1
|
Devigili G, Di Stefano G, Donadio V, Frattale I, Grazzi L, Mantovani E, Nolano M, Provitera V, Quitadamo SG, Tamburin S, Truini A, Valeriani M, Furia A, Vecchio E, Fischetti F, Greco G, Telesca A, de Tommaso M. Therapeutic approach to fibromyalgia: a consensus statement on pharmacological and non-pharmacological treatment from the neuropathic pain special interest group of the Italian neurological society. Neurol Sci 2025; 46:2263-2288. [PMID: 39982626 PMCID: PMC12003471 DOI: 10.1007/s10072-025-08048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Although fibromyalgia is a disabling disease, there is no targeted therapy for specific neurotransmitters or inflammatory mediators. Our aim was to provide neurologists with practical guidance for the management of these difficult patients based on a critical, narrative and non-systematic review of randomized controlled trials (RCTs) from the last 10 years. METHODS The members of the Special Interest Group Neuropathic Pain of the Italian Neurological Society evaluated the randomized controlled trials (RCTs) of the last 10 years and answered questions that allow a consensus on the main pharmacological and non-pharmacological approaches. RESULTS The neuropathic pain working group agreed on prescribing antiepileptic drugs or antidepressants in the case of comorbidities with anxiety and depression. As a second choice, experts have agreed on the association of antiepileptics and antidepressants, while they disagree with the use of opioids. Medical cannabis and nutraceuticals are promising new treatment options, although more data is needed to prove their efficacy. The neurologists agreed in suggesting physical activity at the first visit, particularly aerobic and strength training. As a second choice, they considered a cognitive behavioral therapy approach to be useful. CONCLUSIONS Pharmacologic treatment with antiepileptic drugs and antidepressants in patients with co-occurring anxiety and depression, as well as an early nonpharmacologic approach based primarily on physical activity, may be a useful indication in contemporary neurology clinical practice. Non-pharmacological options, such as cognitive behavioral therapy and non-invasive brain stimulation NIBS, could improve evidence of efficacy and lead to relevant improvement in FM-related disability.
Collapse
Affiliation(s)
- G Devigili
- Fondazione IRCCS Carlo Besta, Milan, Italy
| | - G Di Stefano
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - V Donadio
- Clinica Neurologica Bellaria Hospital, Bologna, Italy
| | - I Frattale
- Child Neurology and Psychiatric Unit, Tor Vergata University, Rome, Italy
| | - L Grazzi
- Fondazione IRCCS Carlo Besta, Milan, Italy
| | - E Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - M Nolano
- Skin Biopsy Laboratory, Department of Neurology, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80100, Naples, Italy
| | - V Provitera
- Skin Biopsy Laboratory, Department of Neurology, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy
| | - S G Quitadamo
- DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - S Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - A Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - M Valeriani
- Child Neurology and Psychiatric Unit, Tor Vergata University, Rome, Italy
| | - A Furia
- Fondazione IRCCS Carlo Besta, Milan, Italy
| | - E Vecchio
- DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - F Fischetti
- DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - G Greco
- DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - A Telesca
- Fondazione IRCCS Carlo Besta, Milan, Italy
| | - M de Tommaso
- DiBrain Department, Bari Aldo Moro University, Bari, Italy.
| |
Collapse
|
2
|
Flood A, Cavaleri R, Chang WJ, Kutch J, Toufexis C, Summers SJ. Noninvasive brain stimulation beyond the motor cortex: a systematic review and meta-analysis exploring effects on quantitative sensory testing in clinical pain. PAIN MEDICINE (MALDEN, MASS.) 2025; 26:98-111. [PMID: 39404833 PMCID: PMC11789781 DOI: 10.1093/pm/pnae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/29/2024] [Accepted: 10/03/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND Noninvasive brain stimulation (NIBS) has been investigated increasingly as a means of treating pain. The effectiveness of NIBS in the treatment of pain has traditionally focused on protocols targeting the primary motor cortex (M1). However, over time, the effectiveness of M1 NIBS has been attributed to effects on interconnected cortical and subcortical sites rather than on M1 itself. Although previous reviews have demonstrated the effectiveness of non-M1 NIBS in improving subjective reports of pain intensity, the neurophysiological mechanisms underlying these effects remain incompletely understood. As chronic pain is associated with pain hypersensitivity and impaired endogenous descending pain modulation, it is plausible that non-M1 NIBS promotes analgesic effects by influencing these processes. OBJECTIVE The aim of this systematic review and meta-analysis was therefore to evaluate the effect of NIBS over non-M1 sites on quantitative sensory testing measures in clinical pain populations. METHODS A systematic search of electronic databases was conducted from inception to January 2024. Included articles (13 trials, n = 565 participants) were appraised with the Physiotherapy Evidence Database (PEDro) scale and Grading of Recommendations, Assessment, Development, and Evaluation (GRADE), and a random-effects model was used to meta-analyze outcomes where possible. RESULTS A small number of studies found that NIBS applied to the dorsolateral prefrontal cortex might improve pain modulation in patients with fibromyalgia and that stimulation of the posterior superior insula and prefrontal cortex could improve pain sensitivity in chronic neuropathic and osteoarthritic pain, respectively. However, findings varied among studies, and there remains a paucity of primary research. CONCLUSION This review indicates that current literature does not provide clear evidence that NIBS over non-M1 sites influences pain processing. STUDY REGISTRATION PROSPERO (CRD42020201076).
