1
|
Kringel D, Lötsch J. Knowledge of the genetics of human pain gained over the last decade from next-generation sequencing. Pharmacol Res 2025; 214:107667. [PMID: 39988004 DOI: 10.1016/j.phrs.2025.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Next-generation sequencing (NGS) technologies have revolutionized pain research by providing comprehensive insights into genetic variation across the genome. Recent studies have expanded the known spectrum of mutations in genes such as SCN9A and NTRK1, which are commonly mutated in hereditary sensory neuropathies. NGS has uncovered critical alternative splicing events and facilitated single-cell transcriptomics, revealing cellular heterogeneity within tissues. An NGS-based classifier predicted extremely high opioid requirements with 80 % accuracy, highlighting the importance of tailoring opioid therapy based on genetic profiles. Key genes such as GDF5, COL11A1, and TRPV1 have been linked to osteoarthritis risk and pain sensitivity, while HLA-DRB1, TNF, and P2X7 play critical roles in inflammation and pain modulation in rheumatoid arthritis. Innovative tools, such as an atlas of the somatosensory system in neuropathic pain, have been developed based on NGS data, focusing on the dorsal root and trigeminal ganglia. This approach allows the analysis of cellular changes during the development of chronic pain. In the study of rare variants, NGS outperforms single nucleotide variant candidate studies and classical genome-wide association approaches. The complex data generated by NGS enables integrated multi-omics approaches, allowing deeper exploration of the molecular and cellular basis of pain perception. In addition, the characterization of non-coding RNAs has opened new therapeutic avenues. NGS-based pain research faces challenges related to complex data analysis and interpretation of rare genetic variants with unknown biological functions. Nevertheless, NGS offers significant potential for improving personalized pain management and highlights the need for interdisciplinary collaboration to translate findings into clinical practice.
Collapse
Affiliation(s)
- Dario Kringel
- Goethe - University, Institute of Clinical Pharmacology, Theodor Stern Kai 7, Frankfurt am Main 60590, Germany
| | - Jörn Lötsch
- Goethe - University, Institute of Clinical Pharmacology, Theodor Stern Kai 7, Frankfurt am Main 60590, Germany; University of Helsinki, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014, Finland; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.
| |
Collapse
|
2
|
Davies K. Medicines management in children and young people: pharmacological approaches to treat pain. Nurs Child Young People 2024:e1540. [PMID: 39663782 DOI: 10.7748/ncyp.2024.e1540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 12/13/2024]
Abstract
Pain management in children is often more complex than in adults, since pain in children can be more challenging to assess and therefore more challenging to treat. It is essential that children's nurses have knowledge and understanding of the physiology of pain and the analgesics available to treat different types of pain. This article describes nociception and provides an overview of the three main groups of analgesics - non-opioids, opioids and adjuvants - that can be used in the pharmacological management of pain in children and young people.
Collapse
Affiliation(s)
- Kate Davies
- London South Bank University, and honorary research fellow in paediatric endocrinology, Queen Mary University of London, London, England
| |
Collapse
|
3
|
Løseth G, Trøstheim M, Leknes S. Endogenous mu-opioid modulation of social connection in humans: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:379. [PMID: 39289345 PMCID: PMC11408506 DOI: 10.1038/s41398-024-03088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Social bonding, essential for health and survival in all social species, depends on mu-opioid signalling in non-human mammals. A growing neuroimaging and psychopharmacology literature also implicates mu-opioids in human social connectedness. To determine the role of mu-opioids for social connectedness in healthy humans, we conducted a preregistered ( https://osf.io/x5wmq ) multilevel random-effects meta-analysis of randomised double-blind placebo-controlled opioid antagonist studies. We included data from 8 publications and 2 unpublished projects, totalling 17 outcomes (N = 455) sourced from a final literature search in Web of Science, Scopus, PubMed and EMBASE on October 12, 2023, and through community contributions. All studies used naltrexone (25-100 mg) to block the mu-opioid system and measured social connectedness by self-report. Opioid antagonism slightly reduced feelings of social connectedness (Hedges' g [95% CI) = -0.20] [-0.32, -0.07]. Results were highly consistent within and between studies (I2 = 23%). However, there was some indication of bias in favour of larger effects among smaller studies (Egger's test: B = -2.16, SE = 0.93, z = -2.33, p = 0.02), and publication bias analysis indicated that the effect of naltrexone might be overestimated. The results clearly demonstrate that intact mu-opioid signalling is not essential for experiencing social connectedness, as robust feelings of connectedness are evident even during full pharmacological mu-opioid blockade. Nevertheless, antagonism reduced measures of social connection, consistent with a modulatory role of mu-opioids for human social connectedness. The modest effect size relative to findings in non-human animals, could be related to differences in measurement (subjective human responses versus behavioural/motivation indices in animals), species specific neural mechanisms, or naltrexone effects on other opioid receptor subtypes. In sum, these results help explain how mu-opioid dysregulation and social disconnection can contribute to disability, and conversely-how social connection can buffer risk of ill health.
