1
|
Islas-Espinoza AM, Ramos-Rodríguez II, Escoto-Rosales MJ, Pizaña-Encarnación JM, Morales-Galindo DK, Caram-Salas NL, Déciga-Campos M, Rodríguez-Palma EJ, Granados-Soto V. Cannabidiol reduces neuropathic pain and cognitive impairments through activation of spinal PPARγ. THE JOURNAL OF PAIN 2025; 30:105378. [PMID: 40112940 DOI: 10.1016/j.jpain.2025.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
The purpose of this study was to evaluate the participation of spinal peroxisome proliferator-activated receptor gamma (PPARγ) in the antiallodynic effect of cannabidiol, the expression of PPARγ in sites relevant to the spinal nociceptive processing, and the effect of this cannabinoid on cognitive deficits induced by neuropathic pain in female mice. Either acute or repeated treatment with cannabidiol reduced tactile allodynia and spontaneous pain (flinching) in female neuropathic mice. Cannabidiol induced a greater effect in female mice. Pioglitazone partially reduced tactile allodynia, and this effect was fully blocked by the PPARγ antagonist GW9662. Likewise, intrathecal injection of cannabidiol reduced tactile allodynia, while PPARγ antagonist GW9662 or 5-HT1A receptor antagonist WAY-100635, but not the PPARα antagonist GW6479, partially prevented this effect. GW9662 and WAY-100635 administrated per se did not modify tactile allodynia in neuropathic female mice. Co-administration of GW9662 and WAY-100635 fully prevented the antiallodynic effect of cannabidiol in mice. Nerve injury up-regulated PPARγ expression at the spinal cord and dorsal root ganglia, while cannabidiol further enhanced nerve injury-induced up-regulation of PPARγ expression in both tissues. Repeated intrathecal injection of cannabidiol reduced tactile allodynia and several pain makers (ERK, p-ERK, p38MAPK and p-p38MAPK). In addition, this treatment restored nerve injury-induced interleukin-10 down-regulation and increased PPARγ expression at the spinal cord. Repeated treatment with cannabidiol also improved nerve injury-induced cognitive impairment in mice. These results provide compelling evidence for the involvement of PPARγ in the antiallodynic effect of cannabidiol in mice and highlight its multifaceted therapeutic potential in neuropathic pain management and its comorbidities. PERSPECTIVE: The present study reveals cannabidiol's dual effects in female mice by reducing neuropathic pain through spinal PPARγ and 5-HT1A receptor activation and ameliorating nerve injury-induced cognitive impairment. These findings may assist clinicians seeking new therapeutic approaches for managing neuropathic pain and its associated cognitive deficits.
Collapse
Affiliation(s)
- Ana Mara Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Itzel I Ramos-Rodríguez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - María J Escoto-Rosales
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Juan M Pizaña-Encarnación
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Diana K Morales-Galindo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nadia L Caram-Salas
- Investigadora por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías (Conahcyt), Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico; Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico
| | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
2
|
Pizaña-Encarnación JM, Escoto-Rosales MJ, Islas-Espinoza AM, Morales-Galindo DK, Déciga-Campos M, Quintanar BG, Reyes R, Granados-Soto V, Fernández-Guasti A. Activational and organizational actions of gonadal hormones on the sexual dimorphism of the α 6-subunit containing GABA A receptor in Wistar rats with neuropathic pain. Horm Behav 2025; 171:105746. [PMID: 40250165 DOI: 10.1016/j.yhbeh.2025.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Sex differences in pain perception and response to analgesics are well documented, yet the underlying causes remain poorly understood. Here we investigate the sexual dimorphism in the function of α6GABAA receptors in neuropathic pain, focusing on activational and organizational actions of gonadal hormones. Using the nerve ligation model in rats, we found that the positive allosteric modulator, PZ-ll-029 (30 nmol, it), produced a robust antiallodynic effect in females but not in males. Ovariectomy abolished this effect, while a single dose of estradiol (20 μg/kg sc, -24 h), that returned to physiological serum levels, partially restored it, indicating that the activational effect of estradiol is crucial for α6GABAA receptor-mediated antiallodynia in females. Interestingly, adult or neonatal (at postnatal day 3) orchidectomy did not alter the male's insensitivity to PZ-ll-029, even after estradiol treatment. However, neonatal female's virilization (with testosterone propionate 120 μg/rat at postnatal day 3) induced a male-like insensitivity to PZ-ll-029, that was partial when the ovaries were present and complete after adult ovariectomy. These findings reveal that the neonatal organizational effects of testosterone determine the sex-specific insensitivity of α6GABAA receptors to modulate neuropathic pain, while the activational effects of estradiol can partly maintain the female-typical response, despite early androgen exposure. Our results provide new insights into hormonal regulation of pain modulation and suggest that both developmental exposure and adult status should be considered in basic research and preclinical studies investigating sex-based dimorphisms.
