive meninges. Recent experimental research has brought deeper insight into parenchymal signaling mechanisms: Neuronal pannexin-1 channels act as stress sensors, initiating the inflammatory signaling by inflammasome formation and high-mobility group box-1 release in response to transient perturbations such as cortical spreading depolarization (CSD) or synaptic metabolic insufficiency caused by transcriptional changes induced by migraine triggers like sleep deprivation and stress. After a single CSD, astrocytes respond by upregulating the transcription of proinflammatory enzymes and mediators, while microglia are involved in restoring neuronal structural integrity; however, repeated CSDs may prompt microglia to adopt a pro-inflammatory state. Transcriptional changes from pro- to anti-inflammatory within 24 h may serve to dampen the inflammatory signaling. The extensive coverage of brain surface and perivascular areas by astrocyte endfeet suggests their role as an interface for transporting inflammatory mediators to the cerebrospinal fluid to contribute to meningeal nociception. CONCLUSION We propose that neuronal stress induced by CSD or synaptic activity-energy mismatch may initiate a parenchymal inflammatory signaling cascade, transmitted to the meninges, thereby triggering lasting headaches characteristic of migraine, with or without aura. This neuroinflammatory interplay between parenchymal and meningeal cells points to the potential for novel targets for migraine treatment and prophylaxis.
Collapse
Affiliation(s)
- Turgay Dalkara
- Departments of Neuroscience and, Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey.
| | - Zeynep Kaya
- Department of Neurology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Galdino G, Veras FP, dos Anjos-Garcia T. The Role of the Thalamus in Nociception: Important but Forgotten. Brain Sci 2024; 14:741. [PMID: 39199436 PMCID: PMC11352386 DOI: 10.3390/brainsci14080741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Pain is a complex response to noxious stimuli. Upon detection of the nociceptive stimulus by first-order neurons or nociceptors, an action potential ascends to the spinal dorsal horn, a crucial site for synapsing with second-order neurons. These second-order neurons carry the nociceptive stimulus to supraspinal regions, notably the thalamus. Although extensive research has focused on spinal-level nociceptive mechanisms (e.g., neurotransmitters, receptors, and glial cells), the thalamus is still poorly elucidated. The role of the thalamus in relaying sensory and motor responses to the cortex is well known. However, a comprehensive understanding of the mechanisms in the synapse between the second-order and third-order neurons that transmit this impulse to the somatosensory cortex, where the response is processed and interpreted as pain, is still lacking. Thus, this review investigated the thalamus's role in transmitting nociceptive impulses. Current evidence indicates the involvement of the neurotransmitters glutamate and serotonin, along with NMDA, P2X4, TLR4, FGR, and NLRP3 receptors, as well as signaling pathways including ERK, P38, NF-κB, cytokines, and glial cells at nociceptive synapses within the thalamus.
Collapse
|
10
|
Weerasekera A, Knight PC, Alshelh Z, Morrissey EJ, Kim M, Zhang Y, Napadow V, Anzolin A, Torrado-Carvajal A, Edwards RR, Ratai EM, Loggia ML. Thalamic neurometabolite alterations in chronic low back pain: a common phenomenon across musculoskeletal pain conditions? Pain 2024; 165:126-134. [PMID: 37578456 PMCID: PMC10841327 DOI: 10.1097/j.pain.0000000000003002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Recently, we showed that patients with knee osteoarthritis (KOA) demonstrate alterations in the thalamic concentrations of several metabolites compared with healthy controls: higher myo-inositol (mIns), lower N-acetylaspartate (NAA), and lower choline (Cho). Here, we evaluated whether these metabolite alterations are specific to KOA or could also be observed in patients with a different musculoskeletal condition, such as chronic low back pain (cLBP). Thirty-six patients with cLBP and 20 healthy controls were scanned using 1 H-magnetic resonance spectroscopy (MRS) and a PRESS (Point RESolved Spectroscopy) sequence with voxel placement in the left thalamus. Compared with healthy controls, patients with cLBP demonstrated lower absolute concentrations of NAA ( P = 0.0005) and Cho ( P < 0.05) and higher absolute concentrations of mIns ( P = 0.01) when controlling for age, as predicted by our previous work in KOA. In contrast to our KOA study, mIns levels in this population did not significantly correlate with pain measures (eg, pain severity or duration). However, exploratory analyses revealed that NAA levels in patients were negatively correlated with the severity of sleep disturbance ( P < 0.01), which was higher in patients compared with healthy controls ( P < 0.001). Additionally, also in patients, both Cho and mIns levels were positively correlated with age ( P < 0.01 and P < 0.05, respectively). Altogether, these results suggest that thalamic metabolite changes may be common across etiologically different musculoskeletal chronic pain conditions, including cLBP and KOA, and may relate to symptoms often comorbid with chronic pain, such as sleep disturbance. The functional and clinical significance of these brain changes remains to be fully understood.
Collapse
Affiliation(s)
- Akila Weerasekera
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paulina C. Knight
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Erin J. Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandra Anzolin
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Robert R. Edwards
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eva-Maria Ratai
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Marco L. Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Galve P, Rodriguez-Vila B, Herraiz J, García-Vázquez V, Malpica N, Udias J, Torrado-Carvajal A. Recent advances in combined Positron Emission Tomography and Magnetic Resonance Imaging. JOURNAL OF INSTRUMENTATION 2024; 19:C01001. [DOI: 10.1088/1748-0221/19/01/c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Abstract
Hybrid imaging modalities combine two or more medical imaging techniques offering exciting new possibilities to image the structure, function and biochemistry of the human body in far greater detail than has previously been possible to improve patient diagnosis. In this context, simultaneous Positron Emission Tomography and Magnetic Resonance (PET/MR) imaging offers great complementary information, but it also poses challenges from the point of view of hardware and software compatibility. The PET signal may interfere with the MR magnetic field and vice-versa, posing several challenges and constrains in the PET instrumentation for PET/MR systems. Additionally, anatomical maps are needed to properly apply attenuation and scatter corrections to the resulting reconstructed PET images, as well motion estimates to minimize the effects of movement throughout the acquisition. In this review, we summarize the instrumentation implemented in modern PET scanners to overcome these limitations, describing the historical development of hybrid PET/MR scanners. We pay special attention to the methods used in PET to achieve attenuation, scatter and motion correction when it is combined with MR, and how both imaging modalities may be combined in PET image reconstruction algorithms.
