1
|
Bandres MF, Gomes JL, McPherson JG. Intraspinal microstimulation of the ventral horn has therapeutically relevant cross-modal effects on nociception. Brain Commun 2024; 6:fcae280. [PMID: 39355006 PMCID: PMC11444082 DOI: 10.1093/braincomms/fcae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2024] [Accepted: 08/15/2024] [Indexed: 10/03/2024] Open
Abstract
Electrical stimulation of spinal networks below a spinal cord injury is a promising approach to restore functions compromised by inadequate and/or inappropriate neural drive. The most translationally successful examples are paradigms intended to increase neural transmission in weakened yet spared descending motor pathways and spinal motoneurons rendered dormant after being severed from their inputs by lesion. Less well understood is whether spinal stimulation is also capable of reducing neural transmission in pathways made pathologically overactive by spinal cord injury. Debilitating spasms, spasticity and neuropathic pain are all common manifestations of hyperexcitable spinal responses to sensory feedback. Whereas spasms and spasticity can often be managed pharmacologically, spinal cord injury-related neuropathic pain is notoriously medically refractory. Interestingly, however, spinal stimulation is a clinically available option for ameliorating neuropathic pain arising from aetiologies other than spinal cord injury, and the limited evidence available to date suggests that it holds considerable promise for reducing spinal cord injury-related neuropathic pain, as well. Spinal stimulation for pain amelioration has traditionally been assumed to modulate sensorimotor networks overlapping with those engaged by spinal stimulation for rehabilitation of movement impairments. Thus, we hypothesize that spinal stimulation intended to increase the ability to move voluntarily may simultaneously reduce transmission in spinal pain pathways. To test this hypothesis, we coupled a rat model of incomplete thoracic spinal cord injury, which results in moderate to severe bilateral movement impairments and spinal cord injury-related neuropathic pain, with in vivo electrophysiological measures of neural transmission in networks of spinal neurons integral to the development and persistence of the neuropathic pain state. We find that when intraspinal microstimulation is delivered to the ventral horn with the intent of enhancing voluntary movement, transmission through nociceptive specific and wide dynamic range neurons is significantly depressed in response to pain-related sensory feedback. By comparison, spinal responsiveness to non-pain-related sensory feedback is largely preserved. These results suggest that spinal stimulation paradigms could be intentionally designed to afford multi-modal therapeutic benefits, directly addressing the diverse, intersectional rehabilitation goals of people living with spinal cord injury.
Collapse
Affiliation(s)
- Maria F Bandres
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jefferson L Gomes
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jacob Graves McPherson
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Program in Neurosciences, Washington University School of Medicine, St. Louis, MO 63108, USA
| |
Collapse
|
2
|
Krotov V, Belan P, Voitenko N. Approach for Electrophysiological Studies of Spinal Lamina X Neurons. Bio Protoc 2024; 14:e5035. [PMID: 39100598 PMCID: PMC11292132 DOI: 10.21769/bioprotoc.5035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 08/06/2024] Open
Abstract
Despite playing diverse physiological roles, the area surrounding the central canal, lamina X, remains one of the least studied spinal cord regions. Technical challenges and limitations of the commonly used experimental approaches are the main difficulties that hamper lamina X research. In the current protocol, we describe a reliable method for functional investigation of lamina X neurons that requires neither time-consuming slicing nor sophisticated in vivo experiments. Our approach relies on ex vivo hemisected spinal cord preparation that preserves the rostrocaudal and mediolateral spinal architecture as well as the dorsal roots, and infrared LED oblique illumination for visually guided patch clamp in thick blocks of tissue. When coupled with electric stimulation of the spared dorsal roots, electrophysiological recordings provide information on primary afferent inputs to lamina X neurons from myelinated and non-myelinated fibers and allow estimating primary afferent-driven presynaptic inhibition. Overall, we describe a simple, time-efficient, inexpensive, and versatile approach for lamina X research. Key features • Quick and easy preparation procedure that grants access to lamina X neurons without spinal cord slicing • Preserved rostrocaudal and mediolateral connectivity and preserved primary afferent supply • Ability to perform electrophysiological recordings in combination with dorsal root stimulations allowing to study afferent inputs and presynaptic inhibition of lamina X neurons.