Collapse
Affiliation(s)
| | - María José Escoto-Rosales
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Ana M Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Diana Karen Morales-Galindo
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional. Mexico City, Mexico
| | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional. Mexico City, Mexico
| | | | - Rebeca Reyes
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| | | |
Collapse
|
3
|
Zhu W, Huang L, Cheng H, Li N, Zhang B, Dai W, Wu X, Zhang D, Feng W, Li S, Xu H. GABA and its receptors' mechanisms in the treatment of insomnia. Heliyon 2024; 10:e40665. [PMID: 39654705 PMCID: PMC11626785 DOI: 10.1016/j.heliyon.2024.e40665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Insomnia has now become a major health problem of global concern, with about 1/3 of the population suffering from sleep problems, a proportion that is still rising year by year. Most of the therapeutic drugs for insomnia currently used in clinical practice are not developed in a targeted manner, but are discovered by chance, and have unavoidable side effects such as addiction. Finding a safer and more effective therapeutic drug has become an urgent need for current research. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. It can ameliorate Insomnia, Alzheimer's disease, Parkinson's disease, Epilepsy, and other neurological disorders. Various mechanisms have been reported for GABA to ameliorate insomnia, such as GABAA receptor modulation, GABAB receptor modulation, inhibition of neuroinflammatory responses, repair of oxidative damage, and inter-regulation of the circadian rhythm hormone melatonin. GABA is a potential therapeutic target in the prevention and treatment of insomnia. This paper reviews mechanisms of GABA and its receptors in insomnia diseases and the potential of GABA analogs application and discusses the research progress of GABA as a promising therapeutic drug for insomnia diseases. This will help the development of novel targeted GABA-like drugs and provide new ideas and methods for the clinical treatment of insomnia.
Collapse
Affiliation(s)
- Wenwen Zhu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Lishan Huang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanxing Cheng
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Nanxi Li
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Zhang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dai
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao Wu
- College of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Dechou Zhang
- College of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenzhan Feng
- College of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, China
| | - Houping Xu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Calvillo-Montoya DL, Martínez-Magaña CJ, Oviedo N, Murbartián J. The Estrogen Receptor Alpha Regulates the Sex-dependent Expression and Pronociceptive Role of Bestrophin-1 in Neuropathic Rats. THE JOURNAL OF PAIN 2024; 25:104513. [PMID: 38521145 DOI: 10.1016/j.jpain.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Bestrophin-1, a calcium-activated chloride channel (CaCC), is involved in neuropathic pain; however, it is unclear whether it has a dimorphic role in female and male neuropathic rats. This study investigated if 17β-estradiol and estrogen receptor alpha (ERα) activation regulate bestrophin-1 activity and expression in neuropathic rats. Neuropathic pain was induced by L5-spinal nerve transection (SNT). Intrathecal administration of CaCCinh-A01 (.1-1 µg), a CaCC blocker, reversed tactile allodynia induced by SNT in female but not male rats. In contrast, T16Ainh-A01, a selective anoctamin-1 blocker, had an equal antiallodynic effect in both sexes. SNT increased bestrophin-1 protein expression in injured L5 dorsal root ganglia (DRG) in female rats but decreased bestrophin-1 protein in L5 DRG in male rats. Ovariectomy prevented the antiallodynic effect of CaCCinh-A01, but 17β-estradiol replacement restored it. The effect of CaCCinh-A01 was prevented by intrathecal administration of MPP, a selective ERα antagonist, in rats with and without prior hormonal manipulation. In female rats with neuropathy, ovariectomy prevented the increase in bestrophin-1 and ERα protein expression, while 17β-estradiol replacement allowed for an increase in both proteins in L5 DRG. Furthermore, ERα antagonism (with MPP) prevented the increase in bestrophin-1 and ERα protein expression. Finally, ERα activation with PPT, an ERα selective activator, induced the antiallodynic effect of CaCCinh-A01 in neuropathic male rats and prevented the reduction in bestrophin-1 protein expression in L5 DRG. In summary, data suggest ERα activation is necessary for bestrophin-1's pronociceptive action to maintain neuropathic pain in female rats. PERSPECTIVE: The mechanisms involved in neuropathic pain differ between male and female animals. Our data suggest that ERα is necessary for expression and function of bestrophin-1 in neuropathic female but not male rats. Data support the idea that a therapeutic approach to relieving neuropathic pain must be based on patient's gender.
