1
|
Son E, Gaither R, Lobo J, Zhao Y, McKibben LA, Arora R, Albertorio-Sáez L, Mickelson J, Wanstrath BJ, Bhatia S, Stevens JS, Jovanovic T, Koenen K, Kessler R, Ressler K, Beaudoin FL, McLean SA, Linnstaedt SD. Further evidence that peritraumatic 17β-estradiol levels influence chronic posttraumatic pain outcomes in women, data from both humans and animals. Pain 2025; 166:812-823. [PMID: 39287098 PMCID: PMC11903369 DOI: 10.1097/j.pain.0000000000003408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/14/2024] [Indexed: 09/19/2024]
Abstract
ABSTRACT Chronic posttraumatic pain (CPTP) is common after traumatic stress exposure (TSE) and disproportionately burdens women. We previously showed across 3 independent longitudinal cohort studies that, in women, increased peritraumatic 17β-estradiol (E2) levels were associated with substantially lower CPTP over 1 year. Here, we assessed this relationship in a fourth longitudinal cohort and also assessed the relationship between E2 and CPTP at additional time points post-TSE. Furthermore, we used a well-validated animal model of TSE to determine whether exogenous E2 administration protects against mechanical hypersensitivity. Using nested samples and data from the Advancing Understanding of RecOvery afteR traumA study (n = 543 samples, 389 participants), an emergency department-based prospective study of TSE survivors, we assessed the relationship between circulating E2 levels and CPTP in women and men using multivariate repeated-measures mixed modeling. Male and ovariectomized female Sprague Dawley rats were exposed to TSE and administered E2 either immediately after or 3 days post-TSE. Consistent with previous results, we observed an inverse relationship between peritraumatic E2 and longitudinal CPTP in women only (β = -0.137, P = 0.033). In animals, E2 protected against mechanical hypersensitivity in female ovariectomized rats only if administered immediately post-TSE. In conclusion, peritraumatic E2 levels, but not those at post-TSE time points, predict CPTP in women TSE survivors. Administration of E2 immediately post TSE protects against mechanical hypersensitivity in female rats. Together with previous findings, these data indicate that increased peritraumatic E2 levels in women have protective effects against CPTP development and suggest that immediate post-TSE E2 administration in women could be a promising therapeutic strategy for reducing risk of CPTP.
Collapse
Affiliation(s)
- Esther Son
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC 27599
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC 27599
| | - Rachel Gaither
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02903
| | - Jarred Lobo
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC 27599
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC 27599
| | - Ying Zhao
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC 27599
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC 27599
| | - Lauren A. McKibben
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC 27599
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC 27599
| | - Rhea Arora
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC 27599
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC 27599
| | - Liz Albertorio-Sáez
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC 27599
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC 27599
| | - Jacqueline Mickelson
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC 27599
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC 27599
| | - Britannia J. Wanstrath
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC 27599
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC 27599
| | - Simran Bhatia
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC 27599
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC 27599
| | - Jennifer S. Stevens
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA 30329
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI 48201
| | - Karestan Koenen
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115
| | - Ronald Kessler
- Department of Healthcare Policy, Harvard Medical School, Boston, MA 02115
| | - Kerry Ressler
- Department of Psychiatry at McLean Hospital, Harvard Medical School, Boston, MA 02115
| | - Francesca L. Beaudoin
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02903
- Department of Health Services, Policy, and Practice, Brown University School of Public Health, Providence, RI 02903
| | - Samuel A. McLean
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC 27599
- Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC, 27514
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27514
| | - Sarah D. Linnstaedt
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC 27599
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
2
|
McKibben LA, Layne MN, Albertorio-Sáez LM, Zhao Y, Branham EM, House SL, Beaudoin FL, An X, Stevens JS, Neylan TC, Clifford GD, Germine LT, Bollen KA, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Swor RA, Hudak LA, Pascual JL, Seamon MJ, Datner EM, Peak DA, Merchant RC, Domeier RM, Rathlev NK, O’Neil BJ, Sanchez LD, Bruce SE, Sheridan JF, Harte SE, Kessler RC, Koenen KC, Ressler KJ, McLean SA, Linnstaedt SD. Peritraumatic C-reactive protein levels predict pain outcomes following traumatic stress exposure in a sex-dependent manner. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.03.24318221. [PMID: 39677432 PMCID: PMC11643190 DOI: 10.1101/2024.12.03.24318221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background Chronic pain following traumatic stress exposure (TSE) is common. Increasing evidence suggests inflammatory/immune mechanisms are induced by TSE, play a key role in the recovery process versus development of post-TSE chronic pain, and are sex specific. In this study, we tested the hypothesis that the inflammatory marker C-reactive protein (CRP) is associated with chronic pain after TSE in a sex-specific manner. Methods We utilized blood-plasma samples and pain questionnaire data from men (n=99) and (n=223) women enrolled in AURORA, a multi-site emergency department (ED)-based longitudinal study of TSE survivors. We measured CRP using Ella/ELISA from plasma samples collected in the ED ('peritraumatic CRP', n=322) and six months following TSE (n=322). Repeated measures mixed-effects models were used to assess the relationship between peritraumatic CRP and post-TSE chronic pain. Results Peritraumatic CRP levels significantly predicted post-TSE chronic pain, such that higher levels of CRP were associated with lower levels of pain over time following TSE, but only in men (men:β=-0.24, p=0.037; women:β=0.05, p=0.470). By six months, circulating CRP levels had decreased by more than half in men, but maintained similar levels in women (t(290)=1.926, p=0.055). More men with a decrease in CRP levels had decreasing pain over time versus women (men:83% women:65%; Z=2.21, p=0.027). Conclusions In men but not women, we found circulating peritraumatic CRP levels predict chronic pain outcomes following TSE and resolution of CRP levels in men over time might be associated with increased pain recovery. Further studies are needed to validate these results.