Collapse
Affiliation(s)
- Guro Løseth
- Department of Psychology, University of Oslo, Oslo, Norway.
| | - Martin Trøstheim
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Rosenberg BM, Barnes-Horowitz NM, Zbozinek TD, Craske MG. Reward processes in extinction learning and applications to exposure therapy. J Anxiety Disord 2024; 106:102911. [PMID: 39128178 PMCID: PMC11384290 DOI: 10.1016/j.janxdis.2024.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Anxiety disorders are common and highly distressing mental health conditions. Exposure therapy is a gold-standard treatment for anxiety disorders. Mechanisms of Pavlovian fear learning, and particularly fear extinction, are central to exposure therapy. A growing body of evidence suggests an important role of reward processes during Pavlovian fear extinction. Nonetheless, predominant models of exposure therapy do not currently incorporate reward processes. Herein, we present a theoretical model of reward processes in relation to Pavlovian mechanisms of exposure therapy, including a focus on dopaminergic prediction error signaling, coinciding positive emotional experiences (i.e., relief), and unexpected positive outcomes. We then highlight avenues for further research and discuss potential strategies to leverage reward processes to maximize exposure therapy response, such as pre-exposure interventions to increase reward sensitivity or post-exposure rehearsal (e.g., savoring, imaginal recounting strategies) to enhance retrieval and retention of learned associations.
Collapse
Affiliation(s)
- Benjamin M Rosenberg
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Nora M Barnes-Horowitz
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Tomislav D Zbozinek
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michelle G Craske
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
5
|
Vigorito M, Chang SL. Alcohol use and the pain system. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12005. [PMID: 38389900 PMCID: PMC10880763 DOI: 10.3389/adar.2024.12005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
The World Health Organization's epidemiological data from 2016 revealed that while 57% of the global population aged 15 years or older had abstained from drinking alcohol in the previous year, more than half of the population in the Americas, Europe, and Western Pacific consumed alcohol. The spectrum of alcohol use behavior is broad: low-risk use (sensible and in moderation), at-risk use (e.g., binge drinking), harmful use (misuse) and dependence (alcoholism; addiction; alcohol use disorder). The at-risk use and misuse of alcohol is associated with the transition to dependence, as well as many damaging health outcomes and preventable causes of premature death. Recent conceptualizations of alcohol dependence posit that the subjective experience of pain may be a significant contributing factor in the transition across the spectrum of alcohol use behavior. This narrative review summarizes the effects of alcohol at all levels of the pain system. The pain system includes nociceptors as sensory indicators of potentially dangerous stimuli and tissue damage (nociception), spinal circuits mediating defensive reflexes, and most importantly, the supraspinal circuits mediating nocifensive behaviors and the perception of pain. Although the functional importance of pain is to protect from injury and further or future damage, chronic pain may emerge despite the recovery from, and absence of, biological damage (i.e., in the absence of nociception). Like other biological perceptual systems, pain is a construction contingent on sensory information and a history of individual experiences (i.e., learning and memory). Neuroadaptations and brain plasticity underlying learning and memory and other basic physiological functions can also result in pathological conditions such as chronic pain and addiction. Moreover, the negative affective/emotional aspect of pain perception provides embodied and motivational components that may play a substantial role in the transition from alcohol use to dependence.
