1
|
Barroso J, Branco P, Apkarian AV. The causal role of brain circuits in osteoarthritis pain. Nat Rev Rheumatol 2025; 21:261-274. [PMID: 40164779 DOI: 10.1038/s41584-025-01234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Osteoarthritis (OA) is a leading cause of chronic pain worldwide, resulting in substantial disability and placing a substantial burden on patients and society. The hallmark symptom of OA is joint pain. Despite extensive research, new treatments for OA pain remain limited, partly owing to a lack of understanding of underlying pain mechanisms. For a long time, OA pain was seen as a reflection of nociceptive activity at the joint level, and the brain has been viewed as a passive recipient of such information. In this Review, we challenge these concepts and discuss how, over time, the activation of peripheral nociceptors leads to adaptations in the brain that dictate the properties and experience of OA pain. These adaptations are further influenced by the inherent properties of the brain. We review general concepts that distinguish pain from nociception, present evidence on the incongruity between joint injury and experience of OA pain, and review brain circuits that are crucial in the perception of OA pain. Finally, we propose a model that integrates nociception, spinal-cord mechanisms, and central nervous system dynamics, each contributing uniquely to pain perception. This framework has the potential to inform the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Joana Barroso
- Department of Anaesthesiology and Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Paulo Branco
- Department of Anaesthesiology and Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
| | - A Vania Apkarian
- Department of Anaesthesiology and Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
2
|
Maccioni L, Brusaferri L, Barzon L, Schubert JJ, Nettis MA, Cousins O, Rosenzweig I, Mizuno Y, Vicente-Rodríguez M, Singh N, Marques TR, Harrison NA, Fryer T, Bullmore ET, Cash D, Mondelli V, Pariante C, Howes O, Turkheimer FE, Loggia ML, Veronese M. A novel blood-free analytical framework for the quantification of neuroinflammatory load from TSPO PET Imaging. RESEARCH SQUARE 2025:rs.3.rs-5924801. [PMID: 39975931 PMCID: PMC11838776 DOI: 10.21203/rs.3.rs-5924801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Positron Emission Tomography (PET) of the 18 kDa translocator protein (TSPO) is critical for neuroinflammation studies but faces substantial methodological challenges. These include issues with arterial blood sampling for kinetic modeling, the absence of suitable reference regions, genetic polymorphisms affecting tracer affinity, altered blood-to-brain tracer delivery in inflammatory conditions, and high signal variability. This study presents a novel blood-free reference-free method for TSPO PET quantification, leveraging a logistic regression model to estimate the probability of TSPO overexpression across brain regions. Validation was performed on 323 human brain scans from five datasets and three radiotracers. The quantified TSPO topology in healthy controls showed strong concordance with the constitutive TSPO gene expression for all tracers. When using [11C]PBR28 PET data, the method replicated previous findings in schizophrenia, Alzheimer's disease, chronic pain, and XBD173 blocking. However, model extension to [18F]DPA-714 and [11C]-(R)-PK11195 revealed small effect sizes and high variability, suggesting the need for tracer-specific model optimization. Finally, validation in a rat model of lipopolysaccharide-induced neuroinflammation confirmed previous evidence of increased brain TSPO uptake after a systemic challenge. This novel non-invasive method provides individualized TSPO PET quantification, demonstrating broad applicability across TSPO PET tracers and imaging sites, assuming sufficient training data for model development.
Collapse
Affiliation(s)
- Lucia Maccioni
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Ludovica Brusaferri
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Computer Science and Informatics, School of Engineering, London South Bank University, London, UK
| | - Leonardo Barzon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Julia J. Schubert
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Maria A. Nettis
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Oliver Cousins
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Ivana Rosenzweig
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Yuya Mizuno
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Marta Vicente-Rodríguez
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Nisha Singh
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Tiago Reis Marques
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, Imperial College London, London, UK
| | - Neil A. Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Tim Fryer
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Edward T. Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Diana Cash
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Valeria Mondelli
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Carmine Pariante
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Oliver Howes
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | | | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Mattia Veronese
- Department of Information Engineering, University of Padova, Padova, Italy
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| |
Collapse
|
3
|
Mao C, Yang H, Dong T, Wang S, Shi Z, Guo R, Zhou X, Zhang B, Zhang Q. Thalamocortical dysconnectivity is associated with pain in patients with knee osteoarthritis. Eur J Neurosci 2024; 60:5831-5848. [PMID: 39233436 DOI: 10.1111/ejn.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Previous studies have suggested that the morphology and function of the thalamus and cortex are abnormal in patients with knee osteoarthritis (KOA). However, whether the thalamocortical network is differentially affected in this disorder is unknown. In this study, we examined functional and effective connectivity between the thalamus and major divisions of the cortex in 27 healthy controls and 27 KOA patients using functional magnetic resonance imaging. We also explored the topological features of the brain via graph theory analysis. The results suggested that patients with KOA had significantly reduced resting-state functional connectivity (rsFC) of the thalamo-sensorimotor pathway; enhanced rsFC of the thalamo-medial/lateral frontal cortex (mFC/LFC), parietal, temporal and occipital pathways; reduced effective connectivity of the left sensorimotor-to-thalamus pathway; and enhanced effective connectivity of the right thalamus-to-sensorimotor pathway compared with healthy controls. The functional connectivity of the thalamo-sensorimotor and thalamo-mFC pathways was enhanced when patients performed the multisource interference task. Moreover, patients with KOA presented altered nodal properties associated with thalamocortical circuits, including the thalamus, amygdala, and regions in default mode networks, compared with healthy controls. The correlation analysis suggested a significant negative correlation between thalamo-mFC rsFC and pain intensity, between thalamo-sensorimotor task-related connectivity and disease duration/depression scores, and a positive correlation between right frontal nodal properties and pain intensity in KOA patients. Taken together, these findings establish abnormal and differential alterations in the thalamocortical network associated with pain characteristics in KOA patients, which extends our understanding of their role in the pathophysiology of KOA.
