1
|
Cuitavi J, Riera-Calabuig A, Campos-Jurado Y, Lorente JD, de Jorge M, Polache A, Hipólito L. Chronic inflammatory pain suppresses alcohol intake and accumbal dopamine response. Neurochem Int 2025; 186:105974. [PMID: 40180247 DOI: 10.1016/j.neuint.2025.105974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Alcohol use disorders (AUDs) are influenced by factors that initiate, maintain, and/or induce relapse. Chronic pain is both a risk factor for and consequence of AUD, sharing neurological pathways that affect the mesolimbic dopaminergic system. This study examines how inflammatory pain impacts long-term alcohol intake and mesolimbic dopamine transmission in alcohol-naïve rats. Inflammatory pain was induced in eight-week-old Sprague Dawley rats using complete Freund adjuvant (CFA), while controls received saline. Two protocols were followed: one group had continuous access to 20 % ethanol for one month (n = 10/sex), and the second group for three months (n = 8/sex) in a two-bottle choice paradigm. Mechanical nociception was assessed weekly using the Von Frey test. Dopamine levels in the nucleus accumbens core were measured through microdialysis during the final 1.5 months of ethanol exposure in the second cohort. Due to experimental limitations animals underwent microdialysis at different time points after alcohol was firstly introduced, this was done in a balanced manner by alternating sex and group. After a month of alcohol exposure, rats showed no differences in alcohol consumption. However, from the second month until the end, rats exhibited a non-sex-dependent decrease in alcohol intake, significantly lower in CFA-animals. This reduction was accompanied by a blunted ethanol-evoked dopamine release in the nucleus accumbens. Moreover, low mechanical nociception was maintained until the end of the experiment in CFA-animal. These findings provide insights into the effect of pain on alcohol-elicited neurochemical responses and drinking behaviour, showing how pain alters dopamine response to alcohol, affecting drinking patterns and prolonging nociception from CFA.
Collapse
Affiliation(s)
- Javier Cuitavi
- University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, C/ Dr. Moliner, 50. 46100, Burjassot, Spain; Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain
| | - Ana Riera-Calabuig
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain
| | - Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain
| | - Jesús D Lorente
- University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, C/ Dr. Moliner, 50. 46100, Burjassot, Spain; Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain
| | - María de Jorge
- University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, C/ Dr. Moliner, 50. 46100, Burjassot, Spain; Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain
| | - Ana Polache
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain
| | - Lucía Hipólito
- University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, C/ Dr. Moliner, 50. 46100, Burjassot, Spain; Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n. 46100 Burjassot, Spain.
| |
Collapse
|
2
|
Marchette RCN, Vendruscolo LF, Koob GF. The Dynorphin/-Opioid Receptor System at the Interface of Hyperalgesia/Hyperkatifeia and Addiction. CURRENT ADDICTION REPORTS 2025; 12:11. [PMID: 40124896 PMCID: PMC11925990 DOI: 10.1007/s40429-025-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 03/25/2025]
Abstract
Purpose of Review Drug addiction is characterized by compulsive drug seeking and use, accompanied by negative emotional states (hyperkatifeia) and heightened pain sensitivity (hyperalgesia) during withdrawal. Both hyperalgesia and hyperkatifeia are integral components of substance use disorders, negatively impacting treatment and recovery. The underlying neurobiological mechanisms of hyperalgesia and hyperkatifeia involve alterations of brain reward and stress circuits, including the dynorphin/κ-opioid receptor (KOR) system. The dynorphin/KOR system modulates pain perception, negative affect, and addictive behaviors. Here, we review the preclinical evidence of dynorphin/KOR signaling in opioid withdrawal-induced hyperalgesia and hyperkatifeia. Recent Findings In opioid dependence models, pharmacological and genetic interventions of the dynorphin/KOR system attenuate somatic and motivational signs of withdrawal and addictive-like behaviors, highlighting its therapeutic potential. Understanding the intricate interplay between dynorphin/KOR signaling, hyperalgesia, hyperkatifeia, and addiction offers novel insights into treatment strategies for opioid use disorder and other substance use disorders. Summary Further research is needed to elucidate precise mechanisms of the sexual dimorphism of dynorphin/KOR signaling and identify targeted interventions to mitigate hyperalgesia and hyperkatifeia and facilitate recovery from addiction.