Collapse
Affiliation(s)
- Andrew Flood
- Research Institute of Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Rocco Cavaleri
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, Western Sydney University, School of Health Sciences, Sydney, New South Wales 2560, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - We-Ju Chang
- College of Health Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales 2308, Australia
- Neuroscience Research Australia (NeuRA), Centre for Pain IMPACT, Sydney, New South Wales 2031, Australia
| | - Jason Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90007, United States
| | - Constantino Toufexis
- Research Institute of Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Simon J Summers
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, Western Sydney University, School of Health Sciences, Sydney, New South Wales 2560, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
3
|
Carneiro AM, Pacheco-Barrios K, Andrade MF, Martinez-Magallanes D, Pichardo E, Caumo W, Fregni F. Psychological Factors Modulate Quantitative Sensory Testing Measures in Fibromyalgia Patients: A Systematic Review and Meta-Regression Analysis. Psychosom Med 2024; 86:781-789. [PMID: 39225326 DOI: 10.1097/psy.0000000000001343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Considering the growing evidence that psychological variables might contribute to fibromyalgia syndrome (FMS), our study aims to understand the impact of psychological factors in quantitative sensory testing (QST) in FMS patients by performing a systematic review with meta-analysis. METHODS A systematic search was carried out in PubMed/MEDLINE, EMBASE, Web of Science, and PsycINFO databases for records up until January 2024. We included 20 studies ( n = 1623, 16 randomized controlled trials, and 4 nonrandomized controlled trials) with low or moderate risk of bias included. RESULTS From nonrandomized evidence, our meta-analysis found a baseline relationship between anxiety, depression, and pain catastrophizing and QST measures in FMS patients. Higher pain catastrophizing levels were associated with less efficient conditioned pain modulation. Higher anxiety and depression were associated with lower pain threshold (PT). Randomized evidence showed a statistically significant increase in PT after fibromyalgia treatments (effect size = 0.29, 95% confidence interval = 0.03-0.56). The effect was not influenced by treatment type. Moreover, we found that only anxiety levels before treatment negatively influenced the PT improvements after treatment. CONCLUSION FMS patients with higher anxiety levels at baseline showed a smaller increase in PT after the intervention. Depression factor was not significant in either changes in anxiety or depression. Baseline anxiety levels should be monitored as possible confounders of QST measurements. Understanding how psychological factors and QST are related in FMS patients is critical for improving the syndrome's management and treatment.Protocol Registration: CRD42023429397.
Collapse
Affiliation(s)
- Adriana Munhoz Carneiro
- From the Mood Disorders Unity-ProGruda and Service of Interdisciplinary Neuromodulation; Department and Institute of Psychiatry, Faculty of Medicine (Carneiro), University of São Paulo, São Paulo, Brazil; Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital (Pacheco-Barrios, Andrade, Martinez-Magallanes, Pichardo, Fregni), Harvard Medical School, Boston, Massachusetts; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud (Pacheco-Barrios), Lima, Peru; Post-Graduate Program in Medical Sciences, School of Medicine (Caumo), Universidade Federal do Rio Grande do Sul; and Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (Caumo), Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
4
|
Zolezzi DM, Kold S, Brock C, Jensen ABH, Jensen ST, Larsen IM, Olesen SS, Mørch CD, Drewes AM, Graven-Nielsen T. Transcranial Direct Current Stimulation Reduces Pressure Pain Sensitivity in Patients With Noncancer Chronic Pain. Clin J Pain 2024; 40:625-634. [PMID: 39310962 DOI: 10.1097/ajp.0000000000001246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/09/2024] [Indexed: 11/10/2024]
Abstract
OBJECTIVES Noncancer chronic pain is a clinical challenge because pharmacological treatment often fails to relieve pain. Transcranial direct current stimulation (tDCS) is a treatment that could have the potential for pain relief and improvement in quality of life. However, there is a lack of clinical trials evaluating the effects of tDCS on the pain system. The aim of the present study was to evaluate the effect of 5 days of anodal tDCS treatment on the pain system in patients with chronic noncancer pain using quantitative sensory testing and quality of life questionnaires: (1) Brief Pain Inventory-short form, (2) European Organization for Research and Treatment of Life Questionnaire-C30, and (3) Hospital Anxiety Depression Scale. METHODS Eleven patients with noncancer chronic pain (51 ± 13.6 y old, 5M) participated in the study. Anodal tDCS was applied for 5 consecutive days, followed by sham stimulation after a washout period of at least 2 weeks. Pressure pain thresholds and pain tolerance thresholds (PTT) were assessed in different body regions on days 1 and 5. RESULTS Anodal tDCS appeared to maintain PTT at C5 (clavicle) on day 5, but sham stimulation decreased PTT ( P = 0.007). In addition, anodal tDCS increased PTT compared with sham at day 5 at Th10 ventral dermatomes ( P = 0.014). Both anodal and sham tDCS decreased the Brief Pain Inventory-short form total and interference scores, and the European Organization for Research and Treatment of Life Questionnaire-C30 fatigue score, but no interaction effect was observed. CONCLUSION This study adds to the evidence in the literature that tDCS may be a potential therapeutic tool for the management of noncancer chronic pain.
Collapse
Affiliation(s)
- Daniela M Zolezzi
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| | - Sebastian Kold
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Anne Birthe Helweg Jensen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Sarah Thorius Jensen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Søren Schou Olesen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| |
Collapse
|
5
|
Wu Q, Li X, Zhang Y, Chen S, Jin R, Peng W. Analgesia of noninvasive electrical stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. J Psychosom Res 2024; 185:111868. [PMID: 39142194 DOI: 10.1016/j.jpsychores.2024.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE The dorsolateral prefrontal cortex (DLPFC) is implicated in pain modulation, suggesting its potential as a therapeutic target for pain relief. However, studies on transcranial electrical stimulation (tES) over the DLPFC yielded diverse results, likely due to differences in stimulation protocols or pain assessment methods. This study aims to evaluate the analgesic effects of DLPFC-tES using a meta-analytical approach. METHODS A meta-analysis of 29 studies involving 785 participants was conducted. The effects of genuine and sham DLPFC-tES on pain perception were examined in healthy individuals and patients with clinical pain. Subgroup analyses explored the impact of stimulation parameters and pain modalities. RESULTS DLPFC-tES did not significantly affect pain outcomes in healthy populations but showed promise in reducing pain-intensity ratings in patients with clinical pain (Hedges' g = -0.78, 95% CI = [-1.33, -0.24], p = 0.005). Electrode placement significantly influenced the analgesic effect, with better results observed when the anode was at F3 and the cathode at F4. CONCLUSIONS DLPFC-tES holds potential as a cost-effective pain management option, particularly for clinical populations. Optimizing electrode placement, especially with an symmetrical configuration, may enhance therapeutic efficacy. These findings underscore the promise of DLPFC-tES for alleviating perceived pain intensity in clinical settings, emphasizing the importance of electrode placement optimization.