Collapse
|
12
|
Marino S, Jassar H, Kim DJ, Lim M, Nascimento TD, Dinov ID, Koeppe RA, DaSilva AF. Classifying migraine using PET compressive big data analytics of brain's μ-opioid and D2/D3 dopamine neurotransmission. Front Pharmacol 2023; 14:1173596. [PMID: 37383727 PMCID: PMC10294712 DOI: 10.3389/fphar.2023.1173596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction: Migraine is a common and debilitating pain disorder associated with dysfunction of the central nervous system. Advanced magnetic resonance imaging (MRI) studies have reported relevant pathophysiologic states in migraine. However, its molecular mechanistic processes are still poorly understood in vivo. This study examined migraine patients with a novel machine learning (ML) method based on their central μ-opioid and dopamine D2/D3 profiles, the most critical neurotransmitters in the brain for pain perception and its cognitive-motivational interface. Methods: We employed compressive Big Data Analytics (CBDA) to identify migraineurs and healthy controls (HC) in a large positron emission tomography (PET) dataset. 198 PET volumes were obtained from 38 migraineurs and 23 HC during rest and thermal pain challenge. 61 subjects were scanned with the selective μ-opioid receptor (μOR) radiotracer [11C]Carfentanil, and 22 with the selective dopamine D2/D3 receptor (DOR) radiotracer [11C]Raclopride. PET scans were recast into a 1D array of 510,340 voxels with spatial and intensity filtering of non-displaceable binding potential (BPND), representing the receptor availability level. We then performed data reduction and CBDA to power rank the predictive brain voxels. Results: CBDA classified migraineurs from HC with accuracy, sensitivity, and specificity above 90% for whole-brain and region-of-interest (ROI) analyses. The most predictive ROIs for μOR were the insula (anterior), thalamus (pulvinar, medial-dorsal, and ventral lateral/posterior nuclei), and the putamen. The latter, putamen (anterior), was also the most predictive for migraine regarding DOR D2/D3 BPND levels. Discussion: CBDA of endogenous μ-opioid and D2/D3 dopamine dysfunctions in the brain can accurately identify a migraine patient based on their receptor availability across key sensory, motor, and motivational processing regions. Our ML-based findings in the migraineur's brain neurotransmission partly explain the severe impact of migraine suffering and associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Simeone Marino
- Statistics Online Computational Resource, Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Hassan Jassar
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Dajung J. Kim
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Manyoel Lim
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Thiago D. Nascimento
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Ivo D. Dinov
- Statistics Online Computational Resource, Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, United States
| | - Robert A. Koeppe
- Department of Radiology, Division of Nuclear Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexandre F. DaSilva
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Ailes I, Syed M, Matias CM, Krisa L, Miao J, Sathe A, Fayed I, Alhussein A, Natale P, Mohamed FB, Talekar K, Alizadeh M. Case report: Utilizing diffusion-weighted MRI on a patient with chronic low back pain treated with spinal cord stimulation. FRONTIERS IN NEUROIMAGING 2023; 2:1137848. [PMID: 37554655 PMCID: PMC10406238 DOI: 10.3389/fnimg.2023.1137848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/20/2023] [Indexed: 08/10/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (dwMRI) has increasingly demonstrated greater utility in analyzing neuronal microstructure. In patients with chronic low back pain (cLBP), using dwMRI to observe neuronal microstructure can lead to non-invasive biomarkers which could provide clinicians with an objective quantitative prognostic tool. In this case report, we investigated dwMRI for the development of non-invasive biomarkers by conducting a region-based analysis of a 55-year-old male patient with failed back surgery syndrome (FBSS) treated with spinal cord stimulation (SCS). We hypothesized that dwMRI could safely generate quantitative data reflecting cerebral microstructural alterations driven by neuromodulation. Neuroimaging was performed at 6- and 12- months post-SCS implantation. The quantitative maps generated included diffusion tensor imaging (DTI) parameters; fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) computed from whole brain tractography. To examine specific areas of the brain, 44 regions of interest (ROIs), collectively representing the pain NeuroMatrix, were extracted and registered to the patient's diffusion space. Average diffusion indices were calculated from the ROIs at both 6- and 12- months. Regions with >10% relative change in at least 3 of the 4 maps were reported. Using this selection criterion, 8 ROIs demonstrated over 10% relative changes. These ROIs were mainly located in the insular gyri. In addition to the quantitative data, a series of questionnaires were administered during the 6- and 12-month visits to assess pain intensity, functional disability, and quality of life. Overall improvements were observed in these components, with the Pain Catastrophizing Scale (PCS) displaying the greatest change. Lastly, we demonstrated the safety of dwMRI for a patient with SCS. In summary, the results from the case report prompt further investigation in applying dwMRI in a larger cohort to better correlate the influence of SCS with brain microstructural alterations, supporting the utility of dwMRI to generate non-invasive biomarkers for prognostication.
Collapse
Affiliation(s)
- Isaiah Ailes
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mashaal Syed
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caio M. Matias
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Laura Krisa
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jingya Miao
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Anish Sathe
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Islam Fayed
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdulaziz Alhussein
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Peter Natale
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B. Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kiran Talekar
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mahdi Alizadeh
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Morrissey EJ, Alshelh Z, Knight PC, Saha A, Kim M, Torrado-Carvajal A, Zhang Y, Edwards RR, Pike C, Locascio JJ, Napadow V, Loggia ML. Assessing the potential anti-neuroinflammatory effect of minocycline in chronic low back pain: Protocol for a randomized, double-blind, placebo-controlled trial. Contemp Clin Trials 2023; 126:107087. [PMID: 36657520 DOI: 10.1016/j.cct.2023.107087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Both preclinical studies, and more recent clinical imaging studies, suggest that glia-mediated neuroinflammation may be implicated in chronic pain, and therefore might be a potential treatment target. However, it is currently unknown whether modulating neuroinflammation effectively alleviates pain in humans. This trial tests the hypothesis that minocycline, an FDA-approved tetracycline antibiotic and effective glial cell inhibitor in animals, reduces neuroinflammation and may reduce pain symptoms in humans with chronic low back pain. METHODS AND ANALYSIS This study is a randomized, double-blind, placebo-controlled clinical trial. Subjects, aged 18-75, with a confirmed diagnosis of chronic (≥ six months) low back pain (cLBP) and a self-reported pain rating of at least four out of ten (for at least half of the days during an average week) are enrolled via written, informed consent. Eligible subjects are randomized to receive a 14-day course of either active drug (minocycline) or placebo. Before and after treatment, subjects are scanned with integrated Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) using [11C]PBR28, a second-generation radiotracer for the 18 kDa translocator protein (TSPO), which is highly expressed in glial cells and thus a putative marker of neuroinflammation. Pain levels are evaluated via daily surveys, collected seven days prior to the start of medication, and throughout the 14 days of treatment. General linear models will be used to assess pain levels and determine the treatment effect on brain (and spinal cord) TSPO signal. TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT03106740).
