1
|
Varrassi G, Rekatsina M, Leoni MLG, Cascella M, Finco G, Sardo S, Corno C, Tiso D, Schweiger V, Fornasari DMM, Paladini A. A Decades-Long Journey of Palmitoylethanolamide (PEA) for Chronic Neuropathic Pain Management: A Comprehensive Narrative Review. Pain Ther 2025; 14:81-101. [PMID: 39630391 PMCID: PMC11751209 DOI: 10.1007/s40122-024-00685-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Palmitoylethanolamide (PEA) has been prescribed in neuropathic pain management for over 20 years. This study aims to summarize what has been published on the topic in the last 15 years and determine the appropriateness of the prescribing. It describes the pharmacological aspect of PEA, especially focusing on its pharmacodynamics and pharmacokinetics. Then, it deeply explores why PEA may be useful in the pharmacological management of both neuropathic and mixed pain. Finally, it examines some innovative patent, which aims to address obstacles encountered with conventional PEA formulations, for its pharmacodynamic characteristics. One of them (Equisetum-PEA) seems promising. It partially ameliorates the bioavailability and the targeted distribution. It seems to introduce novel advancements that can potentially enhance the therapeutic effectiveness of PEA in terms of its anti-inflammatory, antioxidant, and analgesic properties. The deep literature analysis aims to examine the potential advantages of PEA, in the context of several pathological conditions that may benefit from this molecule. It focuses on various published data regarding the clinical efficacy of PEA in managing neuropathic and mixed pain. Also, it tries to understand if it can modernize the field of therapy based on PEA, thus offering a better treatment option for individuals with chronic long-term inflammation, oxidative stress, and neuropathic or mixed pain with a neuropathic component. The study examines the possible impact of PEA on personalized medicine strategies and its potential for translation into clinical practice. It analyses the possibilities that PEA has in enhancing patient outcomes in a range of central nervous system and inflammatory conditions. A complete analysis of the therapeutic potentialities of this product was missing. This extensive narrative review makes a valuable contribution to the ongoing comprehension of PEA therapy. It establishes a foundation for further exploration in research and potential uses in clinical settings.
Collapse
Affiliation(s)
| | - Martina Rekatsina
- Department of Anesthesia and Pain Management, National and Kapodistrian University of Athens, Athens, Greece
| | - Matteo Luigi Giuseppe Leoni
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Roma, Rome, Italy
| | - Marco Cascella
- Anesthesia and Pain Medicine, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081, Baronissi, Italy
| | - Gabriele Finco
- Department of Medical Sciences and Public Health, Università di Cagliari, 09042, Monserrato, Italy
| | - Salvatore Sardo
- Department of Medical Sciences and Public Health, Università di Cagliari, 09042, Monserrato, Italy.
| | | | - Domenico Tiso
- Department of Nutrition, "Villa Maria" Hospital, Rimini, Italy
| | - Vittorio Schweiger
- Department of Surgery, Dentistry, Maternal and Infant Sciences, Pain Therapy Centre, Verona University Hospital, Policlinico GB Rossi, Verona, Italy
| | | | - Antonella Paladini
- Department of Life, Health, and Environmental Sciences, Università degli Studi dell'Aquila, L'Aquila, Italy
| |
Collapse
|
2
|
Hu J, Fan W, Xu Y, Li X, Zhang H, Li S, Xue L. Maladaptive changes in the homeostasis of AEA-TRPV1/CB1R induces pain-related hyperactivity of nociceptors after spinal cord injury. Cell Biosci 2025; 15:2. [PMID: 39789637 PMCID: PMC11720958 DOI: 10.1186/s13578-025-01345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear. RESULTS In this study, we investigated the effects of AEA and its receptors on the hyperexcitability of mouse dorsal root ganglion (DRG) neurons after SCI. Using a whole-cell patch-clamp technique, we found that the timing of SCI-induced hyperexcitability in nociceptors paralleled an increase in the endocannabinoid AEA content. The expression of TRPV1 and CB1R was also upregulated at different time points after SCI. High-dose extracellular administration of AEA increased the excitability of naive DRG neurons, leading to the transition from a rapidly accommodating (RA) hypoexcitable state to a highly excitable non-accommodating (NA) state. These AEA-induced transitions were facilitated by increased TRPV1 transcription. Pharmacological and Ca2+ imaging experiments revealed that AEA induced hyperexcitability in nociceptors after SCI via the AEA-TRPV1-Ca2+ pathway, whereas activation of CB1Rs reduced SCI-induced hyperexcitability and maintained cytosolic Ca2+ concentration ([Ca2+]cyto) at low levels in the early stages of SCI. As the AEA and TRPV1 levels increased after SCI, adaptive neuroprotection transitioned to a maladaptive hyperactive state, leading to sustained pain. CONCLUSIONS Taken together, this study provides new insights into how endocannabinoids regulate nociceptor activity after SCI, offering potential targets for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- JiaQi Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - WenYong Fan