Collapse
Affiliation(s)
- Qiqi Wu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yinhua Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Shengxiong Chen
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Richu Jin
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China.
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Ramasawmy P, Gamboa Arana OL, Mai TT, Heim LC, Schumann SE, Fechner E, Jiang Y, Moschner O, Chakalov I, Bähr M, Petzke F, Antal A. No add-on therapeutic benefit of at-home anodal tDCS of the primary motor cortex to mindfulness meditation in patients with fibromyalgia. Clin Neurophysiol 2024; 164:168-179. [PMID: 38901112 DOI: 10.1016/j.clinph.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE This study investigated the efficacy of combining at-home anodal transcranial direct current stimulation (tDCS) of the left primary motor cortex (M1) with mindfulness meditation (MM) in fibromyalgia patients trained in mindfulness. METHODS Thirty-seven patients were allocated to receive ten daily sessions of MM paired with either anodal or sham tDCS over the primary motor cortex. Primary outcomes were pain intensity and quality of life. Secondary outcomes were psychological impairment, sleep quality, mood, affective pain, mindfulness level, and transcranial magnetic stimulation (TMS) measures of cortical excitability. Outcomes were analyzed pre- and post-treatment, with a one-month follow-up. RESULTS We found post-tDCS improvement in all clinical outcomes, including mindfulness level, except for positive affect and stress, in both groups without significant difference between active and sham conditions. No significant group*time interaction was found for all clinical and TMS outcomes. CONCLUSIONS Our findings demonstrate no synergistic or add-on efffect of anodal tDCS of the left M1 compared to the proper effect of MM in patients with fibromyalgia. SIGNIFICANCE Our findings challenge the potential of combining anodal tDCS of the left M1 and MM in fibromyalgia.
Collapse
Affiliation(s)
- Perianen Ramasawmy
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.
| | | | - Thuy Tien Mai
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Luise Charlotte Heim
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Samuel Enrico Schumann
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Elisabeth Fechner
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Yong Jiang
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Oscar Moschner
- Institute of Computer and Communication Technology, Technische Hochschule Köln, Köln, Germany
| | - Ivan Chakalov
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany; Department of Anesthesiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Frank Petzke
- Department of Anesthesiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
7
|
Lyra de Brito Aranha RE, Nascimento JDSD, Sampaio DDA, Torro-Alves N. Combining Transcranial Direct Current Stimulation With Non-Invasive Interventions for Chronic Primary Pain: A Systematic Review and Meta-Analysis. Neurorehabil Neural Repair 2024; 38:616-632. [PMID: 39075920 DOI: 10.1177/15459683241265906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
BACKGROUND A growing number of studies has combined transcranial direct current stimulation (tDCS) with other non-invasive non-pharmacological therapies (NINPT) to enhance effects in pain reduction. However, the efficacy of these combined approaches in treating chronic primary pain (CPP) warrants thorough investigation. OBJECTIVE This study aims to evaluate the efficacy of tDCS in conjunction with other NINPT in alleviating pain severity among CPP patients. METHODS We conducted a systematic search for randomized controlled trials (RCTs) comparing the efficacy of tDCS combined with NINPT against control treatments in adult CPP patients. The search spanned multiple databases, including PubMed, EMBASE, LILACS, Scopus, Web of Science, and CENTRAL. RESULTS Our systematic review included 11 RCTs with a total of 449 participants. In our meta-analysis, which comprised 228 participants receiving active-tDCS and 221 receiving sham-tDCS, we found a significant reduction in pain intensity (Standard Mean Difference = -0.73; 95% Confidence Interval (CI) = -1.18 to -0.27; P = .002) with the use of active-tDCS combined with NINPT. CONCLUSION These findings substantiate the therapeutic potential of combining tDCS with other NINPT, highlighting it as an effective treatment modality for reducing pain intensity in CPP patients.
Collapse
Affiliation(s)
| | | | | | - Nelson Torro-Alves
- Cognitive Neuroscience and Behavior Program, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
8
|
Zheng EZ, Wong NML, Yang ASY, Lee TMC. Evaluating the effects of tDCS on depressive and anxiety symptoms from a transdiagnostic perspective: a systematic review and meta-analysis of randomized controlled trials. Transl Psychiatry 2024; 14:295. [PMID: 39025832 PMCID: PMC11258305 DOI: 10.1038/s41398-024-03003-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Depressive and anxiety symptoms are prevalent among patients with various clinical conditions, resulting in diminished emotional well-being and impaired daily functioning. The neural mechanisms underlying these symptoms, particularly across different disorders, remain unclear, limiting the effectiveness of conventional treatments. Therefore, it is crucial to elucidate the neural underpinnings of depressive and anxiety symptoms and investigate novel, effective treatments across clinical conditions. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that can help understand the neural underpinnings of symptoms and facilitate the development of interventions, addressing the two research gaps at both neural and clinical levels. Thus, this systematic review and meta-analysis aims to evaluate the existing evidence regarding the therapeutic efficacy of tDCS in reducing depressive and anxiety symptoms among individuals with diverse clinical diagnoses. This review evaluated evidence from fifty-six randomized, sham-controlled trials that administered repeated tDCS sessions with a parallel design, applying a three-level meta-analytic model. tDCS targeting the left dorsolateral prefrontal cortex (DLPFC) at 2-mA intensity demonstrates moderate efficacy in alleviating depressive symptoms, identifying the left DLPFC as a transdiagnostic neural mechanism of depressive symptoms across clinical conditions. In comparison, the findings on anxiety symptoms demonstrate greater heterogeneity. tDCS over the left DLPFC is effective in reducing depressive symptoms and shows promising effects in alleviating anxiety symptoms among individuals with diverse diagnoses. These findings enhance our understanding of the neuropsychological basis of depressive and anxiety symptoms, laying the groundwork for the development of more effective tDCS interventions applicable across clinical conditions.
