1
|
do Nascimento AM, Marques RB, Roldão AP, Rodrigues AM, Eslava RM, Dale CS, Reis EM, Schechtman D. Exploring protein-protein interactions for the development of new analgesics. Sci Signal 2024; 17:eadn4694. [PMID: 39378285 DOI: 10.1126/scisignal.adn4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The development of new analgesics has been challenging. Candidate drugs often have limited clinical utility due to side effects that arise because many drug targets are involved in signaling pathways other than pain transduction. Here, we explored the potential of targeting protein-protein interactions (PPIs) that mediate pain signaling as an approach to developing drugs to treat chronic pain. We reviewed the approaches used to identify small molecules and peptide modulators of PPIs and their ability to decrease pain-like behaviors in rodent animal models. We analyzed data from rodent and human sensory nerve tissues to build associated signaling networks and assessed both validated and potential interactions and the structures of the interacting domains that could inform the design of synthetic peptides and small molecules. This resource identifies PPIs that could be explored for the development of new analgesics, particularly between scaffolding proteins and receptors for various growth factors and neurotransmitters, as well as ion channels and other enzymes. Targeting the adaptor function of CBL by blocking interactions between its proline-rich carboxyl-terminal domain and its SH3-domain-containing protein partners, such as GRB2, could disrupt endosomal signaling induced by pain-associated growth factors. This approach would leave intact its E3-ligase functions, which are mediated by other domains and are critical for other cellular functions. This potential of PPI modulators to be more selective may mitigate side effects and improve the clinical management of pain.
Collapse
Affiliation(s)
- Alexandre Martins do Nascimento
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Rauni Borges Marques
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Interunit Graduate Program in Bioinformatics, University of São Paulo, SP 05508-000, Brazil
| | - Allan Pradelli Roldão
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Rodrigo Mendes Eslava
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Camila Squarzoni Dale
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Eduardo Moraes Reis
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
2
|
Yu J, Wang S, Chen SJ, Zheng MJ, Yuan CR, Lai WD, Wen JJ, You WT, Liu PQ, Khanna R, Jin Y. Sinomenine ameliorates fibroblast-like synoviocytes dysfunction by promoting phosphorylation and nuclear translocation of CRMP2. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117704. [PMID: 38176664 DOI: 10.1016/j.jep.2024.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and arthritic pain. Sinomenine (SIN), derived from the rhizome of Chinese medical herb Qing Teng (scientific name: Sinomenium acutum (Thunb.) Rehd. Et Wils), has a longstanding use in Chinese traditional medicine for treating rheumatoid arthritis. It has been shown to possess anti-inflammatory, analgesic, and immunosuppressive effects with minimal side-effects clinically. However, the mechanisms governing its effects in treatment of joint pathology, especially on fibroblast-like synoviocytes (FLSs) dysfunction, and arthritic pain remains unclear. AIM This study aimed to investigate the effect and underlying mechanism of SIN on arthritic joint inflammation and joint FLSs dysfunctions. MATERIALS AND METHODS Collagen-induced arthritis (CIA) was induced in rats and the therapeutic effects of SIN on joint pathology were evaluated histopathologically. Next, we conducted a series of experiments using LPS-induced FLSs, which were divided into five groups (Naïve, LPS, SIN 10, 20, 50 μg/ml). The expression of inflammatory factors was measured by qPCR and ELISA. The invasive ability of cells was detected by modified Transwell assay and qPCR. Transwell migration and cell scratch assays were used to assess the migration ability of cells. The distribution and content of relevant proteins were observed by immunofluorescence and laser confocal microscopy, as well as Western Blot and qPCR. FLSs were transfected with plasmids (CRMP2 T514A/D) to directly modulate the post-translational modification of CRMP2 protein and downstream effects on FLSs function was monitored. RESULTS SIN alleviated joint inflammation in rats with CIA, as evidenced by improvement of synovial hyperplasia, inflammatory cell infiltration and cartilage damage, as well as inhibition of pro-inflammatory cytokines release from FLSs induced by LPS. In vitro studies revealed a concentration-dependent suppression of SIN on the invasion and migration of FLSs induced by LPS. In addition, SIN downregulated the expression of cellular CRMP2 that was induced by LPS in FLSs, but increased its phosphorylation at residue T514. Moreover, regulation of pCRMP2 T514 by plasmids transfection (CRMP2 T514A/D) significantly influenced the migration and invasion of FLSs. Finally, SIN promoted nuclear translocation of pCRMP2 T514 in FLSs. CONCLUSIONS SIN may exert its anti-inflammatory and analgesic effects by modulating CRMP2 T514 phosphorylation and its nuclear translocation of FLSs, inhibiting pro-inflammatory cytokine release, and suppressing abnormal invasion and migration. Phosphorylation of CRMP2 at the T514 site in FLSs may present a new therapeutic target for treating inflammatory joint's destruction and arthritic pain in RA.