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yue Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - XiaoFei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - HaoYang Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Shun Li
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Lei Xue
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
3
|
Cammarota F, De Icco R, Vaghi G, Corrado M, Bighiani F, Martinelli D, Pozo-Rosich P, Goadsby PJ, Tassorelli C. High-frequency episodic migraine: Time for its recognition as a migraine subtype? Cephalalgia 2024; 44:3331024241291578. [PMID: 39434667 DOI: 10.1177/03331024241291578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
BACKGROUND High-frequency episodic migraine (HFEM) has gained attention in the field of headache research and clinical practice. In this narrative review, we analyzed the available literature to assess the evidence that could help decide whether HFEM may represent a distinct clinical and/or biological entity within the migraine spectrum. METHODS The output of the literature search included 61 papers that were allocated to one of the following topics: (i) socio-demographic features and burden; (ii) clinical and therapeutic aspects; (iii) pathophysiology; and (iv) classification. RESULTS Multiple features differentiate subjects with HFEM from low-frequency episodic migraine and from chronic migraine: education, employment rates, quality of life, disability and psychiatric comorbidities load. Some evidence also suggests that HFEM bears a specific profile of activation of cortical and spinal pain-related pathways, possibly related to maladaptive plasticity. CONCLUSIONS Subjects with HFEM bear a distinctive clinical and socio-demographic profile within the episodic migraine group, with a higher disease burden and an increased risk of transitioning to chronic migraine. Recognizing HFEM as a distinct entity is an opportunity for the better understanding of migraine and the spectrum of frequency with which it can manifest, as well as for stimulating further research and more adequate public health approaches.
Collapse
Affiliation(s)
- Francescantonio Cammarota
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Michele Corrado
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Federico Bighiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Daniele Martinelli
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Patricia Pozo-Rosich
- Headache Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autonoma of Barcelona, Barcelona, Spain
| | - Peter J Goadsby
- NIHR King's Clinical Research Facility, King's College London, London UK
- Dept. of Neurology, University of California, Los Angeles, CA, USA
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
4
|
Nobili S, Micheli L, Lucarini E, Toti A, Ghelardini C, Di Cesare Mannelli L. Ultramicronized N-palmitoylethanolamine associated with analgesics: Effects against persistent pain. Pharmacol Ther 2024; 258:108649. [PMID: 38615798 DOI: 10.1016/j.pharmthera.2024.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Current epidemiological data estimate that one in five people suffers from chronic pain with considerable impairment of health-related quality of life. The pharmacological treatment is based on first- and second-line analgesic drugs, including COX-2 selective and nonselective nonsteroidal anti-inflammatory drugs, paracetamol, antidepressants, anti-seizure drugs and opioids, that are characterized by important side effects. N-palmitoylethanolamine (PEA) is a body's own fatty-acid ethanolamide belonging to the family of autacoid local injury antagonist amides. The anti-inflammatory and pain-relieving properties of PEA have been recognized for decades and prompted to depict its role in the endogenous mechanisms of pain control. Together with its relative abundance in food sources, this opened the way to the use of PEA as a pain-relieving nutritional intervention. Naïve PEA is a large particle size lipid molecule with low solubility and bioavailability. Reducing particle size is a useful method to increase surface area, thereby improving dissolution rate and bioavailability accordingly. Micron-size formulations of PEA (e.g., ultramicronized and co-(ultra)micronized) have shown higher oral efficacy compared to naïve PEA. In particular, ultramicronized PEA has been shown to efficiently cross the intestinal wall and, more importantly, the blood-brain and blood-spinal cord barrier. Several preclinical and clinical studies have shown the efficacy, safety and tolerability of ultramicronized PEA. This narrative review summarizes the available pharmacokinetic/pharmacodynamic data on ultramicronized PEA and focuses to its contribution to pain control, in particular as 'add-on' nutritional intervention. Data showing the ability of ultramicronized PEA to limit opioid side effects, including the development of tolerance, have also been reviewed.