Collapse
Affiliation(s)
- Erin J Morrissey
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zeynab Alshelh
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Paulina C Knight
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Atreyi Saha
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Minhae Kim
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Angel Torrado-Carvajal
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chelsea Pike
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph J Locascio
- Harvard Catalyst Biostatistical Consulting Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Vitaly Napadow
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco L Loggia
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Gevers-Montoro C, Ortega-De Mues A, Piché M. Mechanisms of chiropractic spinal manipulative therapy for patients with chronic primary low back pain: protocol for a mechanistic randomised placebo-controlled trial. BMJ Open 2023; 13:e065999. [PMID: 36764718 PMCID: PMC9923302 DOI: 10.1136/bmjopen-2022-065999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Chronic low back pain (CLBP) is a highly prevalent and disabling condition. Identifying subgroups of patients afflicted with CLBP is a current research priority, for which a classification system based on pain mechanisms was proposed. Spinal manipulative therapy (SMT) is recommended for the management of CLBP. Yet, little data are available regarding its mechanisms of action, making it difficult to match this intervention to the patients who may benefit the most. It was suggested that SMT may influence mechanisms associated with central sensitisation. Therefore, classifying patients with CLBP according to central sensitisation mechanisms may help predict their response to SMT. METHODS AND ANALYSIS This protocol describes a randomised placebo-controlled trial aiming to examine which variables linked to central sensitisation may help predict the clinical response to SMT in a cohort of patients with CLBP. One hundred patients with chronic primary low back pain will be randomised to receive 12 sessions of SMT or placebo SMT over a 4-week period. Pain intensity and disability will be assessed as primary outcomes after completing the 4-week treatment (primary endpoint), and at 4-week and 12-week follow-ups. Baseline values of two pain questionnaires, lumbar pressure pain thresholds, concentrations of an inflammatory cytokine and expectations of pain relief will be entered as predictors of the response to SMT in a multiple regression model. Changes in these variables after treatment will be used in a second multiple regression model. The reference values of these predictors will be measured from 50 age and sex-matched healthy controls to allow interpretation of values in patients. Mixed analyses of variance will also be conducted to compare the primary outcomes and the predictors between groups (SMT vs placebo) over time (baseline vs post-treatment). ETHICS AND DISSEMINATION Ethical approval was granted by the Fundación Jiménez Díaz Clinical Research Ethics Committee. TRIAL REGISTRATION NUMBER NCT05162924.
Collapse
Affiliation(s)
- Carlos Gevers-Montoro
- Chiropractic, Real Centro Universitario Escorial Maria Cristina, San Lorenzo de El Escorial, Spain
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivieres, Quebec, Canada
| | - Arantxa Ortega-De Mues
- Chiropractic, Real Centro Universitario Escorial Maria Cristina, San Lorenzo de El Escorial, Spain
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivieres, Quebec, Canada
- CogNAC (Cognition, Neurosciences, Affect et Comportement) Research Group, Université du Québec à Trois-Rivières, Trois-Rivieres, Quebec, Canada
| |
Collapse
|
16
|
Robertson JW, Aristi G, Hashmi JA. White matter microstructure predicts measures of clinical symptoms in chronic back pain patients. Neuroimage Clin 2023; 37:103309. [PMID: 36621020 PMCID: PMC9850203 DOI: 10.1016/j.nicl.2022.103309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/30/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Chronic back pain (CBP) has extensive clinical and social implications for its sufferers and is a major source of disability. Chronic pain has previously been shown to have central neural factors underpinning it, including the loss of white matter (WM), however traditional methods of analyzing WM microstructure have produced mixed and unclear results. To better understand these factors, we assessed the WM microstructure of 50 patients and 40 healthy controls (HC) using diffusion-weighted imaging. The data were analyzed using fixel-based analysis (FBA), a higher-order diffusion modelling technique applied to CBP for the first time here. Subjects also answered questionnaires relating to pain, disability, catastrophizing, and mood disorders, to establish the relationship between fixelwise metrics and clinical symptoms. FBA determined that, compared to HC, CBP patients had: 1) lower fibre density (FD) in several tracts, specifically the right anterior and bilateral superior thalamic radiations, right spinothalamic tract, right middle cerebellar peduncle, and the body and splenium of corpus callosum; 2) higher FD in the genu of corpus callosum; and 3) lower FDC - a combined fibre density and cross-section measure - in the bilateral spinothalamic tracts and right anterior thalamic radiation. Exploratory correlations showed strong negative relationships between fixelwise metrics and clinical questionnaire scores, especially pain catastrophizing. These results have important implications for the intake and processing of sensory data in CBP that warrant further investigation.
