1
|
Enders JD, Prodoehl EK, Penn SM, Sriram A, Stucky CL. Episodic pain in Fabry disease is mediated by a heat shock protein-TRPA1 axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639340. [PMID: 40060522 PMCID: PMC11888165 DOI: 10.1101/2025.02.20.639340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Two-thirds of patients with Fabry disease suffer debilitating pain attacks triggered by exercise, fever, and exposure to environmental heat. These patients face an even greater risk of heat-related episodic pain in the face of global climate change. Almost nothing is known about the biological mechanisms underlying heat-induced pain crises in Fabry disease, and there is no preclinical model available to study Fabry crises. Here, we established the first model of heat-induced pain attacks in Fabry disease by exposing transgenic Fabry rats to environmental heat. Heat exposure precipitated robust mechanical hypersensitivity, closely matching temporal features reported by patients with Fabry disease. At the cellular level, heat exposure sensitized Fabry dorsal root ganglia (DRG) neurons to agonists for transient receptor potential cation channel A1 (TRPA1), but not TRPV1. The heat shock response, which normally confers heat-resilience, was impaired in Fabry disease, and we demonstrated that heat shock proteins (HSP70 and HSP90) regulate TRPA1. Strikingly, pharmacologically inhibiting HSP90 completely prevented cellular and behavioral sensitization by environmental heat in Fabry disease. Together, this work establishes the first model of episodic pain in Fabry disease, implicates the heat shock response in heat-evoked pain episodes, and identifies a novel heat shock protein-TRPA1 regulatory axis.
Collapse
Affiliation(s)
- Jonathan D Enders
- Department of Cell Biology, Neurobiology, and Anatomy; Medical College of Wisconsin, Milwaukee, WI
| | - Eve K Prodoehl
- Department of Cell Biology, Neurobiology, and Anatomy; Medical College of Wisconsin, Milwaukee, WI
| | - Signe M Penn
- Department of Cell Biology, Neurobiology, and Anatomy; Medical College of Wisconsin, Milwaukee, WI
| | - Anvitha Sriram
- Department of Cell Biology, Neurobiology, and Anatomy; Medical College of Wisconsin, Milwaukee, WI
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy; Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
2
|
Enders JD, Thomas S, Lynch P, Jack J, Ryals JM, Puchalska P, Crawford P, Wright DE. ATP-gated potassium channels contribute to ketogenic diet-mediated analgesia in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100138. [PMID: 38099277 PMCID: PMC10719532 DOI: 10.1016/j.ynpai.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 12/17/2023]
Abstract
Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.
Collapse
Affiliation(s)
- Jonathan D. Enders
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Sarah Thomas
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Paige Lynch
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Jarrid Jack
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Janelle M. Ryals
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, United States
| | - Peter Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Douglas E. Wright
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
3
|
Enders J, Jack J, Thomas S, Lynch P, Lasnier S, Cao X, Swanson MT, Ryals JM, Thyfault JP, Puchalska P, Crawford PA, Wright DE. Ketolysis is required for the proper development and function of the somatosensory nervous system. Exp Neurol 2023; 365:114428. [PMID: 37100111 PMCID: PMC10765955 DOI: 10.1016/j.expneurol.2023.114428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Ketogenic diets are emerging as protective interventions in preclinical and clinical models of somatosensory nervous system disorders. Additionally, dysregulation of succinyl-CoA 3-oxoacid CoA-transferase 1 (SCOT, encoded by Oxct1), the fate-committing enzyme in mitochondrial ketolysis, has recently been described in Friedreich's ataxia and amyotrophic lateral sclerosis. However, the contribution of ketone metabolism in the normal development and function of the somatosensory nervous system remains poorly characterized. We generated sensory neuron-specific, Advillin-Cre knockout of SCOT (Adv-KO-SCOT) mice and characterized the structure and function of their somatosensory system. We used histological techniques to assess sensory neuronal populations, myelination, and skin and spinal dorsal horn innervation. We also examined cutaneous and proprioceptive sensory behaviors with the von Frey test, radiant heat assay, rotarod, and grid-walk tests. Adv-KO-SCOT mice exhibited myelination deficits, altered morphology of putative Aδ soma from the dorsal root ganglion, reduced cutaneous innervation, and abnormal innervation of the spinal dorsal horn compared to wildtype mice. Synapsin 1-Cre-driven knockout of Oxct1 confirmed deficits in epidermal innervation following a loss of ketone oxidation. Loss of peripheral axonal ketolysis was further associated with proprioceptive deficits, yet Adv-KO-SCOT mice did not exhibit drastically altered cutaneous mechanical and thermal thresholds. Knockout of Oxct1 in peripheral sensory neurons resulted in histological abnormalities and severe proprioceptive deficits in mice. We conclude that ketone metabolism is essential for the development of the somatosensory nervous system. These findings also suggest that decreased ketone oxidation in the somatosensory nervous system may explain the neurological symptoms of Friedreich's ataxia.
Collapse
Affiliation(s)
- Jonathan Enders
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Jarrid Jack
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Sarah Thomas
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Paige Lynch
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Sarah Lasnier
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Xin Cao
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - M Taylor Swanson
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Janelle M Ryals
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - John P Thyfault
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America; Internal Medicine - Division of Endocrinology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America; KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455, United States of America
| | - Peter A Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455, United States of America; Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Douglas E Wright
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America; KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS 66160, United States of America.
| |
Collapse
|
4
|
Thomas S, Enders J, Kaiser A, Rovenstine L, Heslop L, Hauser W, Chadwick A, Wright D. Abnormal intraepidermal nerve fiber density in disease: A scoping review. Front Neurol 2023; 14:1161077. [PMID: 37153658 PMCID: PMC10157176 DOI: 10.3389/fneur.2023.1161077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Background Intraepidermal nerve fiber density (IENFD) has become an important biomarker for neuropathy diagnosis and research. The consequences of reduced IENFD can include sensory dysfunction, pain, and a significant decrease in quality of life. We examined the extent to which IENFD is being used as a tool in human and mouse models and compared the degree of fiber loss between diseases to gain a broader understanding of the existing data collected using this common technique. Methods We conducted a scoping review of publications that used IENFD as a biomarker in human and non-human research. PubMed was used to identify 1,004 initial articles that were then screened to select articles that met the criteria for inclusion. Criteria were chosen to standardize publications so they could be compared rigorously and included having a control group, measuring IENFD in a distal limb, and using protein gene product 9.5 (PGP9.5). Results We analyzed 397 articles and collected information related to publication year, the condition studied, and the percent IENFD loss. The analysis revealed that the use of IENFD as a tool has been increasing in both human and non-human research. We found that IENFD loss is prevalent in many diseases, and metabolic or diabetes-related diseases were the most studied conditions in humans and rodents. Our analysis identified 73 human diseases in which IENFD was affected, with 71 reporting IENFD loss and an overall average IENFD change of -47%. We identified 28 mouse and 21 rat conditions, with average IENFD changes of -31.6% and -34.7%, respectively. Additionally, we present data describing sub-analyses of IENFD loss according to disease characteristics in diabetes and chemotherapy treatments in humans and rodents. Interpretation Reduced IENFD occurs in a surprising number of human disease conditions. Abnormal IENFD contributes to important complications, including poor cutaneous vascularization, sensory dysfunction, and pain. Our analysis informs future rodent studies so they may better mirror human diseases impacted by reduced IENFD, highlights the breadth of diseases impacted by IENFD loss, and urges exploration of common mechanisms that lead to substantial IENFD loss as a complication in disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Douglas Wright
- Sensory Nerve Disorder Lab, Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|