Collapse
Affiliation(s)
- Volodymyr Krotov
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Pavel Belan
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine
- Dobrobut Academy Medical School, Kyiv, Ukraine
| |
Collapse
|
3
|
Safronov BV, Szucs P. Novel aspects of signal processing in lamina I. Neuropharmacology 2024; 247:109858. [PMID: 38286189 DOI: 10.1016/j.neuropharm.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
The most superficial layer of the spinal dorsal horn, lamina I, is a key element of the nociceptive processing system. It contains different types of projection neurons (PNs) and local-circuit neurons (LCNs) whose functional roles in the signal processing are poorly understood. This article reviews recent progress in elucidating novel anatomical features and physiological properties of lamina I PNs and LCNs revealed by whole-cell recordings in ex vivo spinal cord. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Boris V Safronov
- Neuronal Networks Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Neuroscience Research Group, Debrecen, Hungary
| |
Collapse
|
4
|
Luz LL, Lima S, Fernandes EC, Kokai E, Gomori L, Szucs P, Safronov BV. Contralateral Afferent Input to Lumbar Lamina I Neurons as a Neural Substrate for Mirror-Image Pain. J Neurosci 2023; 43:3245-3258. [PMID: 36948583 PMCID: PMC10162462 DOI: 10.1523/jneurosci.1897-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Mirror-image pain arises from pathologic alterations in the nociceptive processing network that controls functional lateralization of the primary afferent input. Although a number of clinical syndromes related to dysfunction of the lumbar afferent system are associated with the mirror-image pain, its morphophysiological substrate and mechanism of induction remain poorly understood. Therefore, we used ex vivo spinal cord preparation of young rats of both sexes to study organization and processing of the contralateral afferent input to the neurons in the major spinal nociceptive projection area Lamina I. We show that decussating primary afferent branches reach contralateral Lamina I, where 27% of neurons, including projection neurons, receive monosynaptic and/or polysynaptic excitatory drive from the contralateral Aδ-fibers and C-fibers. All these neurons also received ipsilateral input, implying their involvement in the bilateral information processing. Our data further show that the contralateral Aδ-fiber and C-fiber input is under diverse forms of inhibitory control. Attenuation of the afferent-driven presynaptic inhibition and/or disinhibition of the dorsal horn network increased the contralateral excitatory drive to Lamina I neurons and its ability to evoke action potentials. Furthermore, the contralateral Aβδ-fibers presynaptically control ipsilateral C-fiber input to Lamina I neurons. Thus, these results show that some lumbar Lamina I neurons are wired to the contralateral afferent system whose input, under normal conditions, is subject to inhibitory control. A pathologic disinhibition of the decussating pathways can open a gate controlling contralateral information flow to the nociceptive projection neurons and, thus, contribute to induction of hypersensitivity and mirror-image pain.SIGNIFICANCE STATEMENT We show that contralateral Aδ-afferents and C-afferents supply lumbar Lamina I neurons. The contralateral input is under diverse forms of inhibitory control and itself controls the ipsilateral input. Disinhibition of decussating pathways increases nociceptive drive to Lamina I neurons and may cause induction of contralateral hypersensitivity and mirror-image pain.
