1
|
Aly SM, Hennart B, Gaulier JM, Allorge D. Effect of CYP2D6, 2C19, and 3A4 Phenoconversion in Drug-Related Deaths. TOXICS 2024; 12:260. [PMID: 38668482 PMCID: PMC11054314 DOI: 10.3390/toxics12040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Molecular autopsy is a very important tool in forensic toxicology. However, many determinants, such as co-medication and physiological parameters, should be considered for optimal results. These determinants could cause phenoconversion (PC), a discrepancy between the real metabolic profile after phenoconversion and the phenotype determined by the genotype. This study's objective was to assess the PC of drug-metabolizing enzymes, namely CYP2D6, 2C19, and 3A4, in 45 post-mortem cases where medications that are substrates, inducers, or inhibitors of these enzymes were detected. It also intended to evaluate how PC affected the drug's metabolic ratio (MR) in four cases. Blood samples from 45 cases of drug-related deaths were analyzed to detect and determine drug and metabolite concentrations. Moreover, all the samples underwent genotyping utilizing the HaloPlex Target Enrichment System for CYP2D6, 2C19, and 3A4. The results of the present study revealed a statistically significant rate of PC for the three investigated enzymes, with a higher frequency of poor metabolizers after PC. A compatibility was seen between the results of the genomic evaluation after PC and the observed MRs of venlafaxine, citalopram, and fentanyl. This leads us to focus on the determinants causing PC that may be mainly induced by drug interactions. This complex phenomenon can have a significant impact on the analysis, interpretation of genotypes, and accurate conclusions in forensic toxicology. Nevertheless, more research with more cases in the future is needed to confirm these results.
Collapse
Affiliation(s)
- Sanaa M. Aly
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
| | - Benjamin Hennart
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
- ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| | - Jean-Michel Gaulier
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
- ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| | - Delphine Allorge
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
- ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| |
Collapse
|
2
|
Preskorn SH, Armstrong AG. Can the Publication of Case Series or Case Reports Lead to a Change in Clinical Practice? J Psychiatr Pract 2023; 29:137-141. [PMID: 36928200 DOI: 10.1097/pra.0000000000000701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
This column provides some criteria for evaluating whether a case series or case report may warrant publication. It will emphasize the value of having biomarker data in addition to clinical data to enhance the potential validation of the report and provide ways to test the findings in randomized, controlled clinical trials (RCTs). The potential validity of the case series or report is also high if the outcome is something that would not normally be expected such as, by way of example but not limited to, sudden death or malignant hypertension in someone who had always been normotensive. Examples illustrating how case series/case reports have changed the course of clinical practice or regulatory rules governing drug approval by the US Food and Drug Administration are presented, as well as examples of how those reports have been validated by more rigorous studies including RCTs. The column also includes a discussion of situations in which case series/case reports might have an endpoint (eg, sudden death) that would not be ethical to investigate in an RCT, as well as how biomarkers have been used in such instances to avoid serious untoward outcomes for a participant while still testing the hypothesis.
Collapse
Affiliation(s)
- Sheldon H Preskorn
- PRESKORN and ARMSTRONG: Department of Psychiatry and Behavioral Sciences, University of Kansas School of Medicine-Wichita, Wichita, KS
| | | |
Collapse
|
3
|
Ganesh SV, Beunk L, Nikolik B, van der Weide J, Bet PM. Therapeutic Drug Monitoring of Psychotropics as a Diagnostic Tool for CYP2D6 Poor Metabolizer Phenotype. Ther Drug Monit 2021; 43:672-680. [PMID: 33560096 DOI: 10.1097/ftd.0000000000000868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/05/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Interpatient variability in cytochrome P450 2D6 (CYP2D6) enzyme activity alters the serum concentrations of most psychotropics, which often have narrow therapeutic indices. Therefore, preemptive knowledge of CYP2D6 activity is desired. However, accessible indicators for deficient CYP2D6 activity are necessary because genotyping all patients prescribed CYP2D6 metabolized drugs is often not feasible or cost-effective. METHODS In this study, the predictive value of the ratio between a CYP2D6 substrate and its metabolite, known as the metabolic ratio (MR), the dose-corrected serum concentration of substrate (CDR), and the dose-corrected sum concentration of substrate and metabolite (Sum CDR) of venlafaxine, risperidone, aripiprazole, and nortriptyline were determined to predict the CYP2D6 poor metabolizer (PM) phenotype. The area-under-the-receiver operator characteristic curve, as well as the sensitivity, specificity, and positive and negative predictive values of the optimal thresholds, were calculated. RESULTS Although the MR, CDR, and Sum CDR all predicted the CYP2D6 PM phenotype, the predictive value of the MR was most robust for venlafaxine and aripiprazole, and the Sum CDR was inferior for all 3 psychotropics. MRs of venlafaxine, risperidone, and aripiprazole, and CDR of nortriptyline showed an area-under-the-receiver operator characteristics (95% confidence interval) of 97.2% (94.7%-99.6%), 93.0% (88.8%-97.2%), 97.8% (95.4%-100.0%), and 85.6% (78.0%-93.1%), respectively. Thresholds of the log(MR) of ≥0.1 for venlafaxine, ≥0.0 for risperidone, and ≥1.5 for aripiprazole, and log(CDR) ≥0.5 for nortriptyline produced >92% sensitivity and >64% specificity. CONCLUSIONS If therapeutic drug monitoring is available, the thresholds presented here could serve as a diagnostic tool for the CYP2D6 PM phenotype of psychiatric patients prescribed the aforementioned psychotropic medications.
