1
|
Hinchcliffe JK, Robinson ESJ. The Affective Bias Test and Reward Learning Assay: Neuropsychological Models for Depression Research and Investigating Antidepressant Treatments in Rodents. Curr Protoc 2024; 4:e1057. [PMID: 38923877 DOI: 10.1002/cpz1.1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The Affective Bias Test (ABT) quantifies acute changes in affective state based on the affective biases they generate in an associative reward learning task. The Reward Learning Assay (RLA) provides a control assay for the ABT and reward-induced biases generated in this model are sensitive to changes in core affective state. Both tasks involve training animals to associate a specific digging substrate with a food reward. Animals learn to discriminate between two digging substrates placed in ceramic bowls, one rewarded and one unrewarded. In the ABT, the animal learns two independent substrate-reward associations with a fixed reward value following either an affective state or drug manipulation, or under control conditions. Affective biases generated are quantified in a choice test where the animals exhibit a bias (make more choices) for one of the substrates which is specifically related to affective state at the time of learning. The ABT is used to investigate biases generated during learning as well as modulation of biases associated with past experiences. The RLA follows a similar protocol, but the animal remains in the same affective state throughout and a reward-induced bias is generated by pairing one substrate with a higher value reward. The RLA provides a control to determine if drug treatments affect memory retrieval more generally. Studies in depression models and following environmental enrichment suggest that reward-induced biases are sensitive to core changes in affective state. Each task offers different insights into affective processing mechanisms and may help improve the translational validity of animal studies and benefit pre-clinical drug development. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Bowl digging and discrimination training Basic Protocol 2: The reward learning assay Basic Protocol 3: The affective bias test - new learning Basic Protocol 4: The affective bias test - modulation of affective biases associated with past experiences.
Collapse
Affiliation(s)
- Justyna K Hinchcliffe
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Jackson MG, Lightman SL, Robinson ESJ. Characterisation of behaviours relevant to apathy syndrome in the aged male rat. Behav Brain Res 2024; 466:114977. [PMID: 38570074 DOI: 10.1016/j.bbr.2024.114977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Apathy is a complex psychiatric syndrome characterised by motivational deficit, emotional blunting and cognitive changes. It occurs alongside a broad range of neurological disorders, but also occurs in otherwise healthy ageing. Despite its clinical prevalence, apathy does not yet have a designated treatment strategy. Generation of a translational animal model of apathy syndrome would facilitate the development of novel treatments. Given the multidimensional nature of apathy, a model cannot be achieved with a single behavioural test. Using a battery of behavioural tests we investigated whether aged rats exhibit behavioural deficits across different domains relevant to apathy. Using the effort for reward and progressive ratio tasks we found that aged male rats (21-27 months) show intact reward motivation. Using the novelty supressed feeding test and position-based object exploration we found aged rats showed increased anxiety-like behaviour inconsistent with emotional blunting. The sucrose preference test and reward learning assay showed intact reward sensitivity and reward-related cognition in aged rats. However, using a bowl-digging version of the probabilistic reversal learning task, we found a deficit in cognitive flexibility in aged rats that did not translate across to a touchscreen version of the task. While these data reveal important changes in cognitive flexibility and anxiety associated with ageing, aged rats do not show deficits across other behavioural domains relevant to apathy. This suggests that aged rats are not a suitable model for age-related apathy syndrome. These findings contrast with previous work in mice, revealing important species differences in behaviours relevant to apathy syndrome in ageing.
Collapse
Affiliation(s)
- Megan G Jackson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| | - Stafford L Lightman
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Zhang YH, Lin JX, Wang N, Wang JY, Luo F. Assessing cognitive biases induced by acute formalin or hotplate treatment: an animal study using affective bias test. Front Behav Neurosci 2024; 18:1332760. [PMID: 38333761 PMCID: PMC10850345 DOI: 10.3389/fnbeh.2024.1332760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Pain, a universal and burdensome condition, influences numerous individuals worldwide. It encompasses sensory, emotional, and cognitive facets, with recent research placing a heightened emphasis on comprehending pain's impact on emotion and cognition. Cognitive bias, which encompasses attentional bias, interpretation bias, and memory bias, signifies the presence of cognitive distortions influenced by emotional factors. It has gained significant prominence in pain-related research. Human studies have shown that individuals experiencing pain exhibit cognitive bias. Similarly, animal studies have demonstrated cognitive bias in pain-induced states across various species and disease models. In this study, we aimed to investigate the memory bias displayed by rats experiencing acute pain, using the affective bias test (ABT) as a tool and administering either hotplate or formalin to induce acute pain. Our data showed that rats demonstrated a significant preference for the control treatment-related substrate over the substrate associated with formalin treatment (p < 0.001), an indication of the prominent memory bias stimulated by acute formalin injections. However, when exposed to substrates related to hotplate treatment and control treatment, the acute pain induced by the hotplate treatment failed to generate a statistically significant choice bias in rats (p = 0.674). Our study demonstrates that the negative emotions associated with acute pain can be reflected by memory bias in ABT, at least for formalin-induced acute pain. This finding will augment our comprehension of the emotional and cognitive aspects of acute pain.