Collapse
Affiliation(s)
- Michael Vigorito
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United States
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United States
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
6
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
7
|
Desch S, Schweinhardt P, Seymour B, Flor H, Becker S. Evidence for dopaminergic involvement in endogenous modulation of pain relief. eLife 2023; 12:e81436. [PMID: 36722857 PMCID: PMC9988263 DOI: 10.7554/elife.81436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
Relief of ongoing pain is a potent motivator of behavior, directing actions to escape from or reduce potentially harmful stimuli. Whereas endogenous modulation of pain events is well characterized, relatively little is known about the modulation of pain relief and its corresponding neurochemical basis. Here, we studied pain modulation during a probabilistic relief-seeking task (a 'wheel of fortune' gambling task), in which people actively or passively received reduction of a tonic thermal pain stimulus. We found that relief perception was enhanced by active decisions and unpredictability, and greater in high novelty-seeking trait individuals, consistent with a model in which relief is tuned by its informational content. We then probed the roles of dopaminergic and opioidergic signaling, both of which are implicated in relief processing, by embedding the task in a double-blinded cross-over design with administration of the dopamine precursor levodopa and the opioid receptor antagonist naltrexone. We found that levodopa enhanced each of these information-specific aspects of relief modulation but no significant effects of the opioidergic manipulation. These results show that dopaminergic signaling has a key role in modulating the perception of pain relief to optimize motivation and behavior.
Collapse
Affiliation(s)
- Simon Desch
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Clinical Psychology, Department of Experimental Psychology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Petra Schweinhardt
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of ZurichZurichSwitzerland
| | - Ben Seymour
- Wellcome Centre for Integrative Neuroimaging, John Radcliffe HospitalOxfordUnited Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Susanne Becker
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Clinical Psychology, Department of Experimental Psychology, Heinrich Heine University DüsseldorfDüsseldorfGermany
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of ZurichZurichSwitzerland
| |
Collapse
|
8
|
Nascimento TD, Kim DJ, Chrabol C, Lim M, Hu XS, DaSilva AF. Management of Episodic Migraine with Neuromodulation: A Case Report. Dent Clin North Am 2023; 67:157-171. [PMID: 36404076 DOI: 10.1016/j.cden.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Migraine is a highly prevalent neurovascular disorder that affects approximately 15% of the global population. Migraine attacks are a complex cascade of neurologic events that lead to debilitating symptoms and are often associated with inhibitory behavior. The constellation of severe signs and symptoms during the ictal phase (headache attack) makes migraine the third most common cause of disability globally in both sexes under the age of 50. Misuse of pharmaceuticals, such as opiates, can lead to devastating outcomes and exacerbation of pain and headache attacks. A safe and well-tolerated non-pharmacological research approach is high-definition transcranial direct current stimulation over the M1.