Collapse
Affiliation(s)
- Lauren A. McKibben
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
| | - Miranda N. Layne
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
| | - Liz Marie Albertorio-Sáez
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
| | - Ying Zhao
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
| | - Erica M. Branham
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
| | - Stacey L. House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Francesca L. Beaudoin
- Department of Epidemiology, Brown University, Providence, RI, 02930, USA
- Department of Emergency Medicine, Brown University, Providence, RI, 02930, USA
| | - Xinming An
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Thomas C. Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Gari D. Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Laura T. Germine
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, 02478, USA
- The Many Brains Project, Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
| | - Kenneth A. Bollen
- Department of Psychology and Neuroscience & Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
| | - Scott L. Rauch
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, McLean Hospital, Belmont, MA, 02478, USA
| | - John P. Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Alan B. Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Paul I. Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Phyllis L. Hendry
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, 32209, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, 32209, USA
| | - Christopher W. Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Brittany E. Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, 43210, USA
- Ohio State University College of Nursing, Columbus, OH, 43210, USA
| | - Robert A. Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, 48309, USA
| | - Lauren A. Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Jose L. Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark J. Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth M. Datner
- Department of Emergency Medicine, Jefferson Einstein hospital, Jefferson Health, Philadelphia, PA, 19141, USA
- Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - David A. Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Roland C. Merchant
- Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Robert M. Domeier
- Department of Emergency Medicine, Trinity Health-Ann Arbor, Ypsilanti, MI, 48197, USA
| | - Niels K. Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, 01107, USA
| | - Brian J. O’Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, 48202, USA
| | - Leon D. Sanchez
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Steven E. Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, 63121, USA
| | - John F. Sheridan
- Division of Biosciences, Ohio State University College of Dentistry, Columbus, OH, 43210, USA
- Institute for Behavioral Medicine Research, OSU Wexner Medical Center, Columbus, OH, 43211, USA
| | - Steven E. Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ronald C. Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, 02115, USA
| | - Karestan C. Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, 02478, USA
| | - Samuel A. McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
| | - Sarah D. Linnstaedt
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
| |
Collapse
|
3
|
Sim J, O'Guin E, Monahan K, Sugimoto C, McLean SA, Albertorio-Sáez L, Zhao Y, Laumet S, Dagenais A, Bernard MP, Folger JK, Robison AJ, Linnstaedt SD, Laumet G. Interleukin-10-producing monocytes contribute to sex differences in pain resolution in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565129. [PMID: 37961295 PMCID: PMC10635095 DOI: 10.1101/2023.11.03.565129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain. Graphical abstract
Collapse
|
4
|
Branham EM, McLean SA, Deliwala I, Mauck MC, Zhao Y, McKibben LA, Lee A, Spencer AB, Zannas AS, Lechner M, Danza T, Velilla MA, Hendry PL, Pearson C, Peak DA, Jones J, Rathlev NK, Linnstaedt SD. CpG Methylation Levels in HPA Axis Genes Predict Chronic Pain Outcomes Following Trauma Exposure. THE JOURNAL OF PAIN 2023; 24:1127-1141. [PMID: 36906051 PMCID: PMC10330094 DOI: 10.1016/j.jpain.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