Collapse
Affiliation(s)
- Jie Yu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Song Wang
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Si-Jia Chen
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Meng-Jia Zheng
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Cun-Rui Yuan
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Wei-Dong Lai
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Jun-Jun Wen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Wen-Ting You
- Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, 317500, China
| | - Pu-Qing Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China
| | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University, College of Dentistry, and NYU Pain Research Center, New York, 10010, USA.
| | - Yan Jin
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Smith PR, Campbell ZT. RNA-binding proteins in pain. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1843. [PMID: 38576117 PMCID: PMC11003723 DOI: 10.1002/wrna.1843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
RNAs are meticulously controlled by proteins. Through direct and indirect associations, every facet in the brief life of an mRNA is subject to regulation. RNA-binding proteins (RBPs) permeate biology. Here, we focus on their roles in pain. Chronic pain is among the largest challenges facing medicine and requires new strategies. Mounting pharmacologic and genetic evidence obtained in pre-clinical models suggests fundamental roles for a broad array of RBPs. We describe their diverse roles that span RNA modification, splicing, stability, translation, and decay. Finally, we highlight opportunities to expand our understanding of regulatory interactions that contribute to pain signaling. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patrick R. Smith
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
| | - Zachary T. Campbell
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53792
| |
Collapse
|
4
|
Gomez K, Duran P, Tonello R, Allen HN, Boinon L, Calderon-Rivera A, Loya-López S, Nelson TS, Ran D, Moutal A, Bunnett NW, Khanna R. Neuropilin-1 is essential for vascular endothelial growth factor A-mediated increase of sensory neuron activity and development of pain-like behaviors. Pain 2023; 164:2696-2710. [PMID: 37366599 PMCID: PMC10751385 DOI: 10.1097/j.pain.0000000000002970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/26/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that binds numerous ligands including vascular endothelial growth factor A (VEGFA). Binding of this ligand to NRP-1 and the co-receptor, the tyrosine kinase receptor VEGFR2, elicits nociceptor sensitization resulting in pain through the enhancement of the activity of voltage-gated sodium and calcium channels. We previously reported that blocking the interaction between VEGFA and NRP-1 with the Spike protein of SARS-CoV-2 attenuates VEGFA-induced dorsal root ganglion (DRG) neuronal excitability and alleviates neuropathic pain, pointing to the VEGFA/NRP-1 signaling as a novel therapeutic target of pain. Here, we investigated whether peripheral sensory neurons and spinal cord hyperexcitability and pain behaviors were affected by the loss of NRP-1. Nrp-1 is expressed in both peptidergic and nonpeptidergic sensory neurons. A CRIPSR/Cas9 strategy targeting the second exon of nrp-1 gene was used to knockdown NRP-1. Neuropilin-1 editing in DRG neurons reduced VEGFA-mediated increases in CaV2.2 currents and sodium currents through NaV1.7. Neuropilin-1 editing had no impact on voltage-gated potassium channels. Following in vivo editing of NRP-1, lumbar dorsal horn slices showed a decrease in the frequency of VEGFA-mediated increases in spontaneous excitatory postsynaptic currents. Finally, intrathecal injection of a lentivirus packaged with an NRP-1 guide RNA and Cas9 enzyme prevented spinal nerve injury-induced mechanical allodynia and thermal hyperalgesia in both male and female rats. Collectively, our findings highlight a key role of NRP-1 in modulating pain pathways in the sensory nervous system.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Raquel Tonello
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Heather N. Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, AZ, United States of America
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Santiago Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Tyler S. Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona; Tucson, AZ, United States of America
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University; Saint Louis, MO, United States of America
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, NY, United States of America
- NYU Pain Research Center, 433 First Avenue; New York, NY, United States of America
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016 USA
| |
Collapse
|
5
|
Zhang BW, Dong H, Wu Z, Jiang X, Zou W. An Overview of the Mechanisms Involved in Neuralgia. J Inflamm Res 2023; 16:4087-4101. [PMID: 37745793 PMCID: PMC10516189 DOI: 10.2147/jir.s425966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/26/2023] [Indexed: 09/26/2023] Open
Abstract
Neuralgia is a frequently occurring condition that causes chronic pain and burdens both patients and their families. Earlier research indicated that anti-inflammatory treatment, which was primarily utilized to address conditions like neuralgia, resulted in positive outcomes. However, recent years have witnessed the emergence of various novel mechanisms associated with pain-related disorders. This review provides a concise overview of the inflammatory mechanisms involved in neuralgia. It also examines recent advancements in research, exploring the influence of ion channels and synaptic proteins on neuralgia and its complications. Additionally, the interactions between these mechanisms are discussed with the aim of suggesting innovative therapeutic approaches and research directions for the management of neuralgia.