Collapse
Affiliation(s)
- Cuiping Mao
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huajuan Yang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ting Dong
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sisi Wang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhibin Shi
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ruibing Guo
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoqian Zhou
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Zhang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiujuan Zhang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Xu B, Xu Y, Kong J, Liu Y, Zhang L, Shen F, Wang J, Shen X, Chen H. Chrysin mitigated neuropathic pain and peripheral sensitization in knee osteoarthritis rats by repressing the RAGE/PI3K/AKT pathway regulated by HMGB1. Cytokine 2024; 180:156635. [PMID: 38749277 DOI: 10.1016/j.cyto.2024.156635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a chronic progressive osteoarthropathy. Chrysin's anti-KOA action has been demonstrated, however more research is needed to understand how chrysin contributes to KOA. METHODS LPS/ATP-induced macrophages transfected with or without HMGB1 overexpression underwent 5 μg/mL chrysin. The cell viability and macrophage pyroptosis were examined by cell counting kit-8 and flow cytometer. In vivo experiments, rats were injected with 1 mg monosodium iodoacetate by the infrapatellar ligament of the bilateral knee joint to induce KOA. The histological damage was analyzed by Safranin O/Fast Green staining and hematoxylin and eosin staining. The PWT, PWL and inflammatory factors were analyzed via Von-Frey filaments, thermal radiometer and ELISA. Immunofluorescence assay examined the expressions of CGRP and iNOS. The levels of HMGB1/RAGE-, NLRP3-, PI3K/AKT- and neuronal ion channel-related markers were examined by qPCR and western blot. RESULTS Chrysin alleviated macrophage pyroptosis by inhibiting HMGB1 and the repression of chrysin on HMGB1/RAGE pathway and ion channel activation was reversed by overexpressed HMGB1. HMGB1 facilitated neuronal ion channel activation through the RAGE/PI3K/AKT pathway. Chrysin could improve the pathological injury of knee joints in KOA rats. Chrysin suppressed the HMGB1-regulated RAGE/PI3K/AKT pathway, hence reducing KOA damage and peripheral sensitization. CONCLUSION Chrysin mitigated neuropathic pain and peripheral sensitization in KOA rats by repressing the RAGE/PI3K/AKT pathway modulated by HMGB1.
Collapse
Affiliation(s)
- Bo Xu
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Yue Xu
- Department of Orthopedics and Traumatology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, PR China
| | - Jian Kong
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Yujiang Liu
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Long Zhang
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Fan Shen
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Jiangping Wang
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Xiaofeng Shen
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China.
| | - Hua Chen
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China.
| |
Collapse
|
5
|
Pinilla-Fernández I, Ríos-León M, Deelchand DK, Garrido L, Torres-Llacsa M, García-García F, Vidorreta M, Ip IB, Bridge H, Taylor J, Barriga-Martín A. Chronic neuropathic pain components in whiplash-associated disorders correlate with metabolite concentrations in the anterior cingulate and dorsolateral prefrontal cortex: a consensus-driven MRS re-examination. Front Med (Lausanne) 2024; 11:1404939. [PMID: 39156690 PMCID: PMC11328873 DOI: 10.3389/fmed.2024.1404939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Whiplash injury (WHI) is characterised by a forced neck flexion/extension, which frequently occurs after motor vehicle collisions. Previous studies characterising differences in brain metabolite concentrations and correlations with neuropathic pain (NP) components with chronic whiplash-associated disorders (WAD) have been demonstrated in affective pain-processing areas such as the anterior cingulate cortex (ACC). However, the detection of a difference in metabolite concentrations within these cortical areas with chronic WAD pain has been elusive. In this study, single-voxel magnetic resonance spectroscopy (MRS), following the latest MRSinMRS consensus group guidelines, was performed in the anterior cingulate cortex (ACC), left dorsolateral prefrontal cortex (DLPFC), and occipital cortex (OCC) to quantify differences in metabolite concentrations in individuals with chronic WAD with or without neuropathic pain (NP) components. Materials and methods Healthy individuals (n = 29) and participants with chronic WAD (n = 29) were screened with the Douleur Neuropathique 4 Questionnaire (DN4) and divided into groups without (WAD-noNP, n = 15) or with NP components (WAD-NP, n = 14). Metabolites were quantified with LCModel following a single session in a 3 T MRI scanner within the ACC, DLPFC, and OCC. Results Participants with WAD-NP presented moderate pain intensity and interference compared with the WAD-noNP group. Single-voxel MRS analysis demonstrated a higher glutamate concentration in the ACC and lower total choline (tCho) in the DLPFC in the WAD-NP versus WAD-noNP group, with no intergroup metabolite difference detected in the OCC. Best fit and stepwise multiple regression revealed that the normalised ACC glutamate/total creatine (tCr) (p = 0.01), DLPFC n-acetyl-aspartate (NAA)/tCr (p = 0.001), and DLPFC tCho/tCr levels (p = 0.02) predicted NP components in the WAD-NP group (ACC r 2 = 0.26, α = 0.81; DLPFC r 2 = 0.62, α = 0.98). The normalised Glu/tCr concentration was higher in the healthy than the WAD-noNP group within the ACC (p < 0.05), but not in the DLPFC or OCC. Neither sex nor age affected key normalised metabolite concentrations related to WAD-NP components when compared to the WAD-noNP group. Discussion This study demonstrates that elevated glutamate concentrations within the ACC are related to chronic WAD-NP components, while higher NAA and lower tCho metabolite levels suggest a role for increased neuronal-glial signalling and cell membrane dysfunction in individuals with chronic WAD-NP components.
