1
|
Chong-Nguyen C, Yilmaz B, Coles B, Sokol H, MacPherson A, Siepe M, Reineke D, Mosbahi S, Tomii D, Nakase M, Atighetchi S, Ferro C, Wingert C, Gräni C, Pilgrim T, Windecker S, Blasco H, Dupuy C, Emond P, Banz Y, Losmanovà T, Döring Y, Siontis GCM. A scoping review evaluating the current state of gut microbiota and its metabolites in valvular heart disease physiopathology. Eur J Clin Invest 2025:e14381. [PMID: 39797472 DOI: 10.1111/eci.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored. METHODS Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included. Eligible studies used 16S rRNA or shotgun sequencing, metabolite profiling by mass spectrometry, and examined osteogenesis or fibrosis signalling in valve cells. Methods and findings were qualitatively analysed, with data charted to summarize study design, materials and outcomes. RESULTS Thirteen studies were included in the review: five human, three animal and five in vitro. Of the nine studies on calcific aortic stenosis (CAS), elevated trimethylamine N-oxide (TMAO) levels were linked to an increased risk of cardiovascular events in cohort studies, with CAS patients showing higher levels of Bacteroides plebeius, Enterobacteriaceae, Veillonella dispar and Prevotella copri. In vivo, TMAO promoted aortic valve fibrosis, while tryptophan derivatives stimulated osteogenic differentiation and interleukin-6 secretion in valvular interstitial cells. Two studies on rheumatic mitral valve disease found altered microbiota profiles and lower short-chain fatty acid levels, suggesting potential impacts on immune regulation. Two studies on Barlow's mitral valve disease in animal models revealed elevated TMAO levels in dogs with congestive heart failure, reduced Paraprevotellaceae, increased Actinomycetaceae and dysbiosis involving Turicibacter and E. coli. CONCLUSIONS TMAO has been mainly identified as a prognostic marker in VHD. Gut microbiota dysbiosis has been observed in various forms of VHD and deserve further study.
Collapse
Affiliation(s)
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Bernadette Coles
- Velindre University NHS Trust Library and Knowledge Service, Cardiff, UK
| | - Harry Sokol
- Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Andrew MacPherson
- Department of Visceral Surgery and Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Matthias Siepe
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Reineke
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Selim Mosbahi
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daijiro Tomii
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Masaaki Nakase
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Sarah Atighetchi
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Cyril Ferro
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Christoph Wingert
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Hélène Blasco
- Faculté de médecine, Equipe neurogénétique et neurométabolomique, INSERM U930, Université François Rabelais, Tours, France
| | - Camille Dupuy
- Faculté de médecine, Equipe neurogénétique et neurométabolomique, INSERM U930, Université François Rabelais, Tours, France
| | - Patrick Emond
- Faculté de médecine, Equipe neurogénétique et neurométabolomique, INSERM U930, Université François Rabelais, Tours, France
| | - Yara Banz
- Institute of Tissue Medicine and Pathology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Tereza Losmanovà
- Institute of Tissue Medicine and Pathology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Yvonne Döring
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
| | - George C M Siontis
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| |
Collapse
|
2
|
Singh A, Kishore PS, Khan S. From Microbes to Myocardium: A Comprehensive Review of the Impact of the Gut-Brain Axis on Cardiovascular Disease. Cureus 2024; 16:e70877. [PMID: 39497887 PMCID: PMC11533101 DOI: 10.7759/cureus.70877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 11/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide despite advances in medical research and therapeutics. Emerging evidence suggests a significant role of the gut-brain axis, a complex communication network involving the gut microbiota, central nervous system, and cardiovascular system, in modulating cardiovascular health. The gut microbiota influences systemic inflammation, neurohumoral pathways, and metabolic processes, which are critical in the pathogenesis of CVD. Dysbiosis, or an imbalance in the gut microbiota, has been implicated in various cardiovascular conditions, including hypertension, atherosclerosis, and heart failure. This comprehensive review aims to elucidate the intricate relationship between the gut microbiome, brain, and cardiovascular system, highlighting the mechanisms by which gut-derived signals affect cardiovascular function. Key microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine N-oxide (TMAO), and their impact on vascular health and blood pressure regulation are discussed. Furthermore, the review explores potential therapeutic strategies targeting the gut-brain axis, including probiotics, prebiotics, dietary modifications, and pharmacological interventions, to improve cardiovascular outcomes. Despite promising findings, the field faces challenges such as individual variability in microbiome composition, complexities in gut-brain interactions, and the need for robust clinical trials to establish causality. Addressing these challenges through interdisciplinary research could pave the way for innovative, personalized therapeutic approaches. This review provides a comprehensive understanding of the gut-brain-cardiovascular axis, underscoring its potential as a novel target for preventing and treating CVD.