Collapse
Affiliation(s)
- Jason W Robertson
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Nova Scotia Health Authority, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada.
| | - Guillermo Aristi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Nova Scotia Health Authority, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada
| | - Javeria A Hashmi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Nova Scotia Health Authority, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada.
| |
Collapse
|
17
|
Zhou Z, Hui ES, Kranz GS, Chang JR, de Luca K, Pinto SM, Chan WW, Yau SY, Chau BK, Samartzis D, Jensen MP, Wong AYL. Potential mechanisms underlying the accelerated cognitive decline in people with chronic low back pain: A scoping review. Ageing Res Rev 2022; 82:101767. [PMID: 36280211 DOI: 10.1016/j.arr.2022.101767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
A growing body of evidence has shown that people with chronic low back pain (CLBP) demonstrate significantly greater declines in multiple cognitive domains than people who do not have CLBP. Given the high prevalence of CLBP in the ever-growing aging population that may be more vulnerable to cognitive decline, it is important to understand the mechanisms underlying the accelerated cognitive decline observed in this population, so that proper preventive or treatment approaches can be developed and implemented. The current scoping review summarizes what is known regarding the potential mechanisms underlying suboptimal cognitive performance and cognitive decline in people with CLBP and discusses future research directions. Five potential mechanisms were identified based on the findings from 34 included studies: (1) altered activity in the cortex and neural networks; (2) grey matter atrophy; (3) microglial activation and neuroinflammation; (4) comorbidities associated with CLBP; and (5) gut microbiota dysbiosis. Future studies should deepen the understanding of mechanisms underlying this association so that proper prevention and treatment strategies can be developed.
Collapse
Affiliation(s)
- Zhixing Zhou
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Edward S Hui
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; The State Key Laboratory of Brain and Cognitive Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Jeremy R Chang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Katie de Luca
- School of Health, Medical and Applied Sciences, CQ University, Brisbane, Australia
| | - Sabina M Pinto
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Winnie Wy Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Bolton Kh Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Centre, Chicago, IL, USA
| | - Mark P Jensen
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Arnold Y L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China.
| |
Collapse
|
18
|
Chang TT, Chang YH, Du SH, Chen PJ, Wang XQ. Non-invasive brain neuromodulation techniques for chronic low back pain. Front Mol Neurosci 2022; 15:1032617. [PMID: 36340685 PMCID: PMC9627199 DOI: 10.3389/fnmol.2022.1032617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Structural and functional changes of the brain occur in many chronic pain conditions, including chronic low back pain (CLBP), and these brain abnormalities can be reversed by effective treatment. Research on the clinical applications of non-invasive brain neuromodulation (NIBS) techniques for chronic pain is increasing. Unfortunately, little is known about the effectiveness of NIBS on CLBP, which limits its application in clinical pain management. Therefore, we summarized the effectiveness and limitations of NIBS techniques on CLBP management and described the effects and mechanisms of NIBS approaches on CLBP in this review. Overall, NIBS may be effective for the treatment of CLBP. And the analgesic mechanisms of NIBS for CLBP may involve the regulation of pain signal pathway, synaptic plasticity, neuroprotective effect, neuroinflammation modulation, and variations in cerebral blood flow and metabolism. Current NIBS studies for CLBP have limitations, such as small sample size, relative low quality of evidence, and lack of mechanistic studies. Further studies on the effect of NIBS are needed, especially randomized controlled trials with high quality and large sample size.
Collapse
Affiliation(s)
- Tian-Tian Chang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Hao Chang
- Department of Luoyang Postgraduate Training, Henan University of Traditional Chinese Medicine, Luoyang, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- *Correspondence: Pei-Jie Chen,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
19
|
Pike CK, Kim M, Schnitzer K, Mercaldo N, Edwards R, Napadow V, Zhang Y, Morrissey EJ, Alshelh Z, Evins AE, Loggia ML, Gilman JM. Study protocol for a phase II, double-blind, randomised controlled trial of cannabidiol (CBD) compared with placebo for reduction of brain neuroinflammation in adults with chronic low back pain. BMJ Open 2022; 12:e063613. [PMID: 36123113 PMCID: PMC9486315 DOI: 10.1136/bmjopen-2022-063613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Chronic pain is a debilitating medical problem that is difficult to treat. Neuroinflammatory pathways have emerged as a potential therapeutic target, as preclinical studies have demonstrated that glial cells and neuroglial interactions play a role in the establishment and maintenance of pain. Recently, we used positron emission tomography (PET) to demonstrate increased levels of 18 kDa translocator protein (TSPO) binding, a marker of glial activation, in patients with chronic low back pain (cLBP). Cannabidiol (CBD) is a glial inhibitor in animal models, but studies have not assessed whether CBD reduces neuroinflammation in humans. The principal aim of this trial is to evaluate whether CBD, compared with placebo, affects neuroinflammation, as measured by TSPO levels. METHODS AND ANALYSIS This is a double-blind, randomised, placebo-controlled, phase II clinical trial. Eighty adults (aged 18-75) with cLBP for >6 months will be randomised to either an FDA-approved CBD medication (Epidiolex) or matching placebo for 4 weeks using a dose-escalation design. All participants will undergo integrated PET/MRI at baseline and after 4 weeks of treatment to evaluate neuroinflammation using [11C]PBR28, a second-generation radioligand for TSPO. Our primary hypothesis is that participants randomised to CBD will demonstrate larger reductions in thalamic [11C]PBR28 signal compared with those receiving placebo. We will also assess the effect of CBD on (1) [11C]PBR28 signal from limbic regions, which our prior work has linked to depressive symptoms and (2) striatal activation in response to a reward task. Additionally, we will evaluate self-report measures of cLBP intensity and bothersomeness, depression and quality of life at baseline and 4 weeks. ETHICS AND DISSEMINATION This protocol is approved by the Massachusetts General Brigham Human Research Committee (protocol number: 2021P002617) and FDA (IND number: 143861) and registered with ClinicalTrials.gov. Results will be published in peer-reviewed journals and presented at conferences. TRIAL REGISTRATION NUMBER NCT05066308; ClinicalTrials.gov.