Collapse
Affiliation(s)
- Thiago D Nascimento
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Michigan Neuroscience Institute (MNI), Headache & Orofacial Pain Effort (H.O.P.E.) Laboratory, 205 Zina Pitcher Pl, Room 1027, Ann Arbor, MI 48109, USA
| | - Dajung J Kim
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Michigan Neuroscience Institute (MNI), Headache & Orofacial Pain Effort (H.O.P.E.) Laboratory, 205 Zina Pitcher Pl, Room 1027, Ann Arbor, MI 48109, USA
| | - Conrad Chrabol
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Michigan Neuroscience Institute (MNI), Headache & Orofacial Pain Effort (H.O.P.E.) Laboratory, 205 Zina Pitcher Pl, Room 1027, Ann Arbor, MI 48109, USA
| | - Manyoel Lim
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Michigan Neuroscience Institute (MNI), Headache & Orofacial Pain Effort (H.O.P.E.) Laboratory, 205 Zina Pitcher Pl, Room 1027, Ann Arbor, MI 48109, USA
| | - Xiao-Su Hu
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Michigan Neuroscience Institute (MNI), Headache & Orofacial Pain Effort (H.O.P.E.) Laboratory, 205 Zina Pitcher Pl, Room 1027, Ann Arbor, MI 48109, USA
| | - Alexandre F DaSilva
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Michigan Neuroscience Institute (MNI), Headache & Orofacial Pain Effort (H.O.P.E.) Laboratory, 205 Zina Pitcher Pl, Room 1027, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Jepma M, Roy M, Ramlakhan K, van Velzen M, Dahan A. Different brain systems support learning from received and avoided pain during human pain-avoidance learning. eLife 2022; 11:74149. [PMID: 35731646 PMCID: PMC9217130 DOI: 10.7554/elife.74149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/07/2022] [Indexed: 12/14/2022] Open
Abstract
Both unexpected pain and unexpected pain absence can drive avoidance learning, but whether they do so via shared or separate neural and neurochemical systems is largely unknown. To address this issue, we combined an instrumental pain-avoidance learning task with computational modeling, functional magnetic resonance imaging (fMRI), and pharmacological manipulations of the dopaminergic (100 mg levodopa) and opioidergic (50 mg naltrexone) systems (N = 83). Computational modeling provided evidence that untreated participants learned more from received than avoided pain. Our dopamine and opioid manipulations negated this learning asymmetry by selectively increasing learning rates for avoided pain. Furthermore, our fMRI analyses revealed that pain prediction errors were encoded in subcortical and limbic brain regions, whereas no-pain prediction errors were encoded in frontal and parietal cortical regions. However, we found no effects of our pharmacological manipulations on the neural encoding of prediction errors. Together, our results suggest that human pain-avoidance learning is supported by separate threat- and safety-learning systems, and that dopamine and endogenous opioids specifically regulate learning from successfully avoided pain.
Collapse
Affiliation(s)
- Marieke Jepma
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Department of Psychology, Leiden University, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Mathieu Roy
- Department of Psychology, McGill University, Montreal, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Kiran Ramlakhan
- Department of Psychology, Leiden University, Leiden, Netherlands.,Department of Research and Statistics, Municipality of Amsterdam, Amsterdam, Netherlands
| | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Johnson BN, McKernan LC, Bruehl S. A Theoretical Endogenous Opioid Neurobiological Framework for Co-occurring Pain, Trauma, and Non-suicidal Self-injury. Curr Pain Headache Rep 2022; 26:405-414. [PMID: 35380406 DOI: 10.1007/s11916-022-01043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Individuals with chronic pain are significantly more likely to have experienced overwhelming trauma early and often in key developmental years. There is increasing acknowledgment that childhood trauma disrupts how individuals process and cope with both physical and emotional pain. Emerging studies acknowledge elevated rates of non-suicidal self-injury (NSSI) in chronic pain populations. This review provides a theoretical framework to understand the relationship between NSSI behavior and pain experience in persons with chronic pain and childhood trauma histories. We discuss how NSSI may act to regulate neurobiological (e.g., endogenous opioid systems) and psychological (e.g., heightened negative affect and emotion dysregulation) systems affected by childhood trauma, leading to temporary pain relief and a cycle of negative reinforcement perpetuating NSSI. As these concepts are greatly understudied in pain populations, this review focuses on key areas relevant to chronic pain that may provide a testable, conceptual framework to support hypothesis generation, future empirical investigation, and intervention efforts. RECENT FINDINGS See Fig. 1. See Fig. 1.
Collapse
|
11
|
Do endogenous opioids mediate or fine-tune human pain relief? Pain 2021; 162:2789-2791. [PMID: 34793404 DOI: 10.1097/j.pain.0000000000002286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
|