Collapse
Affiliation(s)
| | | | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La Raza, IMSS, Mexico City, Mexico
| | - Janet Murbartián
- Department of Pharmacobiologý, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
5
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
6
|
Rodríguez-Palma EJ, Islas-Espinoza AM, Ramos-Rodríguez II, Pizaña-Encarnación JM, Gutiérrez-Agredano MÁ, Morales-Moreno C, Fernández-Guasti A, Granados-Soto V. Estradiol modulates the role of the spinal α 6-subunit containing GABA A receptors in female rats with neuropathic pain. Eur J Pharmacol 2024; 974:176616. [PMID: 38679122 DOI: 10.1016/j.ejphar.2024.176616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The purpose of this study was to investigate the mechanisms underlying sex differences in the role of spinal α6-subunit containing GABAA (α6GABAA) receptors in rats with neuropathic pain. Intrathecal 2,5-dihydro-7-methoxy-2-(4-methoxyphenyl)-3H-pyrazolo [4,3-c] quinoline-3-one (PZ-II-029, positive allosteric modulator of α6GABAA receptors) reduced tactile allodynia in female but not in male rats with neuropathic pain. PZ-II-029 was also more effective in females than males in inflammatory and nociplastic pain. Ovariectomy abated the antiallodynic effect of PZ-II-029 in neuropathic rats, whereas 17β-estradiol or 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), estradiol receptor-α agonist, restored the effect of PZ-II-029 in ovariectomized rats. Blockade of estradiol receptor-α, using MPP (1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride), prevented the effect of 17β-estradiol on PZ-II-029-induced antiallodynia in ovariectomized neuropathic females. Nerve injury reduced α6GABAA receptor protein expression at the dorsal root ganglia (DRG) and spinal cord of intact and ovariectomized female rats. In this last group, reconstitution with 17β-estradiol fully restored its expression in DRG and spinal cord. In male rats, nerve injury reduced α6GABAA receptor protein expression only at the spinal cord. Nerve injury enhanced estradiol receptor-α protein expression at the DRG in intact non-ovariectomized rats. However, ovariectomy decreased estradiol receptor-α protein expression at the DRG. In the spinal cord there were no changes in estradiol receptor-α protein expression. 17β-estradiol restored estradiol receptor-α protein expression at the DRG and increased it at the spinal cord of neuropathic rats. These data suggest that 17β-estradiol modulates the expression and function of the α6GABAA receptor through its interaction with estradiol receptor-α in female rats.
Collapse
Affiliation(s)
- Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Ana M Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Itzel I Ramos-Rodríguez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | | | - Miguel Á Gutiérrez-Agredano
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
7
|
Rodríguez-Palma EJ, Ramos-Rodríguez II, Huerta de la Cruz S, Granados-Soto V, Sancho M. Spinal nerve ligation: An experimental model to study neuropathic pain in rats and mice. Methods Cell Biol 2024; 188:73-88. [PMID: 38880529 DOI: 10.1016/bs.mcb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Neuropathic pain, defined as the most terrible of all tortures, which a nerve wound may inflict, is a common chronic painful condition caused by gradual damage or dysfunction of the somatosensory nervous system. As with many chronic diseases, neuropathic pain has a profound economic and emotional impact worldwide and represents a major public health issue from a treatment standpoint. This condition involves multiple sensory symptoms including impaired transmission and perception of noxious stimuli, burning, shooting, spontaneous pain, mechanical or thermal allodynia and hyperalgesia. Current pharmacological options for the treatment of neuropathic pain are limited, ineffective and have unacceptable side effects. In this framework, a deeper understanding of the pathophysiology and molecular mechanisms associated with neuropathic pain is key to the development of promising new therapeutical approaches. For this purpose, a plethora of experimental models that mimic common clinical features of human neuropathic pain have been characterized in rodents, with the spinal nerve ligation (SNL) model being one of the most widely used. In this chapter, we provide a detailed surgical procedure of the SNL model used to induce neuropathic pain in rats and mice. We further describe the behavioral approaches used for stimulus-evoked and spontaneous pain assessment in rodents. Finally, we demonstrate that our SNL model induces multiple pain behaviors in rats and mice.
Collapse
Affiliation(s)
- Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| | - Itzel I Ramos-Rodríguez
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States; Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|