Collapse
Affiliation(s)
- Chelsea K Pike
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Minhae Kim
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Kristina Schnitzer
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathaniel Mercaldo
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Edwards
- Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Vitaly Napadow
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin Janas Morrissey
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Zeynab Alshelh
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - A Eden Evins
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco L Loggia
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jodi M Gilman
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts General Hospital Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Martins D, Dipasquale O, Veronese M, Turkheimer F, Loggia ML, McMahon S, Howard MA, Williams SC. Transcriptional and cellular signatures of cortical morphometric remodelling in chronic pain. Pain 2022; 163:e759-e773. [PMID: 34561394 PMCID: PMC8940732 DOI: 10.1097/j.pain.0000000000002480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is a highly debilitating and difficult to treat condition, which affects the structure of the brain. Although the development of chronic pain is moderately heritable, how disease-related alterations at the microscopic genetic architecture drive macroscopic brain abnormalities is currently largely unknown. Here, we examined alterations in morphometric similarity (MS) and applied an integrative imaging transcriptomics approach to identify transcriptional and cellular correlates of these MS changes, in 3 independent small cohorts of patients with distinct chronic pain syndromes (knee osteoarthritis, low back pain, and fibromyalgia) and age-matched and sex-matched pain-free controls. We uncover a novel pattern of cortical MS remodelling involving mostly small-to-medium MS increases in the insula and limbic cortex (none of these changes survived stringent false discovery rate correction for the number of regions tested). This pattern of changes is different from that observed in patients with major depression and cuts across the boundaries of specific pain syndromes. By leveraging transcriptomic data from Allen Human Brain Atlas, we show that cortical MS remodelling in chronic pain spatially correlates with the brain-wide expression of genes related to pain and broadly involved in the glial immune response and neuronal plasticity. Our findings bridge levels to connect genes, cell classes, and biological pathways to in vivo imaging correlates of chronic pain. Although correlational, our data suggest that cortical remodelling in chronic pain might be shaped by multiple elements of the cellular architecture of the brain and identifies several pathways that could be prioritized in future genetic association or drug development studies.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marco L. Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital Boston, MA, United States
| | - Stephen McMahon
- Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matthew A. Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Steven C.R. Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
21
|
D’Antoni F, Russo F, Ambrosio L, Bacco L, Vollero L, Vadalà G, Merone M, Papalia R, Denaro V. Artificial Intelligence and Computer Aided Diagnosis in Chronic Low Back Pain: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105971. [PMID: 35627508 PMCID: PMC9141006 DOI: 10.3390/ijerph19105971] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022]
Abstract
Low Back Pain (LBP) is currently the first cause of disability in the world, with a significant socioeconomic burden. Diagnosis and treatment of LBP often involve a multidisciplinary, individualized approach consisting of several outcome measures and imaging data along with emerging technologies. The increased amount of data generated in this process has led to the development of methods related to artificial intelligence (AI), and to computer-aided diagnosis (CAD) in particular, which aim to assist and improve the diagnosis and treatment of LBP. In this manuscript, we have systematically reviewed the available literature on the use of CAD in the diagnosis and treatment of chronic LBP. A systematic research of PubMed, Scopus, and Web of Science electronic databases was performed. The search strategy was set as the combinations of the following keywords: “Artificial Intelligence”, “Machine Learning”, “Deep Learning”, “Neural Network”, “Computer Aided Diagnosis”, “Low Back Pain”, “Lumbar”, “Intervertebral Disc Degeneration”, “Spine Surgery”, etc. The search returned a total of 1536 articles. After duplication removal and evaluation of the abstracts, 1386 were excluded, whereas 93 papers were excluded after full-text examination, taking the number of eligible articles to 57. The main applications of CAD in LBP included classification and regression. Classification is used to identify or categorize a disease, whereas regression is used to produce a numerical output as a quantitative evaluation of some measure. The best performing systems were developed to diagnose degenerative changes of the spine from imaging data, with average accuracy rates >80%. However, notable outcomes were also reported for CAD tools executing different tasks including analysis of clinical, biomechanical, electrophysiological, and functional imaging data. Further studies are needed to better define the role of CAD in LBP care.
Collapse
Affiliation(s)
- Federico D’Antoni
- Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128 Rome, Italy; (F.D.); (L.B.); (L.V.)
| | - Fabrizio Russo
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
- Correspondence: (F.R.); (M.M.)
| | - Luca Ambrosio
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
| | - Luca Bacco
- Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128 Rome, Italy; (F.D.); (L.B.); (L.V.)
- ItaliaNLP Lab, Istituto di Linguistica Computazionale “Antonio Zampolli”, National Research Council, Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy
- Webmonks S.r.l., Via del Triopio, 5, 00178 Rome, Italy
| | - Luca Vollero
- Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128 Rome, Italy; (F.D.); (L.B.); (L.V.)
| | - Gianluca Vadalà
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
| | - Mario Merone
- Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128 Rome, Italy; (F.D.); (L.B.); (L.V.)
- Correspondence: (F.R.); (M.M.)
| | - Rocco Papalia
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
| | - Vincenzo Denaro
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
| |
Collapse
|
22
|
Sari H, Galbusera R, Bonnier G, Lin Y, Alshelh Z, Torrado-Carvajal A, Mukerji SS, Ratai EM, Gandhi RT, Chu JT, Akeju O, Orhurhu V, Salvatore AN, Sherman J, Kwon DS, Walker B, Rosen B, Price JC, Pollak LE, Loggia M, Granziera C. Multimodal Investigation of Neuroinflammation in Aviremic Patients With HIV on Antiretroviral Therapy and HIV Elite Controllers. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/2/e1144. [PMID: 35140142 PMCID: PMC8860468 DOI: 10.1212/nxi.0000000000001144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES The presence of HIV in the CNS has been related to chronic immune activation and cognitive dysfunction. The aim of this work was to investigate (1) the presence of neuroinflammation in aviremic people with HIV (PWH) on therapy and in nontreated aviremic PWH (elite controllers [ECs]) using a translocator protein 18 kDa radioligand; (2) the relationship between neuroinflammation and cognitive function in aviremic PWH; and (3) the relationship between [11C]-PBR28 signal and quantitative MRI (qMRI) measures of brain tissue integrity such as T1 and T2 relaxation times (rts). METHODS [11C]-PBR28 (standard uptake value ratio, SUVR) images were generated in 36 participants (14 PWH, 6 ECs, and 16 healthy controls) using a statistically defined pseudoreference region. Group comparisons of [11C]-PBR28 SUVR were performed using region of interest-based and voxelwise analyses. The relationship between inflammation, qMRI measures, and cognitive function was studied. RESULTS In region of interest analyses, ECs exhibited significantly lower [11C]-PBR28 signal in the thalamus, putamen, superior temporal gyrus, prefrontal cortex, and cerebellum compared with the PWH. In voxelwise analyses, differences were observed in the thalamus, precuneus cortex, inferior temporal gyrus, occipital cortex, cerebellum, and white matter (WM). [11C]-PBR28 signal in the WM and superior temporal gyrus was related to processing speed and selective attention in PWH. In a subset of PWH (n = 12), [11C]-PBR28 signal in the thalamus and WM regions was related to a decrease in T2 rt and to an increase in T1 rt suggesting a colocalization of increased glial metabolism, decrease in microstructural integrity, and iron accumulation. DISCUSSION This study casts a new light onto the role of neuroinflammation and related microstructural alterations of HIV infection in the CNS and shows that ECs suppress neuroinflammation more effectively than PWH on therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cristina Granziera
- From the MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging (H.S., Y.L., Z.A., A.T.-C., E.M.R., A.N.S., B.R., J.C.P., M.L.), Massachusetts General Hospital, Harvard Medical School, Charlestown; Neurologic Clinic and Policlinic (R.G., G.B., C.G.), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel (R.G., G.B., C.G.), Department of Biomedical Engineering, University Hospital Basel and University of Basel, Switzerland; Medical Image Analysis and Biometry Lab (A.T.-C.), Universidad Rey Juan Carlos, Madrid, Spain; Department of Neurology (S.S.M., R.T.G.), Infectious Diseases (J.T.C.), Department of Anesthesia (O.A., V.O.), and Department of Psychiatry (J.S., L.E.P.), Massachusetts General Hospital, Boston; and Ragon Institute of MGH (D.S.K., B.W.), MIT and Harvard, Cambridge, MA.