Collapse
Affiliation(s)
- Liliana L Luz
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Susana Lima
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Elisabete C Fernandes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Eva Kokai
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Lidia Gomori
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- ELKH-DE Neuroscience Research Group, Debrecen H-4032, Hungary
| | - Boris V Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
5
|
Bandres MF, Gomes JL, McPherson JG. Motor-targeted spinal stimulation promotes concurrent rebalancing of pathologic nociceptive transmission in chronic spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536477. [PMID: 37090665 PMCID: PMC10120632 DOI: 10.1101/2023.04.12.536477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Electrical stimulation of spinal networks below a spinal cord injury (SCI) is a promising approach to restore functions compromised by inadequate excitatory neural drive. The most translationally successful examples are paradigms intended to increase neural transmission in weakened yet spared motor pathways and spinal motor networks rendered dormant after being severed from their inputs by lesion. Less well understood is whether spinal stimulation is also capable of reducing neural transmission in pathways made pathologically overactive by SCI. Debilitating spasms, spasticity, and neuropathic pain are all common manifestations of hyperexcitable spinal responses to sensory feedback. But whereas spasms and spasticity can often be managed pharmacologically, SCI-related neuropathic pain is notoriously medically refractory. Interestingly, however, spinal stimulation is a clinically available option for ameliorating neuropathic pain arising from etiologies other than SCI, and it has traditionally been assumed to modulate sensorimotor networks overlapping with those engaged by spinal stimulation for motor rehabilitation. Thus, we reasoned that spinal stimulation intended to increase transmission in motor pathways may simultaneously reduce transmission in spinal pain pathways. Using a well-validated pre-clinical model of SCI that results in severe bilateral motor impairments and SCI-related neuropathic pain, we show that the responsiveness of neurons integral to the development and persistence of the neuropathic pain state can be enduringly reduced by motor-targeted spinal stimulation while preserving spinal responses to non-pain-related sensory feedback. These results suggest that spinal stimulation paradigms could be intentionally designed to afford multi-modal therapeutic benefits, directly addressing the diverse, intersectional rehabilitation goals of people living with SCI.
Collapse
|
6
|
Krotov V, Agashkov K, Romanenko S, Halaidych O, Andrianov Y, Safronov BV, Belan P, Voitenko N. Elucidating afferent-driven presynaptic inhibition of primary afferent input to spinal laminae I and X. Front Cell Neurosci 2023; 16:1029799. [PMID: 36713779 PMCID: PMC9874151 DOI: 10.3389/fncel.2022.1029799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Although spinal processing of sensory information greatly relies on afferent-driven (AD) presynaptic inhibition (PI), our knowledge about how it shapes peripheral input to different types of nociceptive neurons remains insufficient. Here we examined the AD-PI of primary afferent input to spinal neurons in the marginal layer, lamina I, and the layer surrounding the central canal, lamina X; two nociceptive-processing regions with similar patterns of direct supply by Aδ- and C-afferents. Unmyelinated C-fibers were selectively activated by electrical stimuli of negative polarity that induced an anodal block of myelinated Aβ/δ-fibers. Combining this approach with the patch-clamp recording in an ex vivo spinal cord preparation, we found that attenuation of the AD-PI by the anodal block of Aβ/δ-fibers resulted in the appearance of new mono- and polysynaptic C-fiber-mediated excitatory postsynaptic current (EPSC) components. Such homosegmental Aβ/δ-AD-PI affected neurons in the segment of the dorsal root entrance as well as in the adjacent rostral segment. In their turn, C-fibers from the L5 dorsal root induced heterosegmental AD-PI of the inputs from the L4 Aδ- and C-afferents to the neurons in the L4 segment. The heterosegmental C-AD-PI was reciprocal since the L4 C-afferents inhibited the L5 Aδ- and C-fiber inputs, as well as some direct L5 Aβ-fiber inputs. Moreover, the C-AD-PI was found to control the spike discharge in spinal neurons. Given that the homosegmental Aβ/δ-AD-PI and heterosegmental C-AD-PI affected a substantial percentage of lamina I and X neurons, we suggest that these basic mechanisms are important for shaping primary afferent input to the neurons in the spinal nociceptive-processing network.
Collapse
Affiliation(s)
- Volodymyr Krotov
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine,Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine,*Correspondence: Volodymyr Krotov,
| | - Kirill Agashkov
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Sergii Romanenko
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Oleh Halaidych
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Yaroslav Andrianov
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Boris V. Safronov
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pavel Belan
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine,Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine,Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine,Dobrobut Academy Medical School, Kyiv, Ukraine
| |
Collapse
|