1
|
Zimmermann D, Kress M, Zeidler M. Biophysical essentials - A full stack open-source software framework for conserved and advanced analysis of patch-clamp recordings. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108328. [PMID: 39038390 DOI: 10.1016/j.cmpb.2024.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND AND OBJECTIVES Patch-Clamp recordings allow for in depth electrophysiological characterization of single cells, their general biophysical properties as well as characteristics of voltage- and ligand-gated ionic currents. Different acquisition modes, such as whole-cell patch-clamp recordings in the current or voltage clamp configuration, capacitance measurements or single channel recordings from cultured cells as well as acute brain slices are routinely performed for these purposes. Nevertheless, multipurpose transparent and adaptable software tools to perform reproducible state-of-the-art analysis of multiple experiment types and to manage larger sets of experimental data are currently unavailable. METHODS Biophysical Essentials (BPE) was developed as an open-source full stack python software for transparent and reproducible analysis of electrophysiological recordings. For validation, BPE results were compared with manually analyzed single-cell patch-clamp data acquired from a human in vitro nociceptor-model and mouse dorsal root ganglia neurons. RESULTS While initially designed to improve time consuming and repetitive analysis steps, BPE was further optimized as a technical software solution for entire workflow processing including data acquisition, data preprocessing, normalization and visualization and of single recordings up to stacked calculations and statistics of multiple experiments. BPE can operate with different file formats from different amplifier systems and producers. An in-process database logs all analysis steps reproducible review and serves as a central storage point for recordings. Statistical testing as well as advanced analysis functions like Boltzmann-fitting and dimensional reduction methods further support the researchers' needs in projects involving electrophysiology techniques. CONCLUSIONS BPE extends beyond available patch-clamp specific, open source - and commercial analysis tools in particular because of reproducible and sharable analysis workflows. BPE enables full analysis from raw data acquisition to publication ready result visualizations - all within one single program. Thereby, BPE significantly enhances transparency in the analytical process of patch-clamp data analysis. BPEs function scope is completely accessible through an easy-to-use graphical user interface eliminating the need for programing language proficiency as required by many community patch-clamp analysis frameworks and algorithms.
Collapse
Affiliation(s)
- David Zimmermann
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maximilian Zeidler
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria; Omiqa Bioinformatics GmbH, Berlin, Germany
| |
Collapse
|
2
|
Qiao LY. Satellite Glial Cells Bridge Sensory Neuron Crosstalk in Visceral Pain and Cross-Organ Sensitization. J Pharmacol Exp Ther 2024; 390:213-221. [PMID: 38777604 PMCID: PMC11264254 DOI: 10.1124/jpet.123.002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Following colonic inflammation, the uninjured bladder afferent neurons are also activated. The mechanisms and pathways underlying this sensory neuron cross-activation (from injured neurons to uninjured neurons) are not fully understood. Colonic and bladder afferent neurons reside in the same spinal segments and are separated by satellite glial cells (SGCs) and extracellular matrix in dorsal root ganglia (DRG). SGCs communicate with sensory neurons in a bidirectional fashion. This review summarizes the differentially regulated genes/proteins in the injured and uninjured DRG neurons and explores the role of SGCs in regulation of sensory neuron crosstalk in visceral cross-organ sensitization. The review also highlights the paracrine pathways in mediating neuron-SGC and SGC-neuron coupling with an emphasis on the neurotrophins and purinergic systems. Finally, I discuss the results from recent RNAseq profiling of SGCs to reveal useful molecular markers for characterization, functional study, and therapeutic targets of SGCs. SIGNIFICANCE STATEMENT: Satellite glial cells (SGCs) are the largest glial subtypes in sensory ganglia and play a critical role in mediating sensory neuron crosstalk, an underlying mechanism in colon-bladder cross-sensitization. Identification of novel and unique molecular markers of SGCs can advance the discovery of therapeutic targets in treatment of chronic pain including visceral pain comorbidity.
Collapse
Affiliation(s)
- Liya Y Qiao
- Department of Physiology and Biophysics, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
3
|
Renigunta V, Xhaferri N, Shaikh IG, Schlegel J, Bisen R, Sanvido I, Kalpachidou T, Kummer K, Oliver D, Leitner MG, Lindner M. A versatile functional interaction between electrically silent K V subunits and K V7 potassium channels. Cell Mol Life Sci 2024; 81:301. [PMID: 39003683 PMCID: PMC11335225 DOI: 10.1007/s00018-024-05312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Voltage-gated K+ (KV) channels govern K+ ion flux across cell membranes in response to changes in membrane potential. They are formed by the assembly of four subunits, typically from the same family. Electrically silent KV channels (KVS), however, are unable to conduct currents on their own. It has been assumed that these KVS must obligatorily assemble with subunits from the KV2 family into heterotetrameric channels, thereby giving rise to currents distinct from those of homomeric KV2 channels. Herein, we show that KVS subunits indeed also modulate the activity, biophysical properties and surface expression of recombinant KV7 isoforms in a subunit-specific manner. Employing co-immunoprecipitation, and proximity labelling, we unveil the spatial coexistence of KVS and KV7 within a single protein complex. Electrophysiological experiments further indicate functional interaction and probably heterotetramer formation. Finally, single-cell transcriptomic analyses identify native cell types in which this KVS and KV7 interaction may occur. Our findings demonstrate that KV cross-family interaction is much more versatile than previously thought-possibly serving nature to shape potassium conductance to the needs of individual cell types.