Collapse
Affiliation(s)
- Renata C. N. Marchette
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, BRC Room 08A505.19, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Leandro F. Vendruscolo
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, Division of Intramural Clinical and Biological Research, National Institute on Drug Abuse, Intramural Research Program, and National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, MD 21224 USA
| | - George F. Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, BRC Room 08A505.19, 251 Bayview Blvd, Baltimore, MD 21224 USA
| |
Collapse
|
3
|
Cuitavi J, Campos-Jurado Y, Lorente JD, Andrés-Herrera P, Ferrís-Vilar V, Polache A, Hipólito L. Age- and sex-driven alterations in alcohol consumption patterns: Role of brain ethanol metabolism and the opioidergic system in the nucleus accumbens. Pharmacol Biochem Behav 2024; 244:173845. [PMID: 39098730 DOI: 10.1016/j.pbb.2024.173845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Alcohol consumption leads to significant neurochemical and neurobiological changes, contributing to the development of alcohol use disorders (AUDs), which exhibit sex- and age-dependent variations according to clinical data. However, preclinical studies often neglect these factors when investigating alcohol consumption patterns. In this study, we present data on male and female rats continuously exposed to a 20 % ethanol solution for one month. The animals were divided into two groups based on their age at the onset of drinking (8 and 12 weeks old). Interestingly, 12-week-old males consumed significantly less alcohol than both 12-week-old females and 8-week-old animals, indicating that alcohol consumption patterns vary with sex and age in our model. Additionally, to advance in the study of the neurobiological alterations induced by ethanol intake in the mesocorticolimbic system (MCLS) that may participate in its reinforcing properties and the maintenance of alcohol drinking behavior, we measured catalase activity-an enzyme involved in alcohol metabolism and related to ethanol reinforcement-in the nucleus accumbens (NAc) of these animals. Furthermore, we measured the levels of mu (MOR), kappa (KOR), delta (DOR), and nociceptin (NOP) opioid receptors in the NAc, as the endogenous opioidergic system plays a pivotal role in regulating the MCLS and alcohol reinforcement. MOR levels were lower in high alcohol-consuming groups (8-week-old males and all females). Both DOR and NOP levels decreased with age, whereas KOR levels remained unchanged. Our findings suggest that the age at onset of alcohol consumption critically influences alcohol intake, particularly in males. Additionally, females consistently showed higher alcohol intake regardless of age, highlighting inherent sex-specific differences. The dynamic changes in catalase activity and opioid receptor expression suggest the involvement of these factors in modulating alcohol consumption.
Collapse
Affiliation(s)
- Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Spain; Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), University of Valencia, Burjassot, Spain
| | - Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Spain
| | - Jesús D Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Spain; Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), University of Valencia, Burjassot, Spain
| | - Paula Andrés-Herrera
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Spain; Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), University of Valencia, Burjassot, Spain
| | - Víctor Ferrís-Vilar
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Spain; Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), University of Valencia, Burjassot, Spain
| | - Ana Polache
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Spain; Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), University of Valencia, Burjassot, Spain.
| |
Collapse
|
4
|
Kelley AM, Del Valle EJ, Zaman S, Karkhanis AN. Adolescent ethanol exposure promotes mechanical allodynia and alters dopamine transmission in the nucleus accumbens shell. Pain 2024; 165:e55-e64. [PMID: 37962155 PMCID: PMC11090756 DOI: 10.1097/j.pain.0000000000003097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
ABSTRACT Excessive alcohol consumption in adolescence can disrupt neural development and may augment pain perception. Recent studies have shown that the nucleus accumbens (NAc) shell is involved in mediating pain sensitivity after peripheral inflammation in rodent models of chronic pain and alcohol use disorder. Interestingly, there have been very few studies examining the impact of chronic ethanol exposure during adolescence on pain sensitivity in adulthood. Therefore, in this project, we investigated the impact of adolescent chronic intermittent ethanol (aCIE) exposure on mechanical allodynia. Furthermore, given the involvement of the NAc shell in pain processing and chronic ethanol-mediated changes, we measured changes in accumbal dopamine kinetics during protracted withdrawal. We found that both male and female aCIE rats show mechanical allodynia during withdrawal. Furthermore, male and female aCIE rats show greater evoked tonic dopamine release, maximal rate of dopamine reuptake, and dopamine affinity to the dopamine transporter in the NAc shell compared with controls. With phasic stimulation, aCIE rats also showed greater dopamine release compared with AIR-exposed rats. Inhibition of dopamine transmission targeted in the NAc shell reversed the aCIE-associated facilitation of mechanical allodynia in both sexes. These data suggest that aCIE exposure exacerbates pain sensitivity during withdrawal in an accumbal dopamine-dependent manner.