Collapse
Affiliation(s)
- Yu-Han Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jie-Xuan Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Yan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Kamenish K, Robinson ESJ. Neuropsychological Effects of Antidepressants: Translational Studies. Curr Top Behav Neurosci 2024; 66:101-130. [PMID: 37955824 DOI: 10.1007/7854_2023_446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Pharmacological treatments that improve mood were first identified serendipitously, but more than half a century later, how these drugs induce their antidepressant effects remains largely unknown. With the help of animal models, a detailed understanding of their pharmacological targets and acute and chronic effects on brain chemistry and neuronal function has been achieved, but it remains to be elucidated how these effects translate to clinical efficacy. Whilst the field has been dominated by the monoamine and neurotrophic hypotheses, the idea that the maladaptive cognitive process plays a critical role in the development and perpetuation of mood disorders has been discussed since the 1950s. Recently, studies using objective methods to quantify changes in emotional processing found acute effects with conventional antidepressants in both healthy volunteers and patients. These positive effects on emotional processing and cognition occur without a change in the subjective ratings of mood. Building from these studies, behavioural methods for animals that quantify similar cognitive affective processes have been developed. Integrating these behavioural approaches with pharmacology and targeted brain manipulations, a picture is beginning to emerge of the underlying mechanisms that may link the pharmacology of antidepressants, these neuropsychological constructs and clinical efficacy. In this chapter, we discuss findings from animal studies, experimental medicine and patients investigating the neuropsychological effects of antidepressant drugs. We discuss the possible neural circuits that contribute to these effects and discuss whether a neuropsychological model of antidepressant effects could explain the temporal differences in clinical benefits observed with conventional delayed-onset antidepressants versus rapid-acting antidepressants.
Collapse
Affiliation(s)
- Katie Kamenish
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK.
| |
Collapse
|
5
|
Patel R. The circuit basis for chronic pain and its comorbidities. Curr Opin Support Palliat Care 2023; 17:156-160. [PMID: 37096597 PMCID: PMC10371057 DOI: 10.1097/spc.0000000000000650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
PURPOSE OF REVIEW Chronic pain is poorly treated with many developing disabling comorbidities such as anxiety, depression and insomnia. Considerable evidence supports the idea that pain and anxiodepressive disorders share a common neurobiology and can mutually reinforce, which has significant long-term implications as the development of comorbidities leads to poorer treatment outcomes for both pain and mood disorders. This article will review recent advances in the understanding of the circuit basis for comorbidities in chronic pain. RECENT FINDINGS A growing number of studies have aimed to determine the mechanisms underlying chronic pain and comorbid mood disorders by using modern viral tracing tools for precise circuit manipulation with optogenetics and chemogenetics. These have revealed critical ascending and descending circuits, which advance the understanding of the interconnected pathways that modulate the sensory dimension of pain and the long-term emotional consequences of chronic pain. SUMMARY Comorbid pain and mood disorders can produce circuit-specific maladaptive plasticity; however, several translational issues require addressing to maximise future therapeutic potential. These include the validity of preclinical models, the translatability of endpoints and expanding analysis to the molecular and system levels.
Collapse
|
6
|
Gonçalves S, Hathway GJ, Woodhams SG, Chapman V, Bast T. No Evidence for Cognitive Impairment in an Experimental Rat Model of Knee Osteoarthritis and Associated Chronic Pain. THE JOURNAL OF PAIN 2023; 24:1478-1492. [PMID: 37044295 DOI: 10.1016/j.jpain.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Although chronic pain states have been associated with impaired cognitive functions, including memory and cognitive flexibility, the cognitive effects of osteoarthritis (OA) pain remain to be clarified. The aim of this study was to measure cognitive function in the mono-iodoacetate (MIA) rat model of chronic OA-like knee pain. We used young adult male Lister hooded rats, which are well-suited for cognitive testing. Rats received either a unilateral knee injection of MIA (3 mg/50 µL) or saline as control. Joint pain at rest was assessed for up to 12 weeks, using weight-bearing asymmetry, and referred pain at a distal site, using determination of hindpaw withdrawal thresholds. The watermaze delayed-matching-to-place test of rapid place learning, novel object recognition memory assay, and an operant response-shift and -reversal task were used to measure memory and behavioral flexibility. Open-field locomotor activity, startle response, and prepulse inhibition were also measured for comparison. MIA-injected rats showed markedly reduced weight-bearing on the injured limb, as well as pronounced cartilage damage and synovitis, but interestingly no changes in paw withdrawal threshold. Rearing was reduced, but otherwise, locomotor activity was normal and no changes in startle and prepulse inhibition were detected. MIA-injected rats had intact watermaze delayed-matching-to-place performance, suggesting no substantial change in hippocampal function, and there were no changes in novel object recognition memory or performance on the operant task of behavioral flexibility. Our finding that OA-like pain does not alter hippocampal function, unlike other chronic pain conditions, is consistent with human neuroimaging findings. PERSPECTIVE: Young adult rats with OA-like knee pain showed no impairments in hippocampal memory function and behavioral flexibility, suggesting that OA pain impacts cognitive functions less than other chronic pain conditions. In patients, OA pain may interact with other factors (e.g., age, socio-economic factors, and medication) to impair cognition.