Collapse
Affiliation(s)
- Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| |
Collapse
|
5
|
Sokolov AY, Volynsky MA, Potapenko AV, Iurkova PM, Zaytsev VV, Nippolainen E, Kamshilin AA. Duality in response of intracranial vessels to nitroglycerin revealed in rats by imaging photoplethysmography. Sci Rep 2023; 13:11928. [PMID: 37488233 PMCID: PMC10366118 DOI: 10.1038/s41598-023-39171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Among numerous approaches to the study of migraine, the nitroglycerin (NTG) model occupies a prominent place, but there is relatively insufficient information about how NTG affects intracranial vessels. In this study we aim to assess the effects of NTG on blood-flow parameters in meningeal vessels measured by imaging photoplethysmography (iPPG) in animal experiments. An amplitude of the pulsatile component (APC) of iPPG waveform was assessed before and within 2.5 h after the NTG administration in saline (n = 13) or sumatriptan (n = 12) pretreatment anesthetized rats in conditions of a closed cranial window. In animals of both groups, NTG caused a steady decrease in blood pressure. In 7 rats of the saline group, NTG resulted in progressive increase in APC, whereas decrease in APC was observed in other 6 rats. In all animals in the sumatriptan group, NTG administration was accompanied exclusively by an increase in APC. Diametrically opposite changes in APC due to NTG indicate a dual effect of this drug on meningeal vasomotor activity. Sumatriptan acts as a synergist of the NTG vasodilating action. The results we obtained contribute to understanding the interaction of vasoactive drugs in the study of the headache pathophysiology and methods of its therapy.
Collapse
Affiliation(s)
- Alexey Y Sokolov
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Maxim A Volynsky
- School of Physics and Engineering, ITMO University, Saint Petersburg, Russia
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Anastasiia V Potapenko
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Laboratory of Biochemistry, Medical Genetic Center, Saint Petersburg, Russia
| | - Polina M Iurkova
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
- Faculty of General Therapy, Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Valeriy V Zaytsev
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Ervin Nippolainen
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Alexei A Kamshilin
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| |
Collapse
|
6
|
Demartini C, Francavilla M, Zanaboni AM, Facchetti S, De Icco R, Martinelli D, Allena M, Greco R, Tassorelli C. Biomarkers of Migraine: An Integrated Evaluation of Preclinical and Clinical Findings. Int J Mol Sci 2023; 24:ijms24065334. [PMID: 36982428 PMCID: PMC10049673 DOI: 10.3390/ijms24065334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, numerous efforts have been made to identify reliable biomarkers useful in migraine diagnosis and progression or associated with the response to a specific treatment. The purpose of this review is to summarize the alleged diagnostic and therapeutic migraine biomarkers found in biofluids and to discuss their role in the pathogenesis of the disease. We included the most informative data from clinical or preclinical studies, with a particular emphasis on calcitonin gene-related peptide (CGRP), cytokines, endocannabinoids, and other biomolecules, the majority of which are related to the inflammatory aspects and mechanisms of migraine, as well as other actors that play a role in the disease. The potential issues affecting biomarker analysis are also discussed, such as how to deal with bias and confounding data. CGRP and other biological factors associated with the trigeminovascular system may offer intriguing and novel precision medicine opportunities, although the biological stability of the samples used, as well as the effects of the confounding role of age, gender, diet, and metabolic factors should be considered.
Collapse
Affiliation(s)
- Chiara Demartini
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Sara Facchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Daniele Martinelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Marta Allena
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-(0382)-380255
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
7
|
Exploring Novel Therapeutic Targets in the Common Pathogenic Factors in Migraine and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24044114. [PMID: 36835524 PMCID: PMC9959352 DOI: 10.3390/ijms24044114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Migraine and neuropathic pain (NP) are both painful, disabling, chronic conditions which exhibit some symptom similarities and are thus considered to share a common etiology. The calcitonin gene-related peptide (CGRP) has gained credit as a target for migraine management; nevertheless, the efficacy and the applicability of CGRP modifiers warrant the search for more effective therapeutic targets for pain management. This scoping review focuses on human studies of common pathogenic factors in migraine and NP, with reference to available preclinical evidence to explore potential novel therapeutic targets. CGRP inhibitors and monoclonal antibodies alleviate inflammation in the meninges; targeting transient receptor potential (TRP) ion channels may help prevent the release of nociceptive substances, and modifying the endocannabinoid system may open a path toward discovery of novel analgesics. There may exist a potential target in the tryptophan-kynurenine (KYN) metabolic system, which is closely linked to glutamate-induced hyperexcitability; alleviating neuroinflammation may complement a pain-relieving armamentarium, and modifying microglial excitation, which is observed in both conditions, may be a possible approach. Those are several potential analgesic targets which deserve to be explored in search of novel analgesics; however, much evidence remains missing. This review highlights the need for more studies on CGRP modifiers for subtypes, the discovery of TRP and endocannabinoid modulators, knowledge of the status of KYN metabolites, the consensus on cytokines and sampling, and biomarkers for microglial function, in search of innovative pain management methods for migraine and NP.