Collapse
Affiliation(s)
- Irene Pinilla-Fernández
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marta Ríos-León
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
| | - Dinesh Kumar Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Leoncio Garrido
- Departamento de Química-Física, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), CSIC, Madrid, Spain
| | - Mabel Torres-Llacsa
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Servicio de Radiodiagnóstico, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Fernando García-García
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Servicio de Radiodiagnóstico, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | - I. Betina Ip
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Harris Manchester College, University of Oxford, Oxford, United Kingdom
| | - Andrés Barriga-Martín
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Research Group in Spine Pathology, Orthopedic Surgery and Traumatology Unit, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Faculty of Medicine, University of Castilla La Mancha, Toledo, Spain
| |
Collapse
|
6
|
Maccioni L, Michelle CM, Brusaferri L, Silvestri E, Bertoldo A, Schubert JJ, Nettis MA, Mondelli V, Howes O, Turkheimer FE, Bottlaender M, Bodini B, Stankoff B, Loggia ML, Veronese M. A blood-free modeling approach for the quantification of the blood-to-brain tracer exchange in TSPO PET imaging. Front Neurosci 2024; 18:1395769. [PMID: 39104610 PMCID: PMC11299498 DOI: 10.3389/fnins.2024.1395769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Recent evidence suggests the blood-to-brain influx rate (K1 ) in TSPO PET imaging as a promising biomarker of blood-brain barrier (BBB) permeability alterations commonly associated with peripheral inflammation and heightened immune activity in the brain. However, standard compartmental modeling quantification is limited by the requirement of invasive and laborious procedures for extracting an arterial blood input function. In this study, we validate a simplified blood-free methodologic framework for K1 estimation by fitting the early phase tracer dynamics using a single irreversible compartment model and an image-derived input function (1T1K-IDIF). Methods The method is tested on a multi-site dataset containing 177 PET studies from two TSPO tracers ([11C]PBR28 and [18F]DPA714). Firstly, 1T1K-IDIF K1 estimates were compared in terms of both bias and correlation with standard kinetic methodology. Then, the method was tested on an independent sample of [11C]PBR28 scans before and after inflammatory interferon-α challenge, and on test-retest dataset of [18F]DPA714 scans. Results Comparison with standard kinetic methodology showed good-to-excellent intra-subject correlation for regional 1T1K-IDIF-K1 (ρintra = 0.93 ± 0.08), although the bias was variable depending on IDIF ability to approximate blood input functions (0.03-0.39 mL/cm3/min). 1T1K-IDIF-K1 unveiled a significant reduction of BBB permeability after inflammatory interferon-α challenge, replicating results from standard quantification. High intra-subject correlation (ρ = 0.97 ± 0.01) was reported between K1 estimates of test and retest scans. Discussion This evidence supports 1T1K-IDIF as blood-free alternative to assess TSPO tracers' unidirectional blood brain clearance. K1 investigation could complement more traditional measures in TSPO studies, and even allow further mechanistic insight in the interpretation of TSPO signal.
Collapse
Affiliation(s)
- Lucia Maccioni
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Carranza Mellana Michelle
- Department of Information Engineering, University of Padova, Padova, Italy
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Ludovica Brusaferri
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Computer Science and Informatics, School of Engineering, London South Bank University, London, United Kingdom
| | - Erica Silvestri
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Julia J. Schubert
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Maria A. Nettis
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Federico E. Turkheimer
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Michel Bottlaender
- BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS Inserm, Université Paris-Saclay, Orsay, France
| | - Benedetta Bodini
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Bruno Stankoff
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Mattia Veronese
- Department of Information Engineering, University of Padova, Padova, Italy
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Sun S, Chen M, Zhang T, Wang Y, Shen W, Zhang T, Liu J, Lan H, Zhao J, Lin F, Zhao X. Identification of Key Factors in Cartilage Tissue During the Progression of Osteoarthritis Using a Non-targeted Metabolomics Strategy. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:227-233. [PMID: 39398425 PMCID: PMC11466919 DOI: 10.1007/s43657-023-00123-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 10/15/2024]
Abstract
This research was to reveal the key factors in the progression of osteoarthritis (OA) using non-targeted metabolomics and to find targeted therapies for patients with OA. Twenty-two patients with knee OA scheduled for total knee arthroplasty were divided into two groups: Kellgren-Lawrence (KL) grade 3 (n = 16) and grade 4 (n = 6), according to plain X-rays of the knee. After the operation, the cartilages of femur samples were analyzed using non-targeted metabolomics. When compared with grade 3 patients, the levels of choline, 2-propylpiperidine, rhamnose, and monomethyl glutaric acid were higher; while 1-methylhistamine, sphingomyelin (SM) (d18:1/14:0), zeranol, 3- (4-hydroxyphenyl)-1-propanol, 5-aminopentanamide, dihydrouracil, 2-hydroxypyridine, and 3-amino-2-piperidone were lower in grade 4 patients. Furthermore, some metabolic pathways were found to be significantly different in two groups such as the pantothenate and coenzyme A (CoA) biosynthesis pathway, the glycerophospholipid metabolism pathway, histidine metabolism pathway, lysine degradation pathway, glycine, serine and threonine metabolism pathway, fructose and mannose metabolism pathway, the pyrimidine metabolism pathway, and beta-alanine metabolism pathway. This work used non-targeted metabolomics and screened out differential metabolites and metabolic pathways, providing a reliable theoretical basis for further study of specific markers and their specific pathways in the progression of OA. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00123-z.