Collapse
Affiliation(s)
- Abigail M Kelley
- Department of Psychology, Developmental Exposure to Alcohol Research Center, Binghamton University-SUNY, Binghamton, NY, United States
| | | | | | | |
Collapse
|
5
|
Lorente JD, Cuitavi J, Rullo L, Candeletti S, Romualdi P, Hipólito L. Sex-dependent effect of inflammatory pain on negative affective states is prevented by kappa opioid receptors blockade in the nucleus accumbens shell. Neuropharmacology 2024; 242:109764. [PMID: 37879455 DOI: 10.1016/j.neuropharm.2023.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Pain comorbidities include several psychological disorders, such as anxiety and anhedonia. However, the way pain affects male and female individuals and by which mechanism is not well understood. Previous research shows that pain induces alterations in the dynorphinergic pathway within the mesocorticolimbic system (MCLS), together with a relationship between corticotropin-releasing system and dynorphin release in the MCLS. Here, we analyse the sex and time course-dependent effects of pain on negative affect. Additionally, we study the implication of dynorphinergic and corticotropin releasing factor in these pain related behaviours. We used behavioural pharmacology and biochemical tools to characterise negative affective states induced by inflammatory pain in male and female rats, and the alterations in the dynorphinergic and the corticotropin systems within the MCLS. Female rats showed persistent anxiety-like and reversible anhedonia-like behaviours derived from inflammatory pain. Additionally, we found alterations in dynorphin and corticotropin releasing factor in NAc and amygdala, which suggests sex-dependent dynamic adaptations. Finally blockade on the kappa opioid receptor in the NAc confirmed its role in pain-induced anxiety-like behaviour in female rats. Our results show sex and time-dependent anxiety- and anhedonia-like behaviours induced by the presence of pain in female rats. Furthermore, we replicated previous data, pointing to the KOR/DYN recruitment in the NAc as a key neurological substrate mediating pain-induced behavioural alterations. This research studies the mechanisms underlying these behaviours, to better understand the emotional dimension of pain.
Collapse
Affiliation(s)
- J D Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - J Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - L Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - S Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - P Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - L Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain.
| |
Collapse
|
6
|
Abstract
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
7
|
Cuitavi J, Andrés-Herrera P, Meseguer D, Campos-Jurado Y, Lorente JD, Caruana H, Hipólito L. Focal mu-opioid receptor activation promotes neuroinflammation and microglial activation in the mesocorticolimbic system: Alterations induced by inflammatory pain. Glia 2023; 71:1906-1920. [PMID: 37017183 DOI: 10.1002/glia.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Microglia participates in the modulation of pain signaling. The activation of microglia is suggested to play an important role in affective disorders that are related to a dysfunction of the mesocorticolimbic system (MCLS) and are commonly associated with chronic pain. Moreover, there is evidence that mu-opioid receptors (MORs), expressed in the MCLS, are involved in neuroinflammatory events, although the way by which they do it remains to be elucidated. In this study, we propose that MOR pharmacological activation within the MCLS activates and triggers the local release of proinflammatory cytokines and this pattern of activation is impacted by the presence of systemic inflammatory pain. To test this hypothesis, we used in vivo microdialysis coupled with flow cytometry to measure cytokines release in the nucleus accumbens and immunofluorescence of IBA1 in areas of the MCLS on a rat model of inflammatory pain. Interestingly, the treatment with DAMGO, a MOR agonist locally in the nucleus accumbens, triggered the release of the IL1α, IL1β, and IL6 proinflammatory cytokines. Furthermore, MOR pharmacological activation in the ventral tegmental area (VTA) modified the levels of IBA1-positive cells in the VTA, prefrontal cortex, the nucleus accumbens and the amygdala in a dose-dependent way, without impacting mechanical nociception. Additionally, MOR blockade in the VTA prevents DAMGO-induced effects. Finally, we observed that systemic inflammatory pain altered the IBA1 immunostaining derived from MOR activation in the MSCLS. Altogether, our results indicate that the microglia-MOR relationship could be pivotal to unravel some inflammatory pain-induced comorbidities related to MCLS dysfunction.
Collapse
Affiliation(s)
- Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, 46100, Spain
| | - Paula Andrés-Herrera
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, 46100, Spain
| | - David Meseguer
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Jesús D Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Hannah Caruana
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, 46100, Spain
| |
Collapse
|
8
|
Campos-Jurado Y, Morón JA. Inflammatory pain affects alcohol intake in a dose-dependent manner in male rats in the intermittent access model. Pain Rep 2023; 8:e1082. [PMID: 37388406 PMCID: PMC10306431 DOI: 10.1097/pr9.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction Epidemiological studies have shown that there is a relation between pain and alcohol use disorder (AUD). Persistent pain is directly correlated with an increment in alcohol consumption and an increased risk of developing an AUD. Greater levels of pain intensity and unpleasantness are associated with higher levels of relapse, an increase in alcohol consumption, rates of hazardous drinking, and delay to seek for treatment. However, this interaction has not been deeply studied in the preclinical setting. Methods Here, we aim to evaluate how inflammatory pain affects levels of alcohol drinking in male and female rats with a history of alcohol. For that, we used an intermittent access 2-bottle choice paradigm combined with the complete Freund Adjuvant (CFA) model of inflammatory pain. Results Our results show that CFA-induced inflammatory pain does not alter total intake of 20% alcohol in male or female rats. Interestingly, in males, the presence of CFA-induced inflammatory pain blunts the decrease of alcohol intake when higher concentrations of alcohol are available, whereas it does not have an effect on intake at any concentration in female rats. Conclusion Altogether, this study provides relevant data and constitutes an important contribution to the study of pain and AUD and it highlights the necessity to design better behavioral paradigms in animal models that are more translational and reflect current epidemiological findings.