| |
Collapse
|
23
|
Patient-clinician brain concordance underlies causal dynamics in nonverbal communication and negative affective expressivity. Transl Psychiatry 2022; 12:44. [PMID: 35091536 PMCID: PMC8799700 DOI: 10.1038/s41398-022-01810-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Patient-clinician concordance in behavior and brain activity has been proposed as a potential key mediator of mutual empathy and clinical rapport in the therapeutic encounter. However, the specific elements of patient-clinician communication that may support brain-to-brain concordance and therapeutic alliance are unknown. Here, we investigated how pain-related, directional facial communication between patients and clinicians is associated with brain-to-brain concordance. Patient-clinician dyads interacted in a pain-treatment context, during synchronous assessment of brain activity (fMRI hyperscanning) and online video transfer, enabling face-to-face social interaction. In-scanner videos were used for automated individual facial action unit (AU) time-series extraction. First, an interpretable machine-learning classifier of patients' facial expressions, from an independent fMRI experiment, significantly distinguished moderately painful leg pressure from innocuous pressure stimuli. Next, we estimated neural-network causality of patient-to-clinician directional information flow of facial expressions during clinician-initiated treatment of patients' evoked pain. We identified a leader-follower relationship in which patients predominantly led the facial communication while clinicians responded to patients' expressions. Finally, analyses of dynamic brain-to-brain concordance showed that patients' mid/posterior insular concordance with the clinicians' anterior insula cortex, a region identified in previously published data from this study1, was associated with therapeutic alliance, and self-reported and objective (patient-to-clinician-directed causal influence) markers of negative-affect expressivity. These results suggest a role of patient-clinician concordance of the insula, a social-mirroring and salience-processing brain node, in mediating directional dynamics of pain-directed facial communication during therapeutic encounters.
Collapse
|
24
|
Chang JR, Wang X, Lin G, Samartzis D, Pinto SM, Wong AYL. Are Changes in Sleep Quality/Quantity or Baseline Sleep Parameters Related to Changes in Clinical Outcomes in Patients With Nonspecific Chronic Low Back Pain?: A Systematic Review. Clin J Pain 2021; 38:292-307. [PMID: 34939973 DOI: 10.1097/ajp.0000000000001008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Sleep disturbance is prevalent among patients with chronic low back pain (CLBP). This systematic review aimed to summarize the evidence regarding the: (1) temporal relations between changes in sleep quality/quantity and the corresponding changes in pain and/or disability; and (2) role of baseline sleep quality/quantity in predicting future pain and/or disability in patients with CLBP. METHODS Four databases were searched from their inception to February 2021. Two reviewers independently screened the abstract and full text, extracted data, assessed the methodological quality of the included studies, and evaluated the quality of evidence of the findings using the Grading of Recommendations Assessment Development and Evaluation (GRADE). RESULTS Of 1995 identified references, 6 articles involving 1641 participants with CLBP were included. Moderate-quality evidence substantiated that improvements in self-reported sleep quality and total sleep time were significantly correlated with the corresponding LBP reduction. Low-quality evidence showed that self-reported improvements in sleep quality were related to the corresponding improvements in CLBP-related disability. There was conflicting evidence regarding the relation between baseline sleep quality/quantity and future pain/disability in patients with CLBP. DISCUSSION This is the first systematic review to accentuate that improved self-reported sleep quality/quantity may be associated with improved pain/disability, although it remains unclear whether baseline sleep quality/quantity is a prognostic factor for CLBP. These findings highlight the importance of understanding the mechanisms underlying the relation between sleep and CLBP, which may inform the necessity of assessing or treating sleep disturbance in people with CLBP.