Collapse
Affiliation(s)
- Shiyu Sun
- Department of Anesthesia, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Minghui Chen
- Department of Anesthesia, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Tingting Zhang
- Department of Anesthesia, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Yanyan Wang
- Department of Anesthesia, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Weijun Shen
- Department of Anesthesia, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Tao Zhang
- Department of Anesthesia, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Jian Liu
- Department of Anesthesia, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Haidan Lan
- Department of Anesthesia, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092 China
| | - Fuqing Lin
- Department of Anesthesia, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Xuan Zhao
- Department of Anesthesia, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| |
Collapse
|
8
|
Sandström A, Torrado-Carvajal A, Morrissey EJ, Kim M, Alshelh Z, Zhu Y, Li MD, Chang CY, Jarraya M, Akeju O, Schrepf A, Harris RE, Kwon YM, Bedair H, Chen AF, Mercaldo ND, Kettner N, Napadow V, Toschi N, Edwards RR, Loggia ML. [ 11 C]-PBR28 positron emission tomography signal as an imaging marker of joint inflammation in knee osteoarthritis. Pain 2024; 165:1121-1130. [PMID: 38015622 DOI: 10.1097/j.pain.0000000000003114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/24/2023] [Indexed: 11/30/2023]
Abstract
ABSTRACT Although inflammation is known to play a role in knee osteoarthritis (KOA), inflammation-specific imaging is not routinely performed. In this article, we evaluate the role of joint inflammation, measured using [ 11 C]-PBR28, a radioligand for the inflammatory marker 18-kDa translocator protein (TSPO), in KOA. Twenty-one KOA patients and 11 healthy controls (HC) underwent positron emission tomography/magnetic resonance imaging (PET/MRI) knee imaging with the TSPO ligand [ 11 C]-PBR28. Standardized uptake values were extracted from regions-of-interest (ROIs) semiautomatically segmented from MRI data, and compared across groups (HC, KOA) and subgroups (unilateral/bilateral KOA symptoms), across knees (most vs least painful), and against clinical variables (eg, pain and Kellgren-Lawrence [KL] grades). Overall, KOA patients demonstrated elevated [ 11 C]-PBR28 binding across all knee ROIs, compared with HC (all P 's < 0.005). Specifically, PET signal was significantly elevated in both knees in patients with bilateral KOA symptoms (both P 's < 0.01), and in the symptomatic knee ( P < 0.05), but not the asymptomatic knee ( P = 0.95) of patients with unilateral KOA symptoms. Positron emission tomography signal was higher in the most vs least painful knee ( P < 0.001), and the difference in pain ratings across knees was proportional to the difference in PET signal ( r = 0.74, P < 0.001). Kellgren-Lawrence grades neither correlated with PET signal (left knee r = 0.32, P = 0.19; right knee r = 0.18, P = 0.45) nor pain ( r = 0.39, P = 0.07). The current results support further exploration of [ 11 C]-PBR28 PET signal as an imaging marker candidate for KOA and a link between joint inflammation and osteoarthritis-related pain severity.
Collapse
Affiliation(s)
- Angelica Sandström
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Angel Torrado-Carvajal
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
- Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Erin J Morrissey
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Minhae Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Zeynab Alshelh
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Yehui Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Matthew D Li
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Connie Y Chang
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Mohamed Jarraya
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Richard E Harris
- Susan Samueli Integrative Health Institute, School of Medicine, University of California at Irvine, Irvine CA, United States
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California at Irvine, Irvine CA, United States
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Young-Min Kwon
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hany Bedair
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Antonia F Chen
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Nathaniel D Mercaldo
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Norman Kettner
- Department of Radiology, Logan University, Chesterfield, MO, United States
| | - Vitaly Napadow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Nicola Toschi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Biomedicine and Prevention, University of Rome, "Tor Vergata," Rome, Italy
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Li N, Moreira P, Guo M, You S, Dsouza B, Ji H. What Influences Patients Readiness for Discharge: The Case of Total Knee Arthroplasty: A Cross-Sectional Study. J Nurs Manag 2024; 2024:8032254. [PMID: 40224761 PMCID: PMC11918989 DOI: 10.1155/2024/8032254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/11/2023] [Accepted: 03/15/2024] [Indexed: 04/15/2025]
Abstract
Background Evidence has suggested that most clinical staff use clinical laboratory indicators to determine discharge times, while paying little attention to patients' feelings and needs. Additional research findings have suggested a relationship between patients' self-reported readiness for hospital discharge and postdischarge complication rates, readmission rates, mortality, as well as quality of life. RHD is strongly associated with patient health outcomes. Identifying relevant influencing factors can provide guidance for early individualized interventions by healthcare professionals. Design A cross-sectional study. Methods During 2022, a total of 320 post-TKA patients were selected for this study. The patients were divided into the low-RHD group (<7 points) and the high-RHD group (≥7 points) according to the mean score of the Readiness for Hospital Discharge Scale (RHDS). Established scales were used to collect patients' information and to adopt univariate and binary logistic regression analysis to screen for independent factors. Results In this study, the RHDS score of patients after TKA is 91.90 ± 7.05, of which 12.8% are in the low-RHD group (mean score <7). The binary logistic regression results reveal that age, educational level, postactivity pain, self-efficacy, and family care have to be considered risk factors generating low-RHD in TKA patients. Conclusions The present study suggests that over 1/8 TKA patients are not ready at the time of discharge. Physicians and nurses can improve patients' RHD by reducing postactivity pain and improving self-efficacy during their rehabilitation period. Relevance to Clinical Practice. The results of this study can help physicians and nurses early identify high-risk patients with low RHD and provide them with individualized interventions. In addition to this, it is important that nurses use RHDS to assess the readiness of TKA patients before they are discharged from the hospital.