Chronic post-traumatic musculoskeletal pain (CPTP) is a common outcome of traumatic stress exposure. Biological factors that influence the development of CPTP are poorly understood, though current evidence indicates that the hypothalamic-pituitary-adrenal (HPA) axis plays a critical role in its development. Little is known about molecular mechanisms underlying this association, including epigenetic mechanisms. Here, we assessed whether peritraumatic DNA methylation levels at 248 5'-C-phosphate-G-3' (CpG) sites in HPA axis genes (FKBP5, NR3C1, CRH, CRHR1, CRHR2, CRHBP, POMC) predict CPTP and whether identified CPTP-associated methylation levels influence expression of those genes. Using participant samples and data collected from trauma survivors enrolled into longitudinal cohort studies (n = 290), we used linear mixed modeling to assess the relationship between peritraumatic blood-based CpG methylation levels and CPTP. A total of 66 (27%) of the 248 CpG sites assessed in these models statistically significantly predicted CPTP, with the three most significantly associated CpG sites originating from the POMC gene region (ie, cg22900229 [β = .124, P < .001], cg16302441 [β = .443, P < .001], cg01926269 [β = .130, P < .001]). Among the genes analyzed, both POMC (z = 2.36, P = .018) and CRHBP (z = 4.89, P < .001) were enriched in CpG sites significantly associated with CPTP. Further, POMC expression was inversely correlated with methylation levels in a CPTP-dependent manner (6-months NRS<4: r = -.59, P < .001; 6-months NRS ≥ 4: r = -.18, P = .2312). Our results suggest that methylation of HPA axis genes including POMC and CRHBP predict risk for and may contribute to vulnerability to CPTP. PERSPECTIVE: Peritraumatic blood levels of CpG methylation sites in HPA axis genes, particularly CpG sites in the POMC gene, predict CPTP development. This data substantially advances our understanding of epigenetic predictors and potential mediators of CPTP, a highly common, morbid, and hard-to-treat form of chronic pain.
Collapse
Affiliation(s)
- Erica M Branham
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Samuel A McLean
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Department of Emergency Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ishani Deliwala
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew C Mauck
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Ying Zhao
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Lauren A McKibben
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Aaron Lee
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Alex B Spencer
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Anthony S Zannas
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina; Department of Genetics, University of North Carolina, Chapel Hill, North Carolina; Carolina Stress Initiative, University of North Carolina, Chapel Hill, North Carolina
| | - Megan Lechner
- Forensic Nursing Program, Memorial Health System, Colorado Springs, Colorado
| | - Teresa Danza
- Forensic Nursing Program, Albuquerque SANE Collaborative, Albuquerque, New Mexico
| | | | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Florida
| | - Claire Pearson
- Department of Emergency Medicine, Detroit Receiving, Detroit, Michigan
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jeffrey Jones
- Department of Emergency Medicine, Spectrum Health Butterworth Campus, Grand Rapids, Michigan
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Chan Medical School Baystate, Springfield, Massachusetts
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
5
|
Gulati M, Dursun E, Vincent K, Watt FE. The influence of sex hormones on musculoskeletal pain and osteoarthritis. THE LANCET. RHEUMATOLOGY 2023; 5:e225-e238. [PMID: 38251525 DOI: 10.1016/s2665-9913(23)00060-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 03/22/2023]
Abstract
The association of female sex with certain rheumatic symptoms and diseases is now indisputable. Some of the most striking examples of this association occur in individuals with musculoskeletal pain and osteoarthritis, in whom sex-dependent changes in incidence and prevalence of disease are seen throughout the lifecourse. Joint and muscle pain are some of the most common symptoms of menopause, and there is increasingly compelling evidence that changes in or loss of sex hormones (be it natural, autoimmune, pharmacological, or surgical) influence musculoskeletal pain propensity and perhaps disease. However, the effects of modulation or replacement of sex hormones in this context are far less established, particularly whether these approaches could represent a preventative or therapeutic opportunity once symptoms have developed. In this Review, we present evidence for the association of changes in sex hormones with musculoskeletal pain and painful osteoarthritis, discussing data from diverse natural, therapeutic, and experimental settings in humans and relevant animal models relating to hormone loss or replacement and the consequent effects on health, pain, and disease. We also postulate mechanisms by which sex hormones could mediate these effects. Further research is needed; however, increased scientific understanding of this complex area could lead to real benefits in musculoskeletal and women's health.