Collapse
Affiliation(s)
- Yolanda Campos-Jurado
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Departments of Neuroscience and
- Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Cuitavi J, Torres-Pérez JV, Lorente JD, Campos-Jurado Y, Andrés-Herrera P, Polache A, Agustín-Pavón C, Hipólito L. Crosstalk between Mu-Opioid receptors and neuroinflammation: Consequences for drug addiction and pain. Neurosci Biobehav Rev 2023; 145:105011. [PMID: 36565942 DOI: 10.1016/j.neubiorev.2022.105011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/29/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Mu-Opioid Receptors (MORs) are well-known for participating in analgesia, sedation, drug addiction, and other physiological functions. Although MORs have been related to neuroinflammation their biological mechanism remains unclear. It is suggested that MORs work alongside Toll-Like Receptors to enhance the release of pro-inflammatory mediators and cytokines during pathological conditions. Some cytokines, including TNF-α, IL-1β and IL-6, have been postulated to regulate MORs levels by both avoiding MOR recycling and enhancing its production. In addition, Neurokinin-1 Receptor, also affected during neuroinflammation, could be regulating MOR trafficking. Therefore, inflammation in the central nervous system seems to be associated with altered/increased MORs expression, which might regulate harmful processes, such as drug addiction and pain. Here, we provide a critical evaluation on MORs' role during neuroinflammation and its implication for these conditions. Understanding MORs' functioning, their regulation and implications on drug addiction and pain may help elucidate their potential therapeutic use against these pathological conditions and associated disorders.
Collapse
Affiliation(s)
- Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain.
| | - Jose Vicente Torres-Pérez
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Jesús David Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Paula Andrés-Herrera
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Ana Polache
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Carmen Agustín-Pavón
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n., 46100 Burjassot, Spain.
| |
Collapse
|
10
|
Cuitavi J, Lorente JD, Campos-Jurado Y, Polache A, Hipólito L. Neuroimmune and Mu-Opioid Receptor Alterations in the Mesocorticolimbic System in a Sex-Dependent Inflammatory Pain-Induced Alcohol Relapse-Like Rat Model. Front Immunol 2021; 12:689453. [PMID: 34616393 PMCID: PMC8488159 DOI: 10.3389/fimmu.2021.689453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Evidence concerning the role of alcohol-induced neuroinflammation in alcohol intake and relapse has increased in the last few years. It is also proven that mu-opioid receptors (MORs) mediate the reinforcing properties of alcohol and, interestingly, previous research suggests that neuroinflammation and MORs could be related. Our objective is to study neuroinflammatory states and microglial activation, together with adaptations on MOR expression in the mesocorticolimbic system (MCLS) during the abstinence and relapse phases. To do so, we have used a sex-dependent rat model of complete Freund's adjuvant (CFA)-induced alcohol deprivation effect (ADE). Firstly, our results confirm that only CFA-treated female rats, the only experimental group that showed relapse-like behavior, exhibited specific alterations in the expression of phosphorylated NFκB, iNOS, and COX2 in the PFC and VTA. More interestingly, the analysis of the IBA1 expression revealed a decrease of the microglial activation in PFC during abstinence and an increase of its expression in the relapse phase, together with an augmentation of this activation in the NAc in both phases that only occur in female CFA-treated rats. Additionally, the expression of IL1β also evidenced these dynamic changes through these two phases following similar expression patterns in both areas. Furthermore, the expression of the cytokine IL10 showed a different profile than that of IL1β, indicating anti-inflammatory processes occurring only during abstinence in the PFC of CFA-female rats but neither during the reintroduction phase in PFC nor in the NAc. These data indicate a downregulation of microglial activation and pro-inflammatory processes during abstinence in the PFC, whereas an upregulation can be observed in the NAc during abstinence that is maintained during the reintroduction phase only in CFA-female rats. Secondly, our data reveal a correlation between the alterations observed in IL1β, IBA1 levels, and MOR levels in the PFC and NAc of CFA-treated female rats. Although premature, our data suggest that neuroinflammatory processes, together with neural adaptations involving MOR, might play an important role in alcohol relapse in female rats, so further investigations are warranted.
Collapse
Affiliation(s)
| | | | | | | | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Spain
| |
Collapse
|