Collapse
Affiliation(s)
- Na Li
- Nursing Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Paulo Moreira
- Henan Normal University, School of Social Affairs, Xinxiang, Henan, China
- Atlantica Instituto Universitario, Healthcare Management, Oeiras, Portugal
- International Healthcare Management Research and Development Center (IHM-RDC), The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Manjie Guo
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, China
| | - Simeng You
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, China
| | - Brayal Dsouza
- Department of Social and Health Innovation, Prasanna School Of Public Health, Manipal Academy of Higher Education, Manipal, India
- Kasturba Hospital, Manipal, India
| | - Hong Ji
- Nursing Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Zhao L, Liu J, Zhao W, Chen J, Fan J, Ge T, Tu Y. Morphological and genetic decoding shows heterogeneous patterns of brain aging in chronic musculoskeletal pain. NATURE MENTAL HEALTH 2024; 2:435-449. [DOI: 10.1038/s44220-024-00223-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2025]
|
11
|
Brusaferri L, Alshelh Z, Schnieders JH, Sandström A, Mohammadian M, Morrissey EJ, Kim M, Chane CA, Grmek GC, Murphy JP, Bialobrzewski J, DiPietro A, Klinke J, Zhang Y, Torrado-Carvajal A, Mercaldo N, Akeju O, Wu O, Rosen BR, Napadow V, Hadjikhani N, Loggia ML. Neuroimmune activation and increased brain aging in chronic pain patients after the COVID-19 pandemic onset. Brain Behav Immun 2024; 116:259-266. [PMID: 38081435 PMCID: PMC10872439 DOI: 10.1016/j.bbi.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 12/22/2023] Open
Abstract
The COVID-19 pandemic has exerted a global impact on both physical and mental health, and clinical populations have been disproportionally affected. To date, however, the mechanisms underlying the deleterious effects of the pandemic on pre-existing clinical conditions remain unclear. Here we investigated whether the onset of the pandemic was associated with an increase in brain/blood levels of inflammatory markers and MRI-estimated brain age in patients with chronic low back pain (cLBP), irrespective of their infection history. A retrospective cohort study was conducted on 56 adult participants with cLBP (28 'Pre-Pandemic', 28 'Pandemic') using integrated Positron Emission Tomography/ Magnetic Resonance Imaging (PET/MRI) and the radioligand [11C]PBR28, which binds to the neuroinflammatory marker 18 kDa Translocator Protein (TSPO). Image data were collected between November 2017 and January 2020 ('Pre-Pandemic' cLBP) or between August 2020 and May 2022 ('Pandemic' cLBP). Compared to the Pre-Pandemic group, the Pandemic patients demonstrated widespread and statistically significant elevations in brain TSPO levels (P =.05, cluster corrected). PET signal elevations in the Pandemic group were also observed when 1) excluding 3 Pandemic subjects with a known history of COVID infection, or 2) using secondary outcome measures (volume of distribution -VT- and VT ratio - DVR) in a smaller subset of participants. Pandemic subjects also exhibited elevated serum levels of inflammatory markers (IL-16; P <.05) and estimated BA (P <.0001), which were positively correlated with [11C]PBR28 SUVR (r's ≥ 0.35; P's < 0.05). The pain interference scores, which were elevated in the Pandemic group (P <.05), were negatively correlated with [11C]PBR28 SUVR in the amygdala (r = -0.46; P<.05). This work suggests that the pandemic outbreak may have been accompanied by neuroinflammation and increased brain age in cLBP patients, as measured by multimodal imaging and serum testing. This study underscores the broad impact of the pandemic on human health, which extends beyond the morbidity solely mediated by the virus itself.
Collapse
Affiliation(s)
- Ludovica Brusaferri
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Informatics, School of Engineering, London South Bank University, London, UK
| | - Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jack H Schnieders
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelica Sandström
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mehrbod Mohammadian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erin J Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney A Chane
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Grace C Grmek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer P Murphy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia Bialobrzewski
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexa DiPietro
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie Klinke
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Zhang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Nathaniel Mercaldo
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ona Wu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nouchine Hadjikhani
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gillberg Neuropsychiatry Centre, University of Gothenburg, Sweden
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Weerasekera A, Knight PC, Alshelh Z, Morrissey EJ, Kim M, Zhang Y, Napadow V, Anzolin A, Torrado-Carvajal A, Edwards RR, Ratai EM, Loggia ML. Thalamic neurometabolite alterations in chronic low back pain: a common phenomenon across musculoskeletal pain conditions? Pain 2024; 165:126-134. [PMID: 37578456 PMCID: PMC10841327 DOI: 10.1097/j.pain.0000000000003002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Recently, we showed that patients with knee osteoarthritis (KOA) demonstrate alterations in the thalamic concentrations of several metabolites compared with healthy controls: higher myo-inositol (mIns), lower N-acetylaspartate (NAA), and lower choline (Cho). Here, we evaluated whether these metabolite alterations are specific to KOA or could also be observed in patients with a different musculoskeletal condition, such as chronic low back pain (cLBP). Thirty-six patients with cLBP and 20 healthy controls were scanned using 1 H-magnetic resonance spectroscopy (MRS) and a PRESS (Point RESolved Spectroscopy) sequence with voxel placement in the left thalamus. Compared with healthy controls, patients with cLBP demonstrated lower absolute concentrations of NAA ( P = 0.0005) and Cho ( P < 0.05) and higher absolute concentrations of mIns ( P = 0.01) when controlling for age, as predicted by our previous work in KOA. In contrast to our KOA study, mIns levels in this population did not significantly correlate with pain measures (eg, pain severity or duration). However, exploratory analyses revealed that NAA levels in patients were negatively correlated with the severity of sleep disturbance ( P < 0.01), which was higher in patients compared with healthy controls ( P < 0.001). Additionally, also in patients, both Cho and mIns levels were positively correlated with age ( P < 0.01 and P < 0.05, respectively). Altogether, these results suggest that thalamic metabolite changes may be common across etiologically different musculoskeletal chronic pain conditions, including cLBP and KOA, and may relate to symptoms often comorbid with chronic pain, such as sleep disturbance. The functional and clinical significance of these brain changes remains to be fully understood.