Collapse
Affiliation(s)
- Esther Zhiwei Zheng
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Nichol M L Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Psychology, The Education University of Hong Kong, Ting Kok, Hong Kong.
| | - Angela S Y Yang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
9
|
Hooyman A, Haikalis NK, Wang P, Schambra HM, Lohse KR, Schaefer SY. Evidence and sources of placebo effects in transcranial direct current stimulation during a single session of visuospatial working memory practice. Sci Rep 2024; 14:9094. [PMID: 38643299 PMCID: PMC11032394 DOI: 10.1038/s41598-024-59927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) can be used to non-invasively augment cognitive training. However, the benefits of tDCS may be due in part to placebo effects, which have not been well-characterized. The purpose of this study was to determine whether tDCS can have a measurable placebo effect on cognitive training and to identify potential sources of this effect. Eighty-three right-handed adults were randomly assigned to one of three groups: control (no exposure to tDCS), sham tDCS, or active tDCS. The sham and active tDCS groups were double-blinded. Each group performed 20 min of an adapted Corsi Block Tapping Task (CBTT), a visuospatial working memory task. Anodal or sham tDCS was applied during CBTT training in a right parietal-left supraorbital montage. After training, active and sham tDCS groups were surveyed on expectations about tDCS efficacy. Linear mixed effects models showed that the tDCS groups (active and sham combined) improved more on the CBTT with training than the control group, suggesting a placebo effect of tDCS. Participants' tDCS expectations were significantly related to the placebo effect, as was the belief of receiving active stimulation. This placebo effect shows that the benefits of tDCS on cognitive training can occur even in absence of active stimulation. Future tDCS studies should consider how treatment expectations may be a source of the placebo effect in tDCS research, and identify ways to potentially leverage them to maximize treatment benefit.
Collapse
Affiliation(s)
- Andrew Hooyman
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287, USA
| | - Nicole K Haikalis
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287, USA
| | - Peiyuan Wang
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287, USA
| | - Heidi M Schambra
- Department of Neurology and Department of Physical Medicine and Rehabilitation, Grossman School of Medicine, New York University, New York, NY, USA
| | - Keith R Lohse
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Sydney Y Schaefer
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287, USA.
| |
Collapse
|
10
|
Cheng YC, Chen WY, Su MI, Tu YK, Chiu CC, Huang WL. Efficacy of neuromodulation on the treatment of fibromyalgia: A network meta-analysis. Gen Hosp Psychiatry 2024; 87:103-123. [PMID: 38382420 DOI: 10.1016/j.genhosppsych.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE Several types of neuromodulation have been investigated for the treatment of fibromyalgia, but they show varied efficacy on pain, functioning, comorbid depression and comorbid anxiety. Whether some types of neuromodulation or some factors are associated with a better response also awaits clarification. METHODS We conducted a systematic review and network meta-analysis of randomized controlled trials to evaluate the efficacy of neuromodulation in patients with fibromyalgia. We searched PubMed, EMBASE, the Cochrane Central Register of Controlled Trials and PsycINFO before March 2022. We employed a frequentist random-effects network meta-analysis. RESULTS Forty trials involving 1541 participants were included. Compared with sham control interventions, several types of transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), and high-frequency repetitive transcranial magnetic stimulation (rTMS) were associated with significant reduction of pain, depression, anxiety, and improvement in functioning. Many significantly effective treatment options involve stimulation of the primary motor cortex or dorsolateral prefrontal cortex. CONCLUSION We concluded that several types of rTMS, tDCS and tRNS may have the potential to be applied for clinical purposes.
Collapse
Affiliation(s)
- Ying-Chih Cheng
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yin Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taipei, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Min-I Su
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan; Graduate Institute of Business Administration, College of Management, National Dong Hwa University, Hualien, Taiwan
| | - Yu-Kang Tu
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Lieh Huang
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan; Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Cerebellar Research Center, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.
| |
Collapse
|
11
|
Yang CL, Qu Y, Huang JP, Wang TT, Zhang H, Chen Y, Tan YC. Efficacy and safety of transcranial direct current stimulation in the treatment of fibromyalgia: A systematic review and meta-analysis. Neurophysiol Clin 2024; 54:102944. [PMID: 38387108 DOI: 10.1016/j.neucli.2024.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVES To update a systematic review of the efficacy and safety of transcranial direct current stimulation (tDCS) for analgesia, for antidepressant effects, and to reduce the impact of fibromyalgia (FM), looking for optimal areas of stimulation. METHODS We searched five databases to identify randomized controlled trials comparing active and sham tDCS for FM. The primary outcome was pain intensity, and secondary outcome measures included FM Impact Questionnaire (FIQ) and depression score. Meta-analysis was conducted using standardized mean difference (SMD). Subgroup analysis was performed to determine the effects of different regional stimulation, over the primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), opercular-insular cortex (OIC), and occipital nerve (ON) regions. We analyzed the minimal clinically important difference (MCID) by the value of the mean difference (MD) for an 11-point scale for pain, the Beck Depressive Inventory-II (BDI-II), and the Fibromyalgia Impact Questionnaire (FIQ) score. We described the certainty of the evidence (COE) using the tool GRADE profile. RESULTS Twenty studies were included in the analysis. Active tDCS had a positive effect on pain (SMD= -1.04; 95 % CI -1.38 to -0.69), depression (SMD= -0.46; 95 % CI -0.64 to -0.29), FIQ (SMD= -0.73; 95 % CI -1.09 to -0.36), COE is moderate. Only group M1 (SD=-1.57) and DLPFC (SD=-1.44) could achieve MCID for analgesia; For BDI-II, only group DLPFC (SD=-5.36) could achieve an MCID change. Adverse events were mild. CONCLUSION tDCS is a safe intervention that relieves pain intensity, reduces depression, and reduces the impact of FM on life. Achieving an MCID is related to the stimulation site and the target symptom.