Collapse
Affiliation(s)
- Soraya V Ganesh
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam ; and
| | - Lianne Beunk
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, the Netherlands
| | - Bojan Nikolik
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam ; and
| | - Jan van der Weide
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, the Netherlands
| | - Pierre M Bet
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam ; and
| |
Collapse
|
4
|
Zastrozhin MS, Skryabin VY, Smirnov VV, Grishina EA, Ryzhikova KA, Chumakov EM, Bryun EA, Sychev DA. Effects of CYP2D6 activity on the efficacy and safety of mirtazapine in patients with depressive disorders and comorbid alcohol use disorder. Can J Physiol Pharmacol 2019; 97:781-785. [PMID: 31100205 DOI: 10.1139/cjpp-2019-0177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of the study was to investigate the effects of CYP2D6 activity on the efficacy and safety of mirtazapine in patients with depressive disorders and comorbid alcohol use disorder who received mirtazapine. The study included 109 Russian patients who received mirtazapine at a dose of 30.0 [15.0; 45.0] mg per day. Genotyping of CYP2D6*4 (1846G > A, rs3892097) was performed using real-time polymerase chain reaction with allele-specific hybridization. The activity of CYP2D6 was evaluated by determining the concentration of endogenous substrate of the enzyme and its urinary metabolite - pinoline to 6-hydroxy-1,2,3,4-tetrahydro-beta-carboline ratio, using high-performance liquid chromatography - mass spectrometry. The statistically significant differences between the scores on the Hamilton Depression Rating Scale (HAMD) in patients with different genotypes were revealed by day 16: (GG) 5.0 [3.0; 6.0], (GA) 1.5 [1.0; 3.2] (p < 0.001), and for the The UKU Side Effects Rating Scale (UKU): (GG) 6.0 [6.0; 7.0], (GA) 8.5 [8.0; 10.0] (p < 0.001). The calculation of correlation coefficients between the differences in scale scores and metabolic rate showed the presence of statistically significant weak inverse correlation with the efficacy indicator evaluated by HAMD (r = -0.278, p < 0.05), but not by UKU (r = 0.274, p > 0.05). This study demonstrated that an increased CYP2D6 activity reduces the efficacy of treatment with mirtazapine.
Collapse
Affiliation(s)
- M S Zastrozhin
- a Moscow Research and Practical Centre on Addictions of the Moscow Department of Healthcare, Moscow 109390, Russia.,b Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow 123995, Russia
| | - V Y Skryabin
- a Moscow Research and Practical Centre on Addictions of the Moscow Department of Healthcare, Moscow 109390, Russia
| | - V V Smirnov
- c NRC Institute of Immunology FMBA of Russia, Moscow 115478, Russia.,d I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
| | - E A Grishina
- b Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow 123995, Russia
| | - K A Ryzhikova
- b Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow 123995, Russia
| | - E M Chumakov
- e Department of Psychiatry and Addictions, Saint-Petersburg State University, 13B Universitetskaya Emb., Saint-Petersburg 199034, Russia.,f Day In-patient Department, Saint-Petersburg Psychiatric Hospital No. 1 named after P.P. Kashchenko, Saint-Petersburg 190121, Russia
| | - E A Bryun
- a Moscow Research and Practical Centre on Addictions of the Moscow Department of Healthcare, Moscow 109390, Russia.,b Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow 123995, Russia
| | - D A Sychev
- b Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow 123995, Russia
| |
Collapse
|
5
|
Abstract
For a number of antidepressants in current clinical use, concentrations in serum or plasma are a more reliable index of target drug concentrations than is dosage. For such drugs, therapeutic drug monitoring (TDM) may be a useful clinical guide for the purpose of maximizing the likelihood of favorable therapeutic outcome while minimizing the probability of clinical ineffectiveness or adverse side effects. TDM is of greatest benefit when a therapeutic range of serum concentrations has been well established. Even if such a range is not definitively determined, TDM can be of help in situations in which patients are refractory to therapy despite adequate or high dosages, when adverse events supervene even with low doses, or when noncompliance with the intended dosage plan is suspected. Serum antidepressant concentrations from TDM should be interpreted in the full context of the patient's demographic characteristics and clinical status, along with an understanding of the pharmacokinetics of the medication being taken, the timing of the sample in relation to the dosage regimen, and the specific laboratory assay procedure. TDM measurements may be costly, and the potential benefits of the information need to be weighed against the cost to the patient or to the health care system.