Collapse
Affiliation(s)
- Sara Gonçalves
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Gareth J Hathway
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Stephen G Woodhams
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Victoria Chapman
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Tobias Bast
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; School of Psychology and Neuroscience at Nottingham, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
7
|
Boorman DC, Keay KA. Learning pain in context: Response-conditioned placebo analgesia and nocebo hyperalgesia in male rats with chronic neuropathic pain. Physiol Behav 2023; 263:114116. [PMID: 36773736 DOI: 10.1016/j.physbeh.2023.114116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Animal models of placebo analgesia and nocebo hyperalgesia have great potential to assist in the development of novel treatments for chronic pain that exploit or inhibit these phenomena. This study sought to elicit both conditioned placebo analgesia and conditioned nocebo hyperalgesia in rats with chronic neuropathic pain using non-pharmacological, contextual conditioning approaches, similar to those most often used in humans. METHODS Sciatic nerve-injured male Sprague-Dawley rats (n = 80), and sham controls (n = 16), underwent a conditioning procedure in which three different thermal stimulus intensities (4 °C, 20 °C or 30 °C) were paired with contextual cues. Injured hind paw withdrawal behaviours were used to determine pain sensitivity, and either conditioned analgesia or conditioned hyperalgesia was evoked by re-exposing the rats to the same context with either an increased or decreased thermal stimulus, respectively. RESULTS Stronger conditioned analgesia and conditioned hyperalgesia were seen when rats were conditioned in a more complex environment, highlighting the importance of context in these processes. Rats that did not undergo conditioning procedures showed fewer hind paw withdrawals, indicating a learned component to these pain behaviours. CONCLUSIONS Our data call attention to context and learning as two critical factors in the development of placebo and nocebo effects in male rodents with a neuropathic injury. Additionally, the response-conditioning model we present in this study affords better comparisons between human and animal studies, in particular for those seeking to identify commonalities in the neurobiological mechanisms of placebo and nocebo responses.
Collapse
Affiliation(s)
- Damien C Boorman
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales, 2006, Australia.
| | - Kevin A Keay
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
8
|
The importance of a multidimensional approach to the preclinical study of major depressive disorder and apathy. Emerg Top Life Sci 2022; 6:479-489. [PMID: 36413089 PMCID: PMC9788393 DOI: 10.1042/etls20220004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Both the neuropsychiatric syndrome of apathy and major depressive disorder comprise a heterogenous cluster of symptoms which span multiple behavioural domains. Despite this heterogeneity, there is a tendency in the preclinical literature to conclude a MDD or apathy-like phenotype from a single dimensional behavioural task used in isolation, which may lead to inaccurate phenotypic interpretation. This is significant, as apathy and major depressive disorder are clinically distinct with different underlying mechanisms and treatment approaches. At the clinical level, apathy and major depressive disorder can be dissociated in the negative valence (loss) domain of the Research Domain Criteria. Symptoms of MDD in the negative valence (loss) domain can include an exaggerated response to emotionally salient stimuli and low mood, while in contrast apathy is characterised by an emotionally blunted state. In this article, we highlight how using a single dimensional approach can limit psychiatric model interpretation. We discuss how integrating behavioural findings from both the positive and negative (loss) valence domains of the Research Domain Criteria can benefit interpretation of findings. We focus particularly on behaviours relating to the negative valence (loss) domain, which may be used to distinguish between apathy and major depressive disorder at the preclinical level. Finally, we consider how future approaches using home cage monitoring may offer a new opportunity to detect distinct behavioural profiles and benefit the overall translatability of findings.
Collapse
|
9
|
Zhang YH, Wang N, Lin XX, Wang JY, Luo F. Application of Cognitive Bias Testing in Neuropsychiatric Disorders: A Mini-Review Based on Animal Studies. Front Behav Neurosci 2022; 16:924319. [PMID: 35846788 PMCID: PMC9283837 DOI: 10.3389/fnbeh.2022.924319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cognitive biases can arise from cognitive processing under affective states and reflect the impact of emotion on cognition. In animal studies, the existing methods for detecting animal emotional state are still relatively limited, and cognitive bias test has gradually become an important supplement. In recent years, its effectiveness in animal research related to neuropsychiatric disorders has been widely verified. Some studies have found that cognitive bias test is more sensitive than traditional test methods such as forced swimming test and sucrose preference test in detecting emotional state. Therefore, it has great potential to become an important tool to measure the influence of neuropsychiatric disorder-associated emotions on cognitive processing. Moreover, it also can be used in early drug screening to effectively assess the potential effects or side effects of drugs on affective state prior to clinical trials. In this mini-review, we summarize the application of cognitive bias tests in animal models of neuropsychiatric disorders such as depression, anxiety, bipolar disorder, and pain. We also discussed its critical value in the identification of neuropsychiatric disorders and the validation of therapeutic approaches.
Collapse
Affiliation(s)
- Yu-Han Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Ning Wang,
| | - Xiao-Xiao Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Yan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|