Collapse
Affiliation(s)
- Jeremy R Chang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaoyue Wang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Guohui Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Dino Samartzis
- Department of Orthopedic Surgery
- Rush International Spine Research and Innovation Initiative, Rush University Medical Center
- Rush University Graduate College, Chicago, IL
| | - Sabina M Pinto
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Arnold Y L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
25
|
Altered Amygdala-prefrontal Connectivity in Chronic Nonspecific Low Back Pain: Resting-state fMRI and Dynamic Causal Modelling Study. Neuroscience 2021; 482:18-29. [PMID: 34896229 DOI: 10.1016/j.neuroscience.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022]
Abstract
Chronic nonspecific low back pain (cNLBP) is a leading contributor to disease burden worldwide that is difficult to treat due to its nonspecific aetiology and complexity. The amygdala is a complex of structurally and functionally heterogeneous nuclei that serve as a key neural substrate for the interactions between pain and negative affective states. However, whether the functions of amygdalar subcomponents are differentially altered in cNLBP remains unknown. Little attention has focused on effective connectivity of the amygdala with the cortex in cNLBP. In this study, thirty-three patients with cNLBP and 33 healthy controls (HCs) were included. Resting-state functional connectivity (rsFC) and effective connectivity of the amygdala and its subregions were examined. Our results showed that the patient group exhibited significantly greater rsFC between the left amygdala and left dorsal medial prefrontal cortex (mPFC), which was negatively correlated with pain intensity ratings. Subregional analyses suggested a difference located at the superficial nuclei of the amygdala. Dynamic causal modelling revealed significantly lower effective connectivity from the left amygdala to the dorsal mPFC in patients with cNLBP than in HCs. Both groups exhibited stronger effective connectivity from the left amygdala to the right amygdala. In summary, these findings not only suggested altered rsFC of the amygdala-mPFC pathway in cNLBP but also implicated an abnormal direction of information processing between the amygdala and mPFC in these patients. Our results further highlight the involvement of the amygdala in the neuropathology of cNLBP.
Collapse
|
26
|
Chauveau F, Becker G, Boutin H. Have (R)-[ 11C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. Eur J Nucl Med Mol Imaging 2021; 49:201-220. [PMID: 34387719 PMCID: PMC8712292 DOI: 10.1007/s00259-021-05425-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE The prototypical TSPO radiotracer (R)-[11C]PK11195 has been used in humans for more than thirty years to visualize neuroinflammation in several pathologies. Alternative radiotracers have been developed to improve signal-to-noise ratio and started to be tested clinically in 2008. Here we examined the scientific value of these "(R)-[11C]PK11195 challengers" in clinical research to determine if they could supersede (R)-[11C]PK11195. METHODS A systematic MEDLINE (PubMed) search was performed (up to end of year 2020) to extract publications reporting TSPO PET in patients with identified pathologies, excluding studies in healthy subjects and methodological studies. RESULTS Of the 288 publications selected, 152 used 13 challengers, and 142 used (R)-[11C]PK11195. Over the last 20 years, the number of (R)-[11C]PK11195 studies remained stable (6 ± 3 per year), but was surpassed by the total number of challenger studies for the last 6 years. In total, 3914 patients underwent a TSPO PET scan, and 47% (1851 patients) received (R)-[11C]PK11195. The 2 main challengers were [11C]PBR28 (24%-938 patients) and [18F]FEPPA (11%-429 patients). Only one-in-ten patients (11%-447) underwent 2 TSPO scans, among whom 40 (1%) were scanned with 2 different TSPO radiotracers. CONCLUSIONS Generally, challengers confirmed disease-specific initial (R)-[11C]PK11195 findings. However, while their better signal-to-noise ratio seems particularly useful in diseases with moderate and widespread neuroinflammation, most challengers present an allelic-dependent (Ala147Thr polymorphism) TSPO binding and genetic stratification is hindering their clinical implementation. As new challengers, insensitive to TSPO human polymorphism, are about to enter clinical evaluation, we propose this systematic review to be regularly updated (living review).
Collapse
Affiliation(s)
- Fabien Chauveau
- University of Lyon, Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, University Lyon 1, Lyon, France.
| | - Guillaume Becker
- GIGA - CRC In Vivo Imaging, University Liege, Liege, Belgium
- University of Lyon, CarMeN Laboratory, INSERM U1060, University Lyon 1, Hospices Civils Lyon, Lyon, France
| | - Hervé Boutin
- Faculty of Biology Medicine and Health, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
27
|
Alshelh Z, Brusaferri L, Saha A, Morrissey E, Knight P, Kim M, Zhang Y, Hooker JM, Albrecht D, Torrado-Carvajal A, Placzek MS, Akeju O, Price J, Edwards RR, Lee J, Sclocco R, Catana C, Napadow V, Loggia ML. Neuro-immune signatures in chronic low back pain subtypes. Brain 2021; 145:1098-1110. [PMID: 34528069 DOI: 10.1093/brain/awab336] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/11/2021] [Accepted: 08/24/2021] [Indexed: 11/14/2022] Open
Abstract
We recently showed that patients with different chronic pain conditions (such as chronic low back pain, fibromyalgia, migraine, and Gulf War Illness) demonstrated elevated brain and/or spinal cord levels of the glial marker 18 kDa translocator protein, which suggests that neuroinflammation might be a pervasive phenomenon observable across multiple etiologically heterogeneous pain disorders. Interestingly, the spatial distribution of this neuroinflammatory signal appears to exhibit a degree of disease specificity (e.g. with respect to the involvement of the primary somatosensory cortex), suggesting that different pain conditions may exhibit distinct "neuroinflammatory signatures". To further explore this hypothesis, we tested whether neuroinflammatory signal can characterize putative etiological subtypes of chronic low back pain patients based on clinical presentation. Specifically, we explored neuroinflammation in patients whose chronic low back pain either did or did not radiate to the leg (i.e. "radicular" vs. "axial" back pain). Fifty-four chronic low back pain patients, twenty-six with axial back pain (43.7 ± 16.6 y.o. [mean±SD]) and twenty-eight with radicular back pain (48.3 ± 13.2 y.o.), underwent PET/MRI with [11C]PBR28, a second-generation radioligand for the 18 kDa translocator protein. [11C]PBR28 signal was quantified using standardized uptake values ratio (validated against volume of distribution ratio; n = 23). Functional MRI data were collected simultaneously to the [11C]PBR28 data 1) to functionally localize the primary somatosensory cortex back and leg subregions and 2) to perform functional connectivity analyses (in order to investigate possible neurophysiological correlations of the neuroinflammatory signal). PET and functional MRI measures were compared across groups, cross-correlated with one another and with the severity of "fibromyalgianess" (i.e. the degree of pain centralization, or "nociplastic pain"). Furthermore, statistical mediation models were employed to explore possible causal relationships between these three variables. For the primary somatosensory cortex representation of back/leg, [11C]PBR28 PET signal and functional connectivity to the thalamus were: 1) higher in radicular compared to axial back pain patients, 2) positively correlated with each other and 3) positively correlated with fibromyalgianess scores, across groups. Finally, 4) fibromyalgianess mediated the association between [11C]PBR28 PET signal and primary somatosensory cortex-thalamus connectivity across groups. Our findings support the existence of "neuroinflammatory signatures" that are accompanied by neurophysiological changes, and correlate with clinical presentation (in particular, with the degree of nociplastic pain) in chronic pain patients. These signatures may contribute to the subtyping of distinct pain syndromes and also provide information about inter-individual variability in neuro-immune brain signals, within diagnostic groups, that could eventually serve as targets for mechanism-based precision medicine approaches.