Collapse
Affiliation(s)
- Vijay Renigunta
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Nermina Xhaferri
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Imran Gousebasha Shaikh
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Jonathan Schlegel
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Rajeshwari Bisen
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Ilaria Sanvido
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Michael G Leitner
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Moritz Lindner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany.
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Ophthalmology, Philipps University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
4
|
Saloman JL, Li Y, Stello K, Li W, Li S, Phillips AE, Hall K, Fogel EL, Vege SS, Li L, Andersen DK, Fisher WE, Forsmark CE, Hart PA, Pandol SJ, Park WG, Topazian MD, Van Den Eeden SK, Serrano J, Conwell DL, Yadav D. Serum Biomarkers of Nociceptive and Neuropathic Pain in Chronic Pancreatitis. THE JOURNAL OF PAIN 2023; 24:2199-2210. [PMID: 37451493 PMCID: PMC10787046 DOI: 10.1016/j.jpain.2023.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Debilitating abdominal pain is a common symptom affecting most patients with chronic pancreatitis (CP). There are multiple underlying mechanisms that contribute to CP-related pain, which makes successful treatment difficult. The identification of biomarkers for subtypes of pain could provide viable targets for nonopioid interventions and the development of mechanistic approaches to pain management in CP. Nineteen inflammation- and nociception-associated proteins were measured in serum collected from 358 subjects with definite CP enrolled in PROspective Evaluation of Chronic Pancreatitis for EpidEmiologic and Translational StuDies, a prospective observational study of pancreatitis in US adult subjects. First, serum levels of putative biomarkers were compared between CP subjects with and without pain. Only platelet-derived growth factor B (PDGF-B) stood out, with levels significantly higher in the CP pain group as compared to subjects with no pain. Subjects with pain were then stratified into 4 pain subtypes (Neuropathic, Nociceptive, Mixed, and Unclassified). A comparison of putative biomarker concentration among 5 groups (no pain and 4 pain subtypes) identified unique proteins that were correlated with pain subtypes. Serum transforming growth factor beta 1 (TGFβ1) level was significantly higher in the Nociceptive pain group compared to the No pain group, suggesting that TGFβ1 may be a biomarker for nociceptive pain. The Neuropathic pain only group was too small to detect statistical differences. However, glycoprotein 130 (GP130), a coreceptor for interleukin 6, was significantly higher in the Mixed pain group compared to the groups lacking a neuropathic pain component. These data suggest that GP130 may be a biomarker for neuropathic pain in CP. PERSPECTIVE: Serum TGFβ1 and GP130 may be biomarkers for nociceptive and neuropathic CP pain, respectively. Preclinical data suggest inhibiting TGFβ1 or GP130 reduces CP pain in rodent models, indicating that additional translational and clinical studies may be warranted to develop a precision medicine approach to the management of pain in CP.
Collapse
Affiliation(s)
- Jami L. Saloman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
- Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, PA, USA
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| | - Yan Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kimberly Stello
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| | - Wenhao Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Shuang Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Anna Evans Phillips
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| | - Kristen Hall
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| | - Evan L. Fogel
- Digestive and Liver Disorders, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | | | - Liang Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - William E. Fisher
- Division of General Surgery, Baylor College of Medicine, Houston, TX
| | - Christopher E. Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition. University of Florida, Gainesville, FL
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Walter G. Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Mark D. Topazian
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Darwin L. Conwell
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|
5
|
Dumbraveanu C, Strommer K, Wonnemann M, Choconta JL, Neumann A, Kress M, Kalpachidou T, Kummer KK. Pharmacokinetics of Orally Applied Cannabinoids and Medical Marijuana Extracts in Mouse Nervous Tissue and Plasma: Relevance for Pain Treatment. Pharmaceutics 2023; 15:853. [PMID: 36986714 PMCID: PMC10057980 DOI: 10.3390/pharmaceutics15030853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cannabis sativa plants contain a multitude of bioactive substances, which show broad variability between different plant strains. Of the more than a hundred naturally occurring phytocannabinoids, Δ9-Tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) have been the most extensively studied, but whether and how the lesser investigated compounds in plant extracts affect bioavailability or biological effects of Δ9-THC or CBD is not known. We therefore performed a first pilot study to assess THC concentrations in plasma, spinal cord and brain after oral administration of THC compared to medical marijuana extracts rich in THC or depleted of THC. Δ9-THC levels were higher in mice receiving the THC-rich extract. Surprisingly, only orally applied CBD but not THC alleviated mechanical hypersensitivity in the mouse spared nerve injury model, favoring CBD as an analgesic compound for which fewer unwanted psychoactive effects are to be expected.