Collapse
Affiliation(s)
- Chun-Lan Yang
- Minda Hospital of Hubei Minzu University, Enshi 445000, Hubei, China; Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jia-Peng Huang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ting-Ting Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Han Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yin Chen
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ying-Chao Tan
- Enshi Prefecture Central Hospital, Enshi 445000, Hubei, China.
| |
Collapse
|
12
|
Azarkolah A, Noorbala AA, Ansari S, Hallajian AH, Salehinejad MA. Efficacy of Transcranial Direct Current Stimulation on Pain Level and Disability of Patients with Fibromyalgia: A Systematic Review of Randomized Controlled Trials with Parallel-Group Design. Brain Sci 2023; 14:26. [PMID: 38248241 PMCID: PMC10813480 DOI: 10.3390/brainsci14010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has been increasingly applied in fibromyalgia (FM) to reduce pain and fatigue. While results are promising, observed effects are variable, and there are questions about optimal stimulation parameters such as target region (e.g., motor vs. prefrontal cortices). This systematic review aimed to provide the latest update on published randomized controlled trials with a parallel-group design to examine the specific effects of active tDCS in reducing pain and disability in FM patients. Using the PRISMA approach, a literature search identified 14 randomized controlled trials investigating the effects of tDCS on pain and fatigue in patients with FM. Assessment of biases shows an overall low-to-moderate risk of bias. tDCS was found effective in all included studies conducted in patients with FM, except one study, in which the improving effects of tDCS were due to placebo. We recommended tDCS over the motor and prefrontal cortices as "effective" and "probably effective" respectively, and also safe for reducing pain perception and fatigue in patients with FM, according to evidence-based guidelines. Stimulation polarity was anodal in all studies, and one single-session study also examined cathodal polarity. The stimulation intensity ranged from 1-mA (7.14% of studies) to 1.5-mA (7.14% of studies) and 2-mA (85.7% of studies). In all of the included studies, a significant improvement in at least one outcome variable (pain or fatigue reduction) was observed. Moreover, 92.8% (13 of 14) applied multi-session tDCS protocols in FM treatment and reported significant improvement in their outcome variables. While tDCS is therapeutically effective for FM, titration studies that systematically evaluate different stimulation intensities, durations, and electrode placement are needed.
Collapse
Affiliation(s)
- Anita Azarkolah
- Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
- Psychosomatic Medicine Research Center, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
| | - Ahmad Ali Noorbala
- Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
- Psychosomatic Medicine Research Center, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
| | - Sahar Ansari
- Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
- Psychosomatic Medicine Research Center, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
| | | | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz-Institut für Arbeitsforschung, 44139 Dortmund, Germany
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran P.O. Box 1956836613, Iran
| |
Collapse
|
13
|
Teixeira PEP, Pacheco-Barrios K, Branco LC, de Melo PS, Marduy A, Caumo W, Papatheodorou S, Keysor J, Fregni F. The Analgesic Effect of Transcranial Direct Current Stimulation in Fibromyalgia: A Systematic Review, Meta-Analysis, and Meta-Regression of Potential Influencers of Clinical Effect. Neuromodulation 2023; 26:715-727. [PMID: 36435660 PMCID: PMC10203058 DOI: 10.1016/j.neurom.2022.10.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is tentative evidence to support the analgesic effect of transcranial direct current stimulation (tDCS) in fibromyalgia (FM), with large variability in the effect size (ES) encountered in different clinical trials. Understanding the source of the variability and exploring how it relates to the clinical results could characterize effective neuromodulation protocols and ultimately guide care in FM pain. The primary objective of this study was to determine the effect of tDCS in FM pain as compared with sham tDCS. The secondary objective was to explore the relationship of methodology, population, and intervention factors and the analgesic effect of tDCS in FM. MATERIALS AND METHODS For the primary objective, a systematic review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Randomized clinical trials (RCTs) investigating tDCS as an intervention for FM pain were searched in MEDLINE, Embase, and the Web Of Science. Studies were excluded if they used cross-over designs or if they did not use tDCS as an intervention for pain or did not measure clinical pain. Analysis for the main outcome was performed using a random-effects model. Risk of bias and evidence certainty were assessed for all studies using Cochrane Risk of Bias and Grading of Recommendations Assessment, Development, and Evaluation tools. For the secondary objective, a meta-regression was conducted to explore methodology, population, and intervention factors potentially related to the ES. RESULTS Sixteen RCTs were included. Six studies presented a high risk of bias. Significant reduction in pain scores were found for FM (standardized mean difference = 1.22, 95% CI = 0.80-1.65, p < 0.001). Subgroup analysis considering tDCS as a neural target revealed no differences between common neural sites. Meta-regression revealed that the duration of the tDCS protocol in weeks was the only factor associated with the ES, in which protocols that lasted four weeks or longer reported larger ES than shorter protocols. CONCLUSIONS Results suggest an analgesic effect of tDCS in FM. tDCS protocols that last four weeks or more may be associated with larger ESs. Definite conclusions are inadequate given the large heterogeneity and limited quality of evidence of the included studies.