Collapse
Affiliation(s)
- Najla Fiaturi
- Program in Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA
- Program in Pharmacology and Drug Development, Tufts University School of Medicine, Boston, MA, USA
| | - David J Greenblatt
- Program in Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA.
- Program in Pharmacology and Drug Development, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
6
|
Canbolat F, Tasdemir Erinç DM, Evrensel A, Aydın A, Tarhan KN. Quantitation of escitalopram and its metabolites by liquid chromatography-tandem mass spectrometry in psychiatric patients: New metabolic ratio establishment. Basic Clin Pharmacol Toxicol 2018; 124:285-297. [PMID: 30220109 DOI: 10.1111/bcpt.13133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Therapeutic drug monitoring (TDM) is used to determine the concentration of drug in plasma/serum to adjust the dose of the therapeutic drug. Selective and sensitive analytical methods are used to determine drug and metabolite levels for the successful application of TDM. The aim of the study was to develop and validate using LC-MS/MS to analyse quantitative assay of escitalopram (S-CT) and metabolites in human plasma samples. In order to provide a convenient and safe treatment dose, it was aimed to determine the levels of S-CT and its metabolites in the patients' plasma. A new method with short sample preparation and analysis time was developed and validated using LC-MS/MS to analyse quantitative assay of S-CT and its metabolites in plasma. Also, plasma samples of 30 patients using 20 mg S-CT between the ages of 18 and 65 years were analysed by the validated method. The mean values of S-CT, demethyl escitalopram and didemethyl escitalopram in plasma of patients were 27.59, 85.52 and 44.30 ng/mL, respectively. At the end of the analysis, the metabolic ratio of S-CT and metabolites was calculated. It is considered that the method for the quantitative analysis of S-CT and its metabolites in human plasma samples may contribute to the literature on account of its sensitive and easy application. Additionally, the use of our data by physicians will contribute to the effective drug treatment for their patients who take S-CT.
Collapse
Affiliation(s)
- Fadime Canbolat
- Clinical Pharmacogenetic Laboratory, NP Brain Hospital, Üsküdar University, Istanbul, Turkey
| | | | | | - Ahmet Aydın
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | | |
Collapse
|
7
|
Burkina V, Sakalli S, Pilipenko N, Zlabek V, Zamaratskaia G. Effect of human pharmaceuticals common to aquatic environments on hepatic CYP1A and CYP3A-like activities in rainbow trout (Oncorhynchus mykiss): An in vitro study. CHEMOSPHERE 2018; 205:380-386. [PMID: 29704845 DOI: 10.1016/j.chemosphere.2018.04.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
This study examined the ability of several human pharmaceuticals to modulate hepatic piscine CYP-mediated monooxygenase activities. Effects of six pharmaceuticals: diclofenac, sulfamethoxazole, tramadol, carbamazepine, venlafaxine and nefazodone, were investigated in vitro in rainbow trout hepatic microsomes. The reactions of 7-ethoxyresorufin-O-deethylase (EROD) and benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylase (BFCOD), were used as markers for hepatic CYP1A and CYP3A-like activities, respectively. Our results showed that EROD and BFCOD activities were both affected by nefazodone. Nefazodone inhibited EROD in a dose dependent manner and was found to be a potent non-competitive inhibitor of EROD with a Ki value of 6.6 μM. BFCOD activity was inhibited non-competitively in the presence of nefazadone with Ki value of 30.7 μM. BFCOD activity was slightly reduced only by the highest concentration of carbamazepine. Diclofenac, sulfamethoxazole, tramadol, and venlafaxine did not affect the activity of either EROD or BFCOD. We further exposed microsomal fraction to mixtures of six pharmaceuticals to investigate potential inhibition. The results showed that EROD and BFCOD activity was inhibited on 94% and 80%, respectively at higher tested concentration. To our knowledge, this is the first report to demonstrate an inhibitory effect of nefazodone on hepatic CYP1A and CYP3A-like proteins in rainbow trout.
Collapse
Affiliation(s)
- Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Sidika Sakalli
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Nadezhda Pilipenko
- Swedish University of Agricultural Sciences, Department of