Collapse
Affiliation(s)
- Bai-Wen Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Hao Dong
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Zhe Wu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Xi Jiang
- Jinzhou Medical University, Jinzhou, 121001, People’s Republic of China
| | - Wei Zou
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| |
Collapse
|
6
|
Bohic M, Upadhyay A, Eisdorfer JT, Keating J, Simon RC, Briones BA, Azadegan C, Nacht HD, Oputa O, Martinez AM, Bethell BN, Gradwell MA, Romanienko P, Ramer MS, Stuber GD, Abraira VE. A new Hoxb8FlpO mouse line for intersectional approaches to dissect developmentally defined adult sensorimotor circuits. Front Mol Neurosci 2023; 16:1176823. [PMID: 37603775 PMCID: PMC10437123 DOI: 10.3389/fnmol.2023.1176823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/04/2023] [Indexed: 08/23/2023] Open
Abstract
Improvements in the speed and cost of expression profiling of neuronal tissues offer an unprecedented opportunity to define ever finer subgroups of neurons for functional studies. In the spinal cord, single cell RNA sequencing studies support decades of work on spinal cord lineage studies, offering a unique opportunity to probe adult function based on developmental lineage. While Cre/Flp recombinase intersectional strategies remain a powerful tool to manipulate spinal neurons, the field lacks genetic tools and strategies to restrict manipulations to the adult mouse spinal cord at the speed at which new tools develop. This study establishes a new workflow for intersectional mouse-viral strategies to dissect adult spinal function based on developmental lineages in a modular fashion. To restrict manipulations to the spinal cord, we generate a brain-sparing Hoxb8FlpO mouse line restricting Flp recombinase expression to caudal tissue. Recapitulating endogenous Hoxb8 gene expression, Flp-dependent reporter expression is present in the caudal embryo starting day 9.5. This expression restricts Flp activity in the adult to the caudal brainstem and below. Hoxb8FlpO heterozygous and homozygous mice do not develop any of the sensory or locomotor phenotypes evident in Hoxb8 heterozygous or mutant animals, suggesting normal developmental function of the Hoxb8 gene and protein in Hoxb8FlpO mice. Compared to the variability of brain recombination in available caudal Cre and Flp lines, Hoxb8FlpO activity is not present in the brain above the caudal brainstem, independent of mouse genetic background. Lastly, we combine the Hoxb8FlpO mouse line with dorsal horn developmental lineage Cre mouse lines to express GFP in developmentally determined dorsal horn populations. Using GFP-dependent Cre recombinase viruses and Cre recombinase-dependent inhibitory chemogenetics, we target developmentally defined lineages in the adult. We show how developmental knock-out versus transient adult silencing of the same ROR𝛃 lineage neurons affects adult sensorimotor behavior. In summary, this new mouse line and viral approach provides a blueprint to dissect adult somatosensory circuit function using Cre/Flp genetic tools to target spinal cord interneurons based on genetic lineage.