Collapse
Affiliation(s)
- Paulo E P Teixeira
- MGH Institute of Health Professions, Boston, MA, USA; Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Luis Castelo Branco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Paulo S de Melo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Wolnei Caumo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Department of Surgery, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Julie Keysor
- MGH Institute of Health Professions, Boston, MA, USA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
14
|
Treating fibromyalgia with electrical neuromodulation: A systematic review and meta-analysis. Clin Neurophysiol 2023; 148:17-28. [PMID: 36774784 DOI: 10.1016/j.clinph.2023.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/10/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Several types of electrical neuromodulation (such as transcranial direct current stimulation, tDCS; transcutaneous electrical nerve stimulation) have been applied in the treatment of fibromyalgia. These trials had different outcome measurements, such as subjective pain, pain threshold, depression, anxiety, and functioning. We intended to integrate data from different trials into a meta-analysis to clearly present the clinical value of electrical neuromodulation in fibromyalgia. METHODS A systematic review and meta-analysis of randomized controlled trials comparing the effect of all types of electrical neuromodulation in patients with fibromyalgia was conducted. The main outcome was subjective pain; the secondary outcomes included depression, anxiety, and functioning. RESULTS Twenty-five studies and 1061 fibromyalgia patients were included in the quantitative analysis. Active electrical neuromodulation and active tDCS both showed significant effects on subjective pain, depression, and functioning. For different anode tDCS electrode positions, only F3-F4 revealed a significant effect on depression. Meta-regression tDCS effects on depression were significantly associated with age. CONCLUSIONS Electrical neuromodulation is significantly effective in treating pain, depression, and functioning in patients with fibromyalgia. SIGNIFICANCE The results may help clinicians to arrange effective treatment plans for patients with fibromyalgia, especially in those patients who reveal limited response to pharmacotherapy and psychotherapy.
Collapse
|
15
|
Molero-Chamizo A, Nitsche MA, Barroso RTA, Bailén JRA, Palomeque JCG, Rivera-Urbina GN. Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia. Biomedicines 2023; 11:biomedicines11030954. [PMID: 36979932 PMCID: PMC10046115 DOI: 10.3390/biomedicines11030954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Although fibromyalgia is defined by its core muscular nociceptive component, it also includes multiple dysfunctions that involve the musculoskeletal, gastrointestinal, immune, endocrine, as well as the central and peripheral nervous systems, amongst others. The pathogenic involvement of the nervous system and the numerous neurological and neuroinflammatory symptoms of this disease may benefit from neuromodulatory stimulation techniques that have been shown to be effective and safe in diverse nervous system pathologies. In this systematic review, we outline current evidence showing the potential of non-invasive brain stimulation techniques, such as therapeutic strategies in fibromyalgia. In addition, we evaluate the contribution of these tools to the exploration of the neurophysiological characteristics of fibromyalgia. Considering that the pathogenesis of this disease is unknown, these approaches do not aim to causally treat this syndrome, but to significantly reduce a range of key symptoms and thus improve the quality of life of the patients.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Clinical and Experimental Psychology, University of Huelva, Campus El Carmen, 21071 Huelva, Spain
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, 33615 Bielefeld, Germany
| | | | - José R Alameda Bailén
- Department of Clinical and Experimental Psychology, University of Huelva, Campus El Carmen, 21071 Huelva, Spain
| | - Jesús Carlos García Palomeque
- Histology Department, School of Medicine, Cadiz University, 11001 Cádiz, Spain
- Cadiz Bahia Sur District, Andalusian Health Service, 11006 Cádiz, Spain
| | | |
Collapse
|
16
|
Lee YJ, Kim BJ, Lee CS, Cha B, Lee SJ, Choi JW, Lim E, Kang N, Lee D. Application of Transcranial Direct Current Stimulation in Sleep Disturbances. CHRONOBIOLOGY IN MEDICINE 2022; 4:141-151. [DOI: 10.33069/cim.2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2025]
Abstract
Sleep disturbances are common across all age groups, and they encompass a broad range of impairments of daytime functioning and comorbid various clinical conditions. However, current treatment methods for sleep disturbances have several limitations. As the ‘top-down’ pathway is known to play an important role in sleep-wake regulation, and as neuronal activity abnormalities have been reported as a potential pathological mechanism of sleep disturbances, the use of non-invasive brain stimulation—such as transcranial direct current stimulation (tDCS) in treating sleep disturbances—has emerged. In the present review, we first explain the mechanism of tDCS, and we also introduce recent studies that have applied tDCS to sleep disorders, along with other sleep-related tDCS studies. In conclusion, many studies have achieved improvements in sleep state, although some of these studies have reported inconsistent effects of tDCS according to the protocol and the conditions used. Further studies are needed to explore the optimal protocols to use when applying tDCS in each sleep disturbance and to enhance the evidence on the clinical efficacy of tDCS.
Collapse
|
17
|
Wen YR, Shi J, Hu ZY, Lin YY, Lin YT, Jiang X, Wang R, Wang XQ, Wang YL. Is transcranial direct current stimulation beneficial for treating pain, depression, and anxiety symptoms in patients with chronic pain? A systematic review and meta-analysis. Front Mol Neurosci 2022; 15:1056966. [PMID: 36533133 PMCID: PMC9752114 DOI: 10.3389/fnmol.2022.1056966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 08/30/2023] Open
Abstract
Background Chronic pain is often accompanied by emotional dysfunction. Transcranial direct current stimulation (tDCS) has been used for reducing pain, depressive and anxiety symptoms in chronic pain patients, but its therapeutic effect remains unknown. Objectives To ascertain the treatment effect of tDCS on pain, depression, and anxiety symptoms of patients suffering from chronic pain, and potential factors that modulate the effectiveness of tDCS. Methods Literature search was performed on PubMed, Embase, Web of Science, and Cochrane Library from inception to July 2022. Randomized controlled trials that reported the effects of tDCS on pain and depression and anxiety symptoms in patients with chronic pain were included. Results Twenty-two studies were included in this review. Overall pooled results indicated that the use of tDCS can effectively alleviate short-term pain intensity [standard mean difference (SMD): -0.43, 95% confidence interval (CI): -0.75 to -0.12, P = 0.007] and depressive symptoms (SMD: -0.31, 95% CI, -0.47 to -0.14, P < 0.001), middle-term depressive symptoms (SMD: -0.35, 95% CI: -0.58 to -0.11, P = 0.004), long-term depressive symptoms (ES: -0.38, 95% CI: -0.64 to -0.13, P = 0.003) and anxiety symptoms (SMD: -0.26, 95% CI: -0.51 to -0.02, P = 0.03) compared with the control group. Conclusion tDCS may be an effective short-term treatment for the improvement of pain intensity and concomitant depression and anxiety symptoms in chronic pain patients. Stimulation site, stimulation frequency, and type of chronic pain were significant influence factors for the therapeutic effect of tDCS. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=297693, identifier: CRD42022297693.