Collapse
Affiliation(s)
- Malvika Gulati
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eren Dursun
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Katy Vincent
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Fiona E Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK; Rheumatology Department, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
6
|
Shupp JW, Holmes JH, Moffatt LT, Phelan HA, Sousse L, Romanowski KS, Jeschke M, Kowalske KJ, Badger K, Allely R, Cartotto R, Burmeister DM, Kubasiak JC, Wolf SE, Wallace KF, Gillenwater J, Schneider DM, Hultman CS, Wiechman SA, Bailey JK, Powell HM, Travis TE, Supp DM, Carney BC, Johnson LS, Johnson LS, Chung KK, Chung KK, Kahn SA, Gibson ALF, Christy RJ, Carter JE, Carson JS, Palmieri TL, Kopari NM, Blome-Eberwein SA, Hickerson WL, Parry I, Cancio JM, Suman O, Schulman CI, Lamendella R, Hill DM, Wibbenmeyer LA, Nygaard RM, Wagner AL, Carter ADW, Greenhalgh DG, Lawless MB, Carlson DL, Harrington DT. Proceedings of the 2021 American Burn Association State and Future of Burn Science Meeting. J Burn Care Res 2022; 43:1241-1259. [PMID: 35988021 DOI: 10.1093/jbcr/irac092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Periodically, the American Burn Association (ABA) has convened a State of the Science meeting on various topics representing multiple disciplines within burn care and research. In 2021 at the request of the ABA President, meeting development was guided by the ABA's Burn Science Advisory Panel (BSAP) and a subgroup of meeting chairs. The goal of the meeting was to produce both an evaluation of the current literature and ongoing studies, and to produce a research agenda and/or define subject matter-relevant next steps to advance the field(s). Members of the BSAP defined the topics to be addressed and subsequently solicited for nominations of expert speakers and topic leaders from the ABA's Research Committee. Current background literature for each topic was compiled by the meeting chairs and the library then enhanced by the invited topic and breakout discussion leaders. The meeting was held in New Orleans, LA on November 2nd and 3rd and was formatted to allow for 12 different topics, each with two subtopics, to be addressed. Topic leaders provided a brief overview of each topic to approximately 100 attendees, followed by expert-lead breakout sessions for each topic that allowed for focused discussion among subject matter experts and interested participants. The breakout and topic group leaders worked with the participants to determine research needs and associated next steps including white papers, reviews and in some cases collaborative grant proposals. Here, summaries from each topic area will be presented to highlight the main foci of discussion and associated conclusions.
Collapse
|
7
|
Franke LK, Miedl SF, Danböck SK, Lohse J, Liedlgruber M, Bürkner PC, Pletzer B, Wilhelm FH. Estradiol during (analogue-)trauma: Risk- or protective factor for intrusive re-experiencing? Psychoneuroendocrinology 2022; 143:105819. [PMID: 35724562 DOI: 10.1016/j.psyneuen.2022.105819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/06/2023]
Abstract
Intrusions, a key symptom of posttraumatic stress disorder (PTSD), can occur in the form of images but also as pain sensations. Similar to audiovisual intrusions, the frequency and persistence of pain intrusions varies greatly between individuals. In the current study, we examined whether peritraumatic circulating 17β-estradiol (E2) levels are a biologic factor associated with subsequent audiovisual (i.e., film) and pain intrusion development, and whether peritraumatic stress levels modulate this relationship. Forty-one free-cycling women participated in an ecologically informed trauma-pain-conditioning (TPC) paradigm, using trauma-films and pain as unconditioned stimuli. Independent variables were salivary peritraumatic E2 levels and stress indexed by salivary cortisol and self-reported state-anxiety during TPC. Outcomes were film- and pain-intrusions occurring during daily-life in the week following TPC and a Memory-Triggering-Task in response to conditioned stimuli 24 h after TPC. In the week after analogue-trauma, higher peritraumatic E2 levels were associated with a greater probability of experiencing film-intrusions in the beginning of the week, which switched to a lower probability toward the end of the week. This time-dependent relationship between E2 and film-intrusions only held for higher state-anxious women. In contrast, results indicated a consistent inverse relationship between peritraumatic E2 levels and pain-intrusions during daily-life and Memory-Triggering-Task. Together, these data suggest that higher peritraumatic E2 levels could be associated with lower long-term visual trauma intrusions, as well as lower pain-intrusions, and thereby possibly constitute a protective biologic factor for PTSD and potentially also for chronic pain.
Collapse
Affiliation(s)
- Laila K Franke
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria.
| | - Stephan F Miedl
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Sarah K Danböck
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Johanna Lohse
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Michael Liedlgruber
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | | | - Belinda Pletzer
- Division of Psychoneuroendocrinology, Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Frank H Wilhelm
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| |
Collapse
|