Collapse
Affiliation(s)
- Akila Weerasekera
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paulina C. Knight
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Erin J. Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandra Anzolin
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Robert R. Edwards
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eva-Maria Ratai
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Marco L. Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Fanton S, Menezes J, Krock E, Sandström A, Tour J, Sandor K, Jurczak A, Hunt M, Baharpoor A, Kadetoff D, Jensen KB, Fransson P, Ellerbrock I, Sitnikov R, Svensson CI, Kosek E. Anti-satellite glia cell IgG antibodies in fibromyalgia patients are related to symptom severity and to metabolite concentrations in thalamus and rostral anterior cingulate cortex. Brain Behav Immun 2023; 114:371-382. [PMID: 37683961 DOI: 10.1016/j.bbi.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Recent translational work has shown that fibromyalgia might be an autoimmune condition with pathogenic mechanisms mediated by a peripheral, pain-inducing action of immunoglobulin G (IgG) antibodies binding to satellite glia cells (SGC) in the dorsal root ganglia. A first clinical assessment of the postulated autoimmunity showed that fibromyalgia subjects (FMS) had elevated levels of antibodies against SGC (termed anti-SGC IgG) compared to healthy controls and that anti-SGC IgG were associated with a more severe disease status. The overarching aim of the current study was to determine whether the role of anti-SGC IgG in driving pain is exclusively through peripheral mechanisms, as indirectly shown so far, or could be attributed also to central mechanisms. To this end, we wanted to first confirm, in a larger cohort of FMS, the relation between anti-SGC IgG and pain-related clinical measures. Secondly, we explored the associations of these autoantibodies with brain metabolite concentrations (assessed via magnetic resonance spectroscopy, MRS) and pressure-evoked cerebral pain processing (assessed via functional magnetic resonance imaging, fMRI) in FMS. Proton MRS was performed in the thalamus and rostral anterior cingulate cortex (rACC) of FMS and concentrations of a wide spectrum of metabolites were assessed. During fMRI, FMS received individually calibrated painful pressure stimuli corresponding to low and high pain intensities. Our results confirmed a positive correlation between anti-SGC IgG and clinical measures assessing condition severity. Additionally, FMS with high anti-SGC IgG levels had higher pain intensity and a worse disease status than FMS with low anti-SGC IgG levels. Further, anti-SGC IgG levels negatively correlated with metabolites such as scyllo-inositol in thalamus and rACC as well as with total choline and macromolecule 12 in thalamus, thus linking anti-SGC IgG levels to the concentration of metabolites in the brain of FMS. However, anti-SGC IgG levels in FMS were not associated with the sensitivity to pressure pain or the cerebral processing of evoked pressure pain. Taken together, our results suggest that anti-SGC IgG might be clinically relevant for spontaneous, non-evoked pain. Our current and previous translational and clinical findings could provide a rationale to try new antibody-related treatments in FMS.
Collapse
Affiliation(s)
- Silvia Fanton
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Joana Menezes
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emerson Krock
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Faculty of Dental Medicine and Oral Health Sciences, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Department of Radiology, Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| | - Jeanette Tour
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Azar Baharpoor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Karin B Jensen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Isabel Ellerbrock
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Rouslan Sitnikov
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; MRI Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Hall M, Dobson F, Klyne DM, Zheng CJ, Lima YL, Egorova-Brumley N. Neurobiology of osteoarthritis: a systematic review and activation likelihood estimation meta-analysis. Sci Rep 2023; 13:12442. [PMID: 37528135 PMCID: PMC10394087 DOI: 10.1038/s41598-023-39245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
Osteoarthritis (OA) affects 240 million people worldwide. Neuroimaging has been increasingly used to investigate brain changes in OA, however, there is considerable heterogeneity in reported results. The goal of this systematic review and meta-analysis was to synthesise existing literature and identify consistent brain alterations in OA. Six databases were searched from inception up to June, 2022. Full-texts of original human studies were included if they had: (i) neuroimaging data by site of OA (e.g. hand, knee, hip); (ii) data in healthy controls (HC); (iii) > 10 participants. Activation likelihood estimation (ALE) was conducted using GingerALE software on studies that reported peak activation coordinates and sample size. Our search strategy identified 6250 articles. Twenty-eight studies fulfilled the eligibility criteria, of which 18 were included in the meta-analysis. There were no significant differences in brain structure or function between OA and healthy control contrasts. In exploratory analysis, the right insula was associated with OA vs healthy controls, with less activity, connectivity and brain volume in OA. This region was implicated in both knee and hip OA, with an additional cluster in the medial prefrontal cortex observed only in the contrast between healthy controls and the hip OA subgroup, suggesting a possible distinction between the neural correlates of OA subtypes. Despite the limitations associated with heterogeneity and poor study quality, this synthesis identified neurobiological outcomes associated with OA, providing insight for future research. PROSPERO registration number: CRD42021238735.
Collapse
Affiliation(s)
- Michelle Hall
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
- Centre for Arthritis Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fiona Dobson
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - David Murray Klyne
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Carmen Jiamin Zheng
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Yuri Lopes Lima
- School of Health Science and Social Work, Griffith University, Gold Coast, QLD, Australia
| | - Natalia Egorova-Brumley
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
15
|
Morrissey EJ, Alshelh Z, Knight PC, Saha A, Kim M, Torrado-Carvajal A, Zhang Y, Edwards RR, Pike C, Locascio JJ, Napadow V, Loggia ML. Assessing the potential anti-neuroinflammatory effect of minocycline in chronic low back pain: Protocol for a randomized, double-blind, placebo-controlled trial. Contemp Clin Trials 2023; 126:107087. [PMID: 36657520 DOI: 10.1016/j.cct.2023.107087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Both preclinical studies, and more recent clinical imaging studies, suggest that glia-mediated neuroinflammation may be implicated in chronic pain, and therefore might be a potential treatment target. However, it is currently unknown whether modulating neuroinflammation effectively alleviates pain in humans. This trial tests the hypothesis that minocycline, an FDA-approved tetracycline antibiotic and effective glial cell inhibitor in animals, reduces neuroinflammation and may reduce pain symptoms in humans with chronic low back pain. METHODS AND ANALYSIS This study is a randomized, double-blind, placebo-controlled clinical trial. Subjects, aged 18-75, with a confirmed diagnosis of chronic (≥ six months) low back pain (cLBP) and a self-reported pain rating of at least four out of ten (for at least half of the days during an average week) are enrolled via written, informed consent. Eligible subjects are randomized to receive a 14-day course of either active drug (minocycline) or placebo. Before and after treatment, subjects are scanned with integrated Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) using [11C]PBR28, a second-generation radiotracer for the 18 kDa translocator protein (TSPO), which is highly expressed in glial cells and thus a putative marker of neuroinflammation. Pain levels are evaluated via daily surveys, collected seven days prior to the start of medication, and throughout the 14 days of treatment. General linear models will be used to assess pain levels and determine the treatment effect on brain (and spinal cord) TSPO signal. TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT03106740).