Collapse
Affiliation(s)
- Yu-Rong Wen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Shi
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zheng-Yu Hu
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang-Yang Lin
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - You-Tian Lin
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Rui Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Yu-Ling Wang
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Ramasawmy P, Khalid S, Petzke F, Antal A. Pain reduction in fibromyalgia syndrome through pairing transcranial direct current stimulation and mindfulness meditation: A randomized, double-blinded, sham-controlled pilot clinical trial. Front Med (Lausanne) 2022; 9:908133. [PMID: 36314032 PMCID: PMC9596988 DOI: 10.3389/fmed.2022.908133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background This double-blinded, randomized and sham-controlled pilot clinical trial aimed to investigate the preliminary clinical efficacy and feasibility of combining mindfulness meditation (MM) and transcranial direct current stimulation (tDCS) for pain and associated symptoms in patients with fibromyalgia syndrome (FMS). Methods Included FMS patients (age: 33 to 70) were randomized to three different groups to receive either ten daily sessions of anodal tDCS over the left primary motor cortex paired with MM for 20 min (active + MM, n = 10), sham tDCS combined with MM (sham + MM, n = 10) or no intervention (NoT, n = 10). Patients in the bimodal therapy groups received a week of training in MM prior to the stimulation. Participants reported pain intensity, the primary outcome, by filling in a pain diary daily throughout the whole study. They were also evaluated for quality of life, pressure pain sensitivity, psychological wellbeing, sleep quality and sleep quantity. Assessments were performed at three time points (baseline, immediately after treatment and one-month follow-up). Results Participants in the active + MM group did not exhibit reduced pain intensity following the bimodal therapy compared to controls. Patients in active group demonstrated clinically meaningful and significantly higher quality of life following the therapeutic intervention than other groups. There was no significant difference among groups regarding pressure pain sensitivity, sleep parameters and psychological scales. The combined treatment was well tolerated among participants, with no serious adverse effects. Conclusion This study was the first to pair these two effective non-pharmacological therapies for pain management in FMS. In the light of an underpowered sample size, repetitive anodal tDCS combined with MM did not improve pain or FMS-associated symptoms. However, patients in the active + MM group reported higher quality of life than the control groups. Studies with more participants and longer follow-ups are required to confirm our findings. Clinical trial registration [www.drks.de], identifier [DRKS00023490].
Collapse
Affiliation(s)
- Perianen Ramasawmy
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Sarah Khalid
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Frank Petzke
- Department of Anesthesiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
19
|
Using High-Definition Transcranial Alternating Current Stimulation to Treat Patients with Fibromyalgia: A Randomized Double-Blinded Controlled Study. Life (Basel) 2022; 12:life12091364. [PMID: 36143400 PMCID: PMC9506250 DOI: 10.3390/life12091364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
Objectives: This study aimed to investigate the safety and efficacy of high-definition transcranial alternating current stimulation (HD-tACS) to the left primary motor cortex (M1) in the treatment of fibromyalgia (FM) patients. Methods: In this randomized, double-blind, sham-controlled clinical trial, patients with FM were recruited in a teaching hospital. Thirty-eight patients were randomized to active HD-tACS (n = 19) or sham stimulation (n = 19). Active stimulation included a daily session of 20-min stimulation of 1 mA HD-tACS over the left M1 for ten sessions in two weeks. The primary outcome was the change in pain intensity and quality of life, assessed using the numeric rating scale (NRS) and the fibromyalgia impact questionnaire (FIQ) at baseline and after two weeks of treatment. Secondary outcomes included other core symptoms of FM (psychological distress, sleep quality, hyperalgesia measured by pressure pain threshold) and changes in biomarkers’ total Tau and Aβ1-42. All analyses were based on intention-to-treat for a significance level of p < 0.05. Results: Of the 38 randomized patients, 35 completed the study. After two weeks, HD-tACS induced a significant reduction in FIQ score post-treatment. However, there were no significant differences in NRS and FIQ scores compared to sham stimulation. Most adverse events were mild in severity. Nevertheless, one patient receiving HD-tACS attempted suicide during the trial. Conclusions: These results suggest that HD-tACS may effectively reduce pain, psychological distress, and symptom impacts in FM patients. However, we found no significant differences between the two groups. Future studies investigating HD-tACS in FM are warranted.
Collapse
|
20
|
Labree B, Hoare DJ, Gascoyne LE, Scutt P, Del Giovane C, Sereda M. Determining the Effects of Transcranial Direct Current Stimulation on Tinnitus, Depression, and Anxiety: A Systematic Review. Brain Sci 2022; 12:brainsci12040484. [PMID: 35448015 PMCID: PMC9029345 DOI: 10.3390/brainsci12040484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Tinnitus is the awareness of a sound in the absence of an external source. It affects around 10–15% of people, a significant proportion of whom also experience symptoms such as depression or anxiety that negatively affect their quality of life. Transcranial direct current stimulation (tDCS) is a technique involving constant low-intensity direct current delivered via scalp electrodes. It is a potential treatment option for tinnitus, as well as tinnitus-related conditions such as depression and anxiety. This systematic review estimates the effects of tDCS on outcomes relevant to tinnitus. In addition, it sheds light on the relationship between stimulation parameters and the effect of tDCS on these outcomes; (2) Methods: Exhaustive searches of electronic databases were conducted. Randomised controlled trials were included if they reported at least one of the following outcomes: tinnitus symptom severity, anxiety, or depression. Where available, data on quality of life, adverse effects, and neurophysiological changes were also reviewed. GRADE was used to assess the certainty in the estimate; (3) Results: Meta-analyses revealed a statistically significant reduction in tinnitus (moderate certainty) and depression (low certainty)-but not anxiety-following active tDCS compared to sham control. Network meta-analyses revealed potential optimal stimulation parameters; (4) Conclusions: The evidence synthesised in this review suggests tDCS has the potential to reduce symptom severity in tinnitus and depression. It further narrows down the number of potentially optimal stimulation parameters.