Collapse
Affiliation(s)
- Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ludovica Brusaferri
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Atreyi Saha
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Erin Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Paulina Knight
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob M Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Daniel Albrecht
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Michael S Placzek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie Price
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeungchan Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Roberta Sclocco
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Radiology, Logan University, Chesterfield, MO, USA
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
28
|
Weerasekera A, Morrissey E, Kim M, Saha A, Lin Y, Alshelh Z, Torrado-Carvajal A, Albrecht D, Akeju O, Kwon YM, Bedair H, Chen AF, Napadow V, Schreiber K, Ratai EM, Edwards RR, Loggia ML. Thalamic neurometabolite alterations in patients with knee osteoarthritis before and after total knee replacement. Pain 2021; 162:2014-2023. [PMID: 33470749 PMCID: PMC8205967 DOI: 10.1097/j.pain.0000000000002198] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT The weak association between disability levels and "peripheral" (ie, knee) findings suggests that central nervous system alterations may contribute to the pathophysiology of knee osteoarthritis (KOA). Here, we evaluated brain metabolite alterations in patients with KOA, before and after total knee arthroplasty (TKA), using 1H-magnetic resonance spectroscopy (MRS). Thirty-four presurgical patients with KOA and 13 healthy controls were scanned using a PRESS sequence (TE = 30 ms, TR = 1.7 seconds, voxel size = 15 × 15 × 15 mm). In addition, 13 patients were rescanned 4.1 ± 1.6 (mean ± SD) weeks post-TKA. When using creatine (Cr)-normalized levels, presurgical KOA patients demonstrated lower N-acetylaspartate (NAA) (P < 0.001), higher myoinositol (mIns) (P < 0.001), and lower Choline (Cho) (P < 0.05) than healthy controls. The mIns levels were positively correlated with pain severity scores (r = 0.37, P < 0.05). These effects reached statistical significance also using water-referenced concentrations, except for the Cho group differences (P ≥ 0.067). Post-TKA patients demonstrated an increase in NAA (P < 0.01), which returned to the levels of healthy controls (P > 0.05), irrespective of metric. In addition, patients demonstrated postsurgical increases in Cr-normalized (P < 0.001), but not water-referenced mIns, which were proportional to the NAA/Cr increases (r = 0.61, P < 0.05). Because mIns is commonly regarded as a glial marker, our results are suggestive of a possible dual role for neuroinflammation in KOA pain and post-TKA recovery. Moreover, the apparent postsurgical normalization of NAA, a putative marker of neuronal integrity, might implicate mitochondrial dysfunction, rather than neurodegenerative processes, as a plausible pathophysiological mechanism in KOA. More broadly, our results add to a growing body of literature suggesting that some pain-related brain alterations can be reversed after peripheral surgical treatment.
Collapse
Affiliation(s)
- Akila Weerasekera
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Erin Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Atreyi Saha
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yang Lin
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Daniel Albrecht
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Young-Min Kwon
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hany Bedair
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Antonia F Chen
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kristin Schreiber
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eva-Maria Ratai
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert R Edwards
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Petrosino S, Schiano Moriello A. Palmitoylethanolamide: A Nutritional Approach to Keep Neuroinflammation within Physiological Boundaries-A Systematic Review. Int J Mol Sci 2020; 21:E9526. [PMID: 33333772 PMCID: PMC7765232 DOI: 10.3390/ijms21249526] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is a physiological response aimed at maintaining the homodynamic balance and providing the body with the fundamental resource of adaptation to endogenous and exogenous stimuli. Although the response is initiated with protective purposes, the effect may be detrimental when not regulated. The physiological control of neuroinflammation is mainly achieved via regulatory mechanisms performed by particular cells of the immune system intimately associated with or within the nervous system and named "non-neuronal cells." In particular, mast cells (within the central nervous system and in the periphery) and microglia (at spinal and supraspinal level) are involved in this control, through a close functional relationship between them and neurons (either centrally, spinal, or peripherally located). Accordingly, neuroinflammation becomes a worsening factor in many disorders whenever the non-neuronal cell supervision is inadequate. It has been shown that the regulation of non-neuronal cells-and therefore the control of neuroinflammation-depends on the local "on demand" synthesis of the endogenous lipid amide Palmitoylethanolamide and related endocannabinoids. When the balance between synthesis and degradation of this bioactive lipid mediator is disrupted in favor of reduced synthesis and/or increased degradation, the behavior of non-neuronal cells may not be appropriately regulated and neuroinflammation exceeds the physiological boundaries. In these conditions, it has been demonstrated that the increase of endogenous Palmitoylethanolamide-either by decreasing its degradation or exogenous administration-is able to keep neuroinflammation within its physiological limits. In this review the large number of studies on the benefits derived from oral administration of micronized and highly bioavailable forms of Palmitoylethanolamide is discussed, with special reference to neuroinflammatory disorders.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy;
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy;
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| |
Collapse
|
30
|
The Neuroimmunology of Chronic Pain: From Rodents to Humans. J Neurosci 2020; 41:855-865. [PMID: 33239404 DOI: 10.1523/jneurosci.1650-20.2020] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic pain, encompassing conditions, such as low back pain, arthritis, persistent post-surgical pain, fibromyalgia, and neuropathic pain disorders, is highly prevalent but remains poorly treated. The vast majority of therapeutics are directed solely at neurons, despite the fact that signaling between immune cells, glia, and neurons is now recognized as indispensable for the initiation and maintenance of chronic pain. This review highlights recent advances in understanding fundamental neuroimmune signaling mechanisms and novel therapeutic targets in rodent models of chronic pain. We further discuss new technological developments to study, diagnose, and quantify neuroimmune contributions to chronic pain in patient populations.
Collapse
|