Collapse
Affiliation(s)
- Manon Bohic
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Aman Upadhyay
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- Neuroscience PhD Program at Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Jaclyn T. Eisdorfer
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Jessica Keating
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- School of Medicine, Oregon Health and Science University, Portland, OR, United States
- M.D./PhD Program in Neuroscience, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Rhiana C. Simon
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Brandy A. Briones
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Chloe Azadegan
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Hannah D. Nacht
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Olisemeka Oputa
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Alana M. Martinez
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Bridget N. Bethell
- International Collaboration on Repair Discoveries and Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Mark A. Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Peter Romanienko
- Genome Editing Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Matt S. Ramer
- International Collaboration on Repair Discoveries and Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Victoria E. Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
7
|
Wang C, Chen R, Zhu X, Zhang X. Suberoylanilide Hydroxamic Acid Ameliorates Pain Sensitization in Central Neuropathic Pain After Spinal Cord Injury via the HDAC5/NEDD4/SCN9A Axis. Neurochem Res 2023:10.1007/s11064-023-03913-z. [DOI: 10.1007/s11064-023-03913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
|
8
|
Jiang YP, Wang S, Lai WD, Wu XQ, Jin Y, Xu ZH, Moutal A, Khanna R, Park KD, Shan ZM, Wen CP, Yu J. Neuronal CRMP2 phosphorylation inhibition by the flavonoid, naringenin, contributes to the reversal of spinal sensitization and arthritic pain improvement. Arthritis Res Ther 2022; 24:277. [PMID: 36564853 PMCID: PMC9783725 DOI: 10.1186/s13075-022-02975-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis patients usually suffer from arthritic chronic pain. However, due to an incomplete understanding of the mechanisms underlying autoimmune disorders, the management of arthritic pain is unsatisfactory. Here, we investigated the analgesic effect and underlying mechanism of the natural flavonoid naringenin (NAR) in collagen-induced arthritis (CIA) pain. METHODS NAR was injected (i.p.) once per day for 42 days after initial immunization, and rats were sacrificed on the 28th (the 21st day after final immunization, PID 21) and 42nd days (PID 35). The inflammatory factors, central sensitization indicators, and CRMP2 phosphorylation, as well as the anti-rheumatoid activity and analgesic effect of NAR, were further investigated. RESULTS We found that NAR decreased the arthritis score and paw swelling, as well as the mechanical and thermal pain. The immunofluorescence results also showed a dose dependent effect of NAR on reducing the expressions of spinal cFos, IBA-1, and GFAP on the 28th (PID 21) and 42nd day (PID 35). NAR decreased the phosphorylation of CRMP2 S522 and the expression of the kinase CDK5 in the spinal dorsal horn, but pCRMP2 Y479 was unchanged. In addition, CRMP2 was co-localized with NEUN, but not IBA-1 or GFAP, indicating the involvement of neural CRMP2 phosphorylation in CIA-related pain. Finally, CRMP2 S522 phosphorylation selective inhibitor (S)-lacosamide also alleviated arthritic pain. CONCLUSIONS Taken together, our results demonstrate that NAR alleviates inflammation and chronic pain in CIA model, which might be related to its inhibition of neuronal CRMP2 S522 phosphorylation, potentially mitigating the central sensitization. Our study provide evidence for the potential use of NAR as non-opioid-dependent analgesia in arthritic pain.
Collapse
Affiliation(s)
- Yue-Peng Jiang
- grid.268505.c0000 0000 8744 8924College of Basic Medical Science, College of Pharmaceutical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058 China
| | - Song Wang
- grid.268505.c0000 0000 8744 8924College of Basic Medical Science, College of Pharmaceutical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058 China
| | - Wei-Dong Lai
- grid.268505.c0000 0000 8744 8924College of Basic Medical Science, College of Pharmaceutical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058 China
| | - Xue-Qing Wu
- grid.268505.c0000 0000 8744 8924College of Basic Medical Science, College of Pharmaceutical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058 China
| | - Yan Jin
- grid.268505.c0000 0000 8744 8924College of Basic Medical Science, College of Pharmaceutical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058 China
| | - Zheng-Hao Xu
- grid.268505.c0000 0000 8744 8924College of Basic Medical Science, College of Pharmaceutical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058 China
| | - Aubin Moutal
- grid.262962.b0000 0004 1936 9342Department of Pharmacology and Physiology, Saint Louis University - School of Medicine, Saint Louis, MO 63104 USA
| | - Rajesh Khanna
- grid.137628.90000 0004 1936 8753Department of Molecular Pathobiology, College of Dentistry, and NYU Pain Research Center, New York University, New York, 10010 USA
| | - Ki Duk Park
- grid.35541.360000000121053345Korea Institute of Science and Technology, Seoul, South Korea
| | - Zhi-Ming Shan
- grid.440218.b0000 0004 1759 7210Department of Anesthesiology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College, Jinan University), Shenzhen, 518020 China
| | - Cheng-Ping Wen
- grid.268505.c0000 0000 8744 8924College of Basic Medical Science, College of Pharmaceutical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058 China
| | - Jie Yu
- grid.268505.c0000 0000 8744 8924College of Basic Medical Science, College of Pharmaceutical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058 China
| |
Collapse
|