Collapse
Affiliation(s)
- Akhilesh Singh
- Emergency Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | | | - Sharleen Khan
- Ophthalmology, Heritage Institute of Medical Sciences, Varanasi, IND
| |
Collapse
|
3
|
Luqman A, Hassan A, Ullah M, Naseem S, Ullah M, Zhang L, Din AU, Ullah K, Ahmad W, Wang G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol 2024; 15:1321395. [PMID: 38343539 PMCID: PMC10853344 DOI: 10.3389/fimmu.2024.1321395] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Mehraj Ullah
- School of Fermentation Engineering Tianjin University of Science and Technology, Tianjin, China
| | | | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| |
Collapse
|
4
|
Almeida C, Gonçalves-Nobre JG, Alpuim Costa D, Barata P. The potential links between human gut microbiota and cardiovascular health and disease - is there a gut-cardiovascular axis? FRONTIERS IN GASTROENTEROLOGY 2023; 2. [DOI: 10.3389/fgstr.2023.1235126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut-heart axis is an emerging concept highlighting the crucial link between gut microbiota and cardiovascular diseases (CVDs). Recent studies have demonstrated that gut microbiota is pivotal in regulating host metabolism, inflammation, and immune function, critical drivers of CVD pathophysiology. Despite a strong link between gut microbiota and CVDs, this ecosystem’s complexity still needs to be fully understood. The short-chain fatty acids, trimethylamine N-oxide, bile acids, and polyamines are directly or indirectly involved in the development and prognosis of CVDs. This review explores the relationship between gut microbiota metabolites and CVDs, focusing on atherosclerosis and hypertension, and analyzes personalized microbiota-based modulation interventions, such as physical activity, diet, probiotics, prebiotics, and fecal microbiota transplantation, as a promising strategy for CVD prevention and treatment.
Collapse
|
5
|
Liang S, Wang L, Wu X, Hu X, Wang T, Jin F. The different trends in the burden of neurological and mental disorders following dietary transition in China, the USA, and the world: An extension analysis for the Global Burden of Disease Study 2019. Front Nutr 2023; 9:957688. [PMID: 36698474 PMCID: PMC9869872 DOI: 10.3389/fnut.2022.957688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The highly processed western diet is substituting the low-processed traditional diet in the last decades globally. Increasing research found that a diet with poor quality such as western diet disrupts gut microbiota and increases the susceptibility to various neurological and mental disorders, while a balanced diet regulates gut microbiota and prevents and alleviates the neurological and mental disorders. Yet, there is limited research on the association between the disease burden expanding of neurological and mental disorders with a dietary transition. Methods We compared the disability-adjusted life-years (DALYs) trend by age for neurological and mental disorders in China, in the United States of America (USA), and across the world from 1990 to 2019, evaluated the dietary transition in the past 60 years, and analyzed the association between the burden trend of the two disorders with the changes in diet composition and food production. Results We identified an age-related upward pattern in disease burden in China. Compared with the USA and the world, the Chinese neurological and mental disorders DALY percent was least in the generation over 75 but rapidly increased in younger generations and surpassed the USA and/or the world in the last decades. The age-related upward pattern in Chinese disease burdens had not only shown in the presence of cardiovascular diseases, neoplasms, and diabetes mellitus but also appeared in the presence of depressive disorders, Parkinson's disease, Alzheimer's disease and other dementias, schizophrenia, headache disorders, anxiety disorders, conduct disorders, autism spectrum disorders, and eating disorders, successively. Additionally, the upward trend was associated with the dramatic dietary transition including a reduction in dietary quality and food production sustainability, during which the younger generation is more affected than the older. Following the increase in total calorie intake, alcohol intake, ratios of animal to vegetal foods, and poultry meat to pulses, the burdens of the above diseases continuously rose. Then, following the rise of the ratios of meat to pulses, eggs to pulses, and pork to pulses, the usage of fertilizers, the farming density of pigs, and the burdens of the above disease except diabetes mellitus were also ever-increasing. Even the usage of pesticides was positively correlated with the burdens of Parkinson's disease, schizophrenia, cardiovascular diseases, and neoplasms. Contrary to China, the corresponding burdens of the USA trended to reduce with the improvements in diet quality and food production sustainability. Discussion Our results suggest that improving diet quality and food production sustainability might be a promising way to stop the expanding burdens of neurological and mental disorders.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Li Wang
- Department for the History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| |
Collapse
|
6
|