Collapse
Affiliation(s)
- Bas Labree
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham NG1 5DU, UK; (D.J.H.); (P.S.); (M.S.)
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence:
| | - Derek J. Hoare
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham NG1 5DU, UK; (D.J.H.); (P.S.); (M.S.)
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Lauren E. Gascoyne
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2XQ, UK;
| | - Polly Scutt
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham NG1 5DU, UK; (D.J.H.); (P.S.); (M.S.)
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Cinzia Del Giovane
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy;
- Institute of Primary Health Care (BIHAM), University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Magdalena Sereda
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham NG1 5DU, UK; (D.J.H.); (P.S.); (M.S.)
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
21
|
Garcia-Larrea L, Quesada C. Cortical stimulation for chronic pain: from anecdote to evidence. Eur J Phys Rehabil Med 2022; 58:290-305. [PMID: 35343176 PMCID: PMC9980528 DOI: 10.23736/s1973-9087.22.07411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidural stimulation of the motor cortex (eMCS) was devised in the 1990's, and has now largely supplanted thalamic stimulation for neuropathic pain relief. Its mechanisms of action involve activation of multiple cortico-subcortical areas initiated in the thalamus, with involvement of endogenous opioids and descending inhibition toward the spinal cord. Evidence for clinical efficacy is now supported by at least seven RCTs; benefits may persist up to 10 years, and can be reasonably predicted by preoperative use of non-invasive repetitive magnetic stimulation (rTMS). rTMS first developed as a means of predicting the efficacy of epidural procedures, then as an analgesic method on its own right. Reasonable evidence from at least six well-conducted RCTs favors a significant analgesic effect of high-frequency rTMS of the motor cortex in neuropathic pain (NP), and less consistently in widespread/fibromyalgic pain. Stimulation of the dorsolateral frontal cortex (DLPFC) has not proven efficacious for pain, so far. The posterior operculo-insular cortex is a new and attractive target but evidence remains inconsistent. Transcranial direct current stimulation (tDCS) is applied upon similar targets as rTMS and eMCS; it does not elicit action potentials but modulates the neuronal resting membrane state. tDCS presents practical advantages including low cost, few safety issues, and possibility of home-based protocols; however, the limited quality of most published reports entails a low level of evidence. Patients responsive to tDCS may differ from those improved by rTMS, and in both cases repeated sessions over a long time may be required to achieve clinically significant relief. Both invasive and non-invasive procedures exert their effects through multiple distributed brain networks influencing the sensory, affective and cognitive aspects of chronic pain. Their effects are mainly exerted upon abnormally sensitized pathways, rather than on acute physiological pain. Extending the duration of long-term benefits remains a challenge, for which different strategies are discussed in this review.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France - .,University Hospital Pain Center (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France -
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France.,Department of Physiotherapy, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
22
|
Ito E, Oka K, Koshikawa F. Dorsolateral prefrontal cortex sensing analgesia. Biophys Physicobiol 2022; 19:1-10. [PMID: 35797407 PMCID: PMC9173858 DOI: 10.2142/biophysico.bppb-v19.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022] Open
Abstract
Chronic pain often has an unknown cause, and many patients with chronic pain learn to accept that their pain is incurable and pharmacologic treatments are only temporarily effective. Complementary and integrative health approaches for pain are thus in high demand. One such approach is soft touch, e.g., adhesion of pyramidal thorn patches in a pain region. The effects of patch adhesion on pain relief have been confirmed in patients with various types of pain. A recent study using near-infrared spectroscopy revealed that the dorsolateral prefrontal cortex (DLPFC), especially the left side, is likely to be inactivated in patients experiencing pain relief during patch treatment. Mindfulness meditation is another well-known complementary and integrative approach for achieving pain relief. The relation between pain relief due to mindfulness meditation and changes in brain regions, including the DLPFC, has long been examined. In the present review article, we survey the literature describing the effects of the above-mentioned complementary and integrative treatments on pain relief, and outline the important brain regions, including the DLPFC, that are involved in analgesia. We hope that the present article will provide clues to researchers who hope to advance neurosensory treatments for pain relief without medication.
Collapse
Affiliation(s)
- Etsuro Ito
- Department of Biology, Waseda University
| | - Kotaro Oka
- Department of Bioscience and Informatics, Keio University
| | | |
Collapse
|
23
|
The Role of Expectation and Beliefs on the Effects of Non-Invasive Brain Stimulation. Brain Sci 2021; 11:brainsci11111526. [PMID: 34827526 PMCID: PMC8615662 DOI: 10.3390/brainsci11111526] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) techniques are used in clinical and cognitive neuroscience to induce a mild magnetic or electric field in the brain to modulate behavior and cortical activation. Despite the great body of literature demonstrating promising results, unexpected or even paradoxical outcomes are sometimes observed. This might be due either to technical and methodological issues (e.g., stimulation parameters, stimulated brain area), or to participants’ expectations and beliefs before and during the stimulation sessions. In this narrative review, we present some studies showing that placebo and nocebo effects, associated with positive and negative expectations, respectively, could be present in NIBS trials, both in experimental and in clinical settings. The lack of systematic evaluation of subjective expectations and beliefs before and after stimulation could represent a caveat that overshadows the potential contribution of placebo and nocebo effects in the outcome of NIBS trials.
Collapse
|