Collapse
Affiliation(s)
- Erin J Morrissey
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zeynab Alshelh
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Paulina C Knight
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Atreyi Saha
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Minhae Kim
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Angel Torrado-Carvajal
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chelsea Pike
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph J Locascio
- Harvard Catalyst Biostatistical Consulting Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Vitaly Napadow
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco L Loggia
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Pujol J, Blanco-Hinojo L, Doreste A, Ojeda F, Martínez-Vilavella G, Pérez-Sola V, Deus J, Monfort J. Distinctive alterations in the functional anatomy of the cerebral cortex in pain-sensitized osteoarthritis and fibromyalgia patients. Arthritis Res Ther 2022; 24:252. [DOI: 10.1186/s13075-022-02942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Pain-sensitized osteoarthritis and fibromyalgia patients characteristically show nociceptive system augmented responsiveness as a common feature. However, sensitization can be originally related to the peripheral injury in osteoarthritis patients, whereas pain and bodily discomfort spontaneously occur in fibromyalgia with no apparent origin. We investigated the distinct functional repercussion of pain sensitization in the cerebral cortex in both conditions.
Methods
Thirty-one pain-sensitized knee osteoarthritis patients and 38 fibromyalgia patients were compared with matched control groups. And new samples of 34 sensitized knee osteoarthritis and 63 fibromyalgia patients were used to directly compare each condition. A combined measure of local functional connectivity was estimated to map functional alterations in the cerebral cortex at rest.
Results
In osteoarthritis, weaker local connectivity was identified in the insula, which is a cortical area processing important aspects of the brain response to painful stimulation. In contrast, fibromyalgia patients showed weaker connectivity in the sensorimotor cortex extensively affecting the cortical representation of the body.
Conclusions
In osteoarthritis, weaker insular cortex connectivity is compatible with reduced neural activity during metabolic recovery after repeated activation. In the fibromyalgia neurophysiological context, weaker connectivity may better express both reduced neural activity and increased excitability, particularly affecting the sensorimotor cortex in patients with spontaneous body pain. Such a combination is compatible with a central gain enhancement mechanism, where low sensory tolerance results from the over-amplification of central sensory reception to compensate a presumably weak sensory input. We propose that deficient proprioception could be a factor contributing to weak sensory input.
Collapse
|
17
|
Kristin Schreiber, M.D., Ph.D., a Recipient of the 2022 James E. Cottrell, M.D., Presidential Scholar Award. Anesthesiology 2022. [DOI: 10.1097/aln.0000000000004359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Wu M, Liu F, Yan L, Huang R, Hu R, Zhu J, Li S, Long C. MiR-145-5p restrains chondrogenic differentiation of synovium-derived mesenchymal stem cells by suppressing TLR4. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:625-642. [PMID: 35403567 DOI: 10.1080/15257770.2022.2057535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Osteoarthritis (OA) is a progressive degeneration of articular cartilage with involvement of synovial membrane, and subchondral bone. Recently, cell-based therapies, including the application of stem cells such as mesenchymal stem cells (MSCs), have been introduced for restoration of the articular cartilage. Toll-like receptors (TLRs) were reported to participate in OA progression and MSC chondrogenesis. Here, the role and molecular mechanism of toll like receptor 4 (TLR4) in chondrogenic differentiation of synovium-derived MSCs (SMSCs) were investigated. Molecular markers (CD44, CD90, CD45 and CD14) on SMSC surfaces were identified by flow cytometry. Multi-potential differentiation capacities of SMSCs for chondrogenesis, adipogenesis and osteogenesis were examined by Alcian blue, oil red O and Alizarin red staining, respectively. TLR4 and miR-145-5p levels in SMSCs were assessed using RT-qPCR. The protein expression of TGFB3, Col II, SOX9 and Aggrecan in SMSCs was tested by western blotting. Cytokine secretions were analyzed with ELISA for IL-1β and IL-6. Intracellular NAD+ content and NAD+/NADH ratio were assessed. The interaction between miR-145-5p and TLR4 was confirmed by RNA pulldown and luciferase reporter assays. In this study, SMSCs were identified to have immunophenotypic characteristics of MSCs. TLR4 knockdown inhibited chondrogenic and osteogenic differentiation of SMSCs. Mechanistically, TLR4 was targeted by miR-145-5p in SMSCs. Moreover, TLR4 elevation offset the inhibitory impact of miR-145-5p upregulation on chondrogenic differentiation of SMSCs. Overall, miR-145-5p restrains chondrogenesis of SMSCs by suppressing TLR4.