Yan D, Sun Y, Zhou X, Si W, Liu J, Li M, Wu M. Regulatory effect of gut microbes on blood pressure. Animal Model Exp Med 2022; 5:513-531. [PMID: 35880388 PMCID: PMC9773315 DOI: 10.1002/ame2.12233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Hypertension is an important global public health issue because of its high morbidity as well as the increased risk of other diseases. Recent studies have indicated that the development of hypertension is related to the dysbiosis of the gut microbiota in both animals and humans. In this review, we outline the interaction between gut microbiota and hypertension, including gut microbial changes in hypertension, the effect of microbial dysbiosis on blood pressure (BP), indicators of gut microbial dysbiosis in hypertension, and the microbial genera that affect BP at the taxonomic level. For example, increases in Lactobacillus, Roseburia, Coprococcus, Akkermansia, and Bifidobacterium are associated with reduced BP, while increases in Streptococcus, Blautia, and Prevotella are associated with elevated BP. Furthermore, we describe the potential mechanisms involved in the regulation between gut microbiota and hypertension. Finally, we summarize the commonly used treatments of hypertension that are based on gut microbes, including fecal microbiota transfer, probiotics and prebiotics, antibiotics, and dietary supplements. This review aims to find novel potential genera for improving hypertension and give a direction for future studies on gut microbiota in hypertension.
Collapse
Affiliation(s)
- Dong Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Ye Sun
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Xiaoyue Zhou
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Wenhao Si
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina,Department of Dermatologythe First Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Jieyu Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Min Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| | - Minna Wu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical SciencesXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
7
|
Cui Z, Li J, Zhen Y, Fan P, Du G. The Effect of Whole-Grain Diet on the Gut Microbiota of the Elderly Individuals. Front Nutr 2022; 9:919838. [PMID: 35832054 PMCID: PMC9273149 DOI: 10.3389/fnut.2022.919838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
A whole-grain (WG) diet affects human health in multiple ways. However, the effect of WG on the gut microbiota of the elderly individuals is still largely unknown. In this study, WG did not affect the microbial α-diversity but had a profound impact on the microbes' abundance in the elderly individuals. WG increased the abundance of Verrucomicrobia and decreased the abundance of Firmicutes. The prediction of microbial function showed that glucose metabolism and lipid metabolism were inhibited. In addition, the effects of WG on the gut microbiota of normal-weight (NW) and overweight (OW) individuals were different. WG increased Verrucomicrobia in the NW group and decreased Firmicutes in the OW group. Meanwhile, the effect of WG on gut microbiota showed gender characteristics, Firmicutes/Bacteroidetes ratio was decreased in women, while Verrucomicrobia abundance was increased in men. The use of WG could improve the microbial composition and promote the growth of beneficial microbes, which may be beneficial to the health of the elderly individuals.
Collapse
Affiliation(s)
- Zeying Cui
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
| | - Jingtai Li
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuting Zhen
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
| | - Pingming Fan
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Pingming Fan
| | - Guankui Du
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
- Biotechnology and Biochemistry Laboratory, Hainan Medical University, Haikou, China
- *Correspondence: Guankui Du
| |
Collapse
|
8
|
Rahman MM, Islam F, -Or-Rashid MH, Mamun AA, Rahaman MS, Islam MM, Meem AFK, Sutradhar PR, Mitra S, Mimi AA, Emran TB, Fatimawali, Idroes R, Tallei TE, Ahmed M, Cavalu S. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front Cell Infect Microbiol 2022; 12:903570. [PMID: 35795187 PMCID: PMC9251340 DOI: 10.3389/fcimb.2022.903570] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
In the last two decades, considerable interest has been shown in understanding the development of the gut microbiota and its internal and external effects on the intestine, as well as the risk factors for cardiovascular diseases (CVDs) such as metabolic syndrome. The intestinal microbiota plays a pivotal role in human health and disease. Recent studies revealed that the gut microbiota can affect the host body. CVDs are a leading cause of morbidity and mortality, and patients favor death over chronic kidney disease. For the function of gut microbiota in the host, molecules have to penetrate the intestinal epithelium or the surface cells of the host. Gut microbiota can utilize trimethylamine, N-oxide, short-chain fatty acids, and primary and secondary bile acid pathways. By affecting these living cells, the gut microbiota can cause heart failure, atherosclerosis, hypertension, myocardial fibrosis, myocardial infarction, and coronary artery disease. Previous studies of the gut microbiota and its relation to stroke pathogenesis and its consequences can provide new therapeutic prospects. This review highlights the interplay between the microbiota and its metabolites and addresses related interventions for the treatment of CVDs.