Collapse
|
8
|
Bradshaw HB, Johnson CT. Measuring the Content of Endocannabinoid-Like Compounds in Biological Fluids: A Critical Overview of Sample Preparation Methodologies. Methods Mol Biol 2023; 2576:21-40. [PMID: 36152175 PMCID: PMC10845095 DOI: 10.1007/978-1-0716-2728-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Different mass spectrometric techniques have been used over the past decade to quantify endocannabinoids (eCBs) and related lipids. Even with the level of molecular fingerprinting accuracy of an instrument like the most advanced triple quadrupole mass spectrometer, if one is not getting the most optimized sample to the detector in a way that this improved technology can be of use, then advancements can be stymied. Here, our focus is on review and discussion of sample preparation methodologies used to isolate the eCB anandamide and its close congeners N-acyl ethanolamines and structural congeners (i.e., lipo amino acids, lipoamines, N-acyl amides) in biological fluids. Most of our focus will be on the analysis of these lipids in plasma/serum, but we will also discuss how the same techniques can be used for the analysis of saliva and breast milk.
Collapse
Affiliation(s)
- Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Clare T Johnson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
9
|
Corrado M, Demartini C, Greco R, Zanaboni A, Bighiani F, Vaghi G, Grillo V, Sances G, Allena M, Tassorelli C, De Icco R. Oculo-vestibular signs in experimentally induced migraine attacks: an exploratory analysis. Neurol Sci 2022; 43:6561-6564. [PMID: 35953579 PMCID: PMC9616776 DOI: 10.1007/s10072-022-06312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022]
Abstract
Vestibular symptoms accompanying headache are quite common in migraine patients. Based on the association of vertigo with migraine, vestibular migraine was included in the appendix of the 3rd edition of the International Classification of Headache Disorders as a possible migraine subtype worthy of further investigation. In this post hoc, exploratory analysis, we investigated the occurrence of oculo-vestibular signs (OVSs) during experimentally induced migraine attacks in 24 episodic migraine patients and 19 healthy controls exposed to sublingual nitroglycerin (NTG - 0.9 mg). A comprehensive clinical examination was performed at baseline, at the onset of the migraine-like attack, and immediately before hospital discharge (180 minutes after NTG administration). Three of the 13 migraine patients who developed a spontaneous-like migraine attack during the hospital observation period (23.1%) also developed OVSs during the induction test. Noteworthy, none of the patients with a negative induction test developed OVSs and no OVSs were reported in healthy subjects at any time point. The exploratory nature of our study does not allow to draw definite conclusions on the possible implications of a vestibular dysfunction in migraine pathophysiology. Our results however suggest that NTG administration may lend itself to investigate vestibular dysfunction in migraine, at least in a subset of patients. The present findings represent a starting point for designing future ad hoc and well-powered studies.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW In this review, we illustrate and discuss the recent findings regarding the epidemiology and pathophysiology of migraine triggers and their implications in clinical practice. RECENT FINDINGS Data from the literature suggest that individual triggers fail to provoke migraine attack in experimental settings. It is therefore possible that more triggers acting in combination are needed to induce an attack by promoting some degree of brain dysfunction and thus increasing the vulnerability to migraine. Caution is however needed, because some of the factors rated as triggers by the patients may actually be a component of the clinical picture of migraine attacks. SUMMARY Trigger factors of migraine are endogenous or exogenous elements associated with an increased likelihood of an attack in a short period of time and are reported by up to 75.9% of patients. Triggers must be differentiated from premonitory symptoms that precede the headache phase but do not have a causative role in attack provocation, being rather the very first manifestations of the attack. Identification of real triggers is an important step in the management of migraine. Vice versa, promoting an active avoiding behaviour toward factors whose role as triggers is not certain would be ineffective and even frustrating for patients.
Collapse
|
11
|
Hernández AG. Palmitoylethanolamide-based nutraceutical Calmux® in preventive treatment of migraine. Clin Neurol Neurosurg 2022; 218:107282. [DOI: 10.1016/j.clineuro.2022.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
|
12
|
Clinical Evidence of Cannabinoids in Migraine: A Narrative Review. J Clin Med 2022; 11:jcm11061479. [PMID: 35329806 PMCID: PMC8949974 DOI: 10.3390/jcm11061479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
The endocannabinoid system (ECS) influences many biological functions, and hence, its pharmacological modulation may be useful for several disorders, such as migraine. Preclinical studies have demonstrated that the ECS is involved in the modulation of trigeminal excitability. Additionally, clinical data have suggested that an endocannabinoid deficiency is associated with migraine. Given these data, phytocannabinoids, as well as synthetic cannabinoids, have been tried as migraine treatments. In this narrative review, the current clinical evidence of potential ECS involvement in migraine pathogenesis is summarized. Furthermore, studies exploring the clinical effects of phytocannabinoids and synthetic cannabinoids on migraine patients are reviewed.
Collapse
|