Collapse
Affiliation(s)
- Mingzheng Wu
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Feng Liu
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Li Yan
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Ruokun Huang
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Rui Hu
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Jin Zhu
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Shanqing Li
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Chao Long
- Department of Radiology, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| |
Collapse
|
19
|
Serine, N-acetylaspartate differentiate adolescents with juvenile idiopathic arthritis compared with healthy controls: a metabolomics cross-sectional study. Pediatr Rheumatol Online J 2022; 20:12. [PMID: 35144633 PMCID: PMC8832851 DOI: 10.1186/s12969-022-00672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In comparison with the general population, adolescents with juvenile idiopathic arthritis (JIA) are at higher risk for morbidity and mortality. However, limited evidence is available about this condition's underlying metabolic profile in adolescents with JIA relative to healthy controls. In this untargeted, cross-sectional metabolomics study, we explore the plasma metabolites in this population. METHODS A sample of 20 adolescents with JIA and 20 controls aged 13-17 years were recruited to complete surveys, provide medical histories and biospecimens, and undergo assessments. Fasting morning plasma samples were processed with liquid chromatography-mass spectrometry. Data were centered, scaled, and analyzed using generalized linear models accounting for age, sex, and medications (p-values adjusted for multiple comparisons using the Holm method). Spearman's correlations were used to evaluate relationships among metabolites, time since diagnosis, and disease severity. RESULTS Of 72 metabolites identified in the samples, 55 were common to both groups. After adjustments, 6 metabolites remained significantly different between groups. Alpha-glucose, alpha-ketoglutarate, serine, and N-acetylaspartate were significantly lower in the JIA group than in controls; glycine and cystine were higher. Seven additional metabolites were detected only in the JIA group; 10 additional metabolites were detected only in the control group. Metabolites were unrelated to disease severity or time since diagnosis. CONCLUSIONS The metabolic signature of adolescents with JIA relative to controls reflects a disruption in oxidative stress; neurological health; and amino acid, caffeine, and energy metabolism pathways. Serine and N-acetylaspartate were promising potential biomarkers, and their metabolic pathways are linked to both JIA and cardiovascular disease risk. The pathways may be a source of new diagnostic, treatment, or prevention options. This study's findings contribute new knowledge for systems biology and precision health approaches to JIA research. Further research is warranted to confirm these findings in a larger sample.
Collapse
|
20
|
Kang BX, Ma J, Shen J, Xu H, Wang HQ, Zhao C, Xie J, Zhong S, Gao CX, Xu XR, A XY, Gu XL, Xiao L, Xu J. Altered brain activity in end-stage knee osteoarthritis revealed by resting-state functional magnetic resonance imaging. Brain Behav 2022; 12:e2479. [PMID: 34967156 PMCID: PMC8785636 DOI: 10.1002/brb3.2479] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Knee osteoarthritis (KOA) is characterized by a degenerative change of knee cartilage and secondary bone hyperplasia, resulting in pain, stiffness, and abnormal walking gait. Long-term chronic pain causes considerable cortical plasticity alternations in patients. However, the brain structural and functional alterations associated with the pathological changes in knee joints of end-stage KOA patients remain unclear. This study aimed to analyze the structural and functional connectivity alterations in end-stage KOA to comprehensively understand the main brain-associated mechanisms underlying its development and progression. METHODS In this study, 37 patients with KOA and 37 demographically matched healthy controls (HCs) were enrolled. Alternations in gray matter (GM) volume in patients with KOA were determined using voxel-based morphometry. The region with the largest GM volume alteration was selected as the region of interest to calculate the voxel-wise resting-state functional connectivity (rs-FC) in the two groups. Pearson's correlation coefficient was used to analyze the correlation between clinical measures and GM volume alternations in patients with KOA. RESULTS Compared with HCs, patients with KOAs exhibited significantly decreased GM volumes in the left middle temporal gyrus (left-MTG) and the left inferior temporal gyrus. Results of the voxel-wise rs-FC analysis revealed that compared with HCs, patients with KOA had decreased left-MTG rs-FC to the right dorsolateral superior frontal gyrus, left middle frontal gyrus, and left medial superior frontal gyrus. GM volume in the left-MTG was negatively correlated with the Western Ontario and McMaster Universities Arthritis Index in patients with KOA (r = -0.393, p = .016). CONCLUSION Structural remodeling and functional connectivity alterations may be one of the central brain mechanisms associated with end-stage KOA.
Collapse
Affiliation(s)
- Bing-Xin Kang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Shen
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Xu
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Hai-Qi Wang
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chi Zhao
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Xie
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Zhong
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen-Xin Gao
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi-Rui Xu
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Yu A
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Li Gu
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianbo Xiao
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Zhang Y, Liu H. Safety of Total Knee Arthroplasty in the Treatment of Knee Osteoarthritis and Its Effect on Postoperative Pain and Quality of Life of Patients. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:6951578. [PMID: 35024014 PMCID: PMC8716239 DOI: 10.1155/2021/6951578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Objective To explore the safety of total knee arthroplasty (TKA) in the treatment of knee osteoarthritis (KOA) and its impact on patients' postoperative pain and quality of life. Methods A total of 60 KOA patients admitted to our hospital from January 2019 to January 2020 were selected as the research objects. The knee joint scores (HSS) before and after TKA were compared, and the patients' quality of life was evaluated using the Osteoarthritis Index of Western Ontario and McMaster University (WOMAC). At the same time, the number of patients with complications was recorded, and the efficacy of TKA was comprehensively analyzed. Results The postoperative HSS score was significantly higher than the preoperative score (P < 0.05), the postoperative pain score increased with time, and the pain gradually decreased. The postoperative WOMAC score was significantly lower than the preoperative score (P < 0.001), and the score at 6 months after surgery was significantly lower than that at 3 months after surgery (P < 0.001). There were no complications such as severe prosthesis fracture, secondary sepsis, and patellar tendon rupture, and the total incidence of complications was 11.7%. The effective rate of treatment at 6 months after operation was 98.3%, which was significantly higher than that at 3 months after operation (P < 0.05). Conclusion Total knee arthroplasty can improve the knee joint function of patients with knee osteoarthritis, with low postoperative pain, low complication rate, and good quality of life for patients. It is worthy of promotion and application.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Joint Surgery, Ningbo No. 6 Hospital, Ningbo 315100, Zhejiang, China
| | - Hua Liu
- Department of Joint Surgery, Ningbo No. 6 Hospital, Ningbo 315100, Zhejiang, China
| |
Collapse
|
22
|
NRM 2021 Abstract Booklet. J Cereb Blood Flow Metab 2021; 41:11-309. [PMID: 34905986 PMCID: PMC8851538 DOI: 10.1177/0271678x211061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|