Collapse
Affiliation(s)
- Cristiana Dumbraveanu
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Bionorica Research GmbH, 6020 Innsbruck, Austria
| | | | | | - Jeiny Luna Choconta
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Theodora Kalpachidou
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Khan S, Patra PH, Somerfield H, Benya-Aphikul H, Upadhya M, Zhang X. IQGAP1 promotes chronic pain by regulating the trafficking and sensitization of TRPA1 channels. Brain 2022:6881565. [PMID: 36477832 DOI: 10.1093/brain/awac462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
TRPA1 channels have been implicated in mechanical and cold hypersensitivity in chronic pain. But how TRPA1 mediates this process is unclear. Here we show that IQ-motif containing GTPase activating protein 1 (IQGAP1) is responsible using a combination of biochemical, molecular, Ca2+ imaging and behavioural approaches. TRPA1 and IQGAP1 bind to each other and are highly colocalised in sensory DRG neurons in mice. The expression of IQGAP1 but not TRPA1 is increased in chronic inflammatory and neuropathic pain. However, TRPA1 undergoes increased trafficking to the membrane of DRG neurons catalysed by the small GTPase Cdc42 associated with IQGAP1, leading to functional sensitization of the channel. Activation of PKA is also sufficient to evoke TRPA1 trafficking and sensitization. All these responses are, however, completely prevented in the absence of IQGAP1. Concordantly, deletion of IQGAP1 markedly reduces mechanical and cold hypersensitivity in chronic inflammatory and neuropathic pain in mice. IQGAP1 thus promotes chronic pain by coupling the trafficking and signalling machineries to TRPA1 channels.
Collapse
Affiliation(s)
- Shakil Khan
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Pabitra H Patra
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Hannah Somerfield
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Manoj Upadhya
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Xuming Zhang
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
7
|
Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 2022; 163:S79-S98. [DOI: 10.1097/j.pain.0000000000002737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
|
8
|
Zhang C, Hu MW, Wang XW, Cui X, Liu J, Huang Q, Cao X, Zhou FQ, Qian J, He SQ, Guan Y. scRNA-sequencing reveals subtype-specific transcriptomic perturbations in DRG neurons of PirtEGFPf mice in neuropathic pain condition. eLife 2022; 11:76063. [PMID: 36264609 PMCID: PMC9584610 DOI: 10.7554/elife.76063] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/03/2022] [Indexed: 01/22/2023] Open
Abstract
Functionally distinct subtypes/clusters of dorsal root ganglion (DRG) neurons may play different roles in nerve regeneration and pain. However, details about their transcriptomic changes under neuropathic pain conditions remain unclear. Chronic constriction injury (CCI) of the sciatic nerve represents a well-established model of neuropathic pain, and we conducted single-cell RNA-sequencing (scRNA-seq) to characterize subtype-specific perturbations of transcriptomes in lumbar DRG neurons on day 7 post-CCI. By using PirtEGFPf mice that selectively express an enhanced green fluorescent protein in DRG neurons, we established a highly efficient purification process to enrich neurons for scRNA-seq. We observed the emergence of four prominent CCI-induced clusters and a loss of marker genes in injured neurons. Importantly, a portion of injured neurons from several clusters were spared from injury-induced identity loss, suggesting subtype-specific transcriptomic changes in injured neurons. Moreover, uninjured neurons, which are necessary for mediating the evoked pain, also demonstrated cell-type-specific transcriptomic perturbations in these clusters, but not in others. Notably, male and female mice showed differential transcriptomic changes in multiple neuronal clusters after CCI, suggesting transcriptomic sexual dimorphism in DRG neurons after nerve injury. Using Fgf3 as a proof-of-principle, RNAscope study provided further evidence of increased Fgf3 in injured neurons after CCI, supporting scRNA-seq analysis, and calcium imaging study unraveled a functional role of Fgf3 in neuronal excitability. These findings may contribute to the identification of new target genes and the development of DRG neuron cell-type-specific therapies for optimizing neuropathic pain treatment and nerve regeneration.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ming-Wen Hu
- Department of Ophthalmology, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, The Johns Hopkins University School of MedicineBaltimoreUnited States,The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jiang Qian
- Department of Ophthalmology, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of MedicineBaltimoreUnited States,Department of Neurological Surgery, The Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|