Collapse
|
9
|
Wu Y, Xu H, Tu X, Gao Z. The Role of Short-Chain Fatty Acids of Gut Microbiota Origin in Hypertension. Front Microbiol 2021; 12:730809. [PMID: 34650536 PMCID: PMC8506212 DOI: 10.3389/fmicb.2021.730809] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases, and its development involves multiple mechanisms. Gut microbiota has been reported to be closely linked to hypertension. Short-chain fatty acids (SCFAs)-the metabolites of gut microbiota-participate in hypertension development through various pathways, including specific receptors, immune system, autonomic nervous system, metabolic regulation and gene transcription. This article reviews the possible mechanisms of SCFAs in regulating blood pressure and the prospects of SCFAs as a target to prevent and treat hypertension.
Collapse
Affiliation(s)
- Yeshun Wu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Hongqing Xu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaoming Tu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhenyan Gao
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
10
|
Sinagra E, Pellegatta G, Guarnotta V, Maida M, Rossi F, Conoscenti G, Pallio S, Alloro R, Raimondo D, Pace F, Anderloni A. Microbiota Gut-Brain Axis in Ischemic Stroke: A Narrative Review with a Focus about the Relationship with Inflammatory Bowel Disease. Life (Basel) 2021; 11:life11070715. [PMID: 34357086 PMCID: PMC8305026 DOI: 10.3390/life11070715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota is emerging as an important player in neurodevelopment and aging as well as in brain diseases including stroke, Alzheimer’s disease, and Parkinson’s disease. The complex interplay between gut microbiota and the brain, and vice versa, has recently become not only the focus of neuroscience, but also the starting point for research regarding many diseases such as inflammatory bowel diseases (IBD). The bi-directional interaction between gut microbiota and the brain is not completely understood. The aim of this review is to sum up the evidencesconcerningthe role of the gut–brain microbiota axis in ischemic stroke and to highlight the more recent evidences about the potential role of the gut–brain microbiota axis in the interaction between inflammatory bowel disease and ischemic stroke.
Collapse
Affiliation(s)
- Emanuele Sinagra
- Endoscopy Unit, Fondazione Istituto San Raffaele—G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy; (F.R.); (G.C.); (R.A.); (D.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy
- Correspondence: ; Tel.: +39-921-920-712
| | - Gaia Pellegatta
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, 20089 Rozzano, Italy; (G.P.); (A.A.)
| | - Valentina Guarnotta
- Endocrinology Section, PROMISE Department, AOUP Paolo Giaccone, 90127 Palermo, Italy;
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, 93100 Caltanissetta, Italy;
| | - Francesca Rossi
- Endoscopy Unit, Fondazione Istituto San Raffaele—G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy; (F.R.); (G.C.); (R.A.); (D.R.)
| | - Giuseppe Conoscenti
- Endoscopy Unit, Fondazione Istituto San Raffaele—G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy; (F.R.); (G.C.); (R.A.); (D.R.)
| | - Socrate Pallio
- Endoscopy Unit, Department of clinical and experimental medicine, University of Messina, AOUP Policlinico G. Martino, 98125 Messina, Italy;
| | - Rita Alloro
- Endoscopy Unit, Fondazione Istituto San Raffaele—G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy; (F.R.); (G.C.); (R.A.); (D.R.)
- Emergency Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy
| | - Dario Raimondo
- Endoscopy Unit, Fondazione Istituto San Raffaele—G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy; (F.R.); (G.C.); (R.A.); (D.R.)
| | - Fabio Pace
- Unit of Gastroenterology, Bolognini Hospital, 24100 Bergamo, Italy;
| | - Andrea Anderloni
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, 20089 Rozzano, Italy; (G.P.); (A.A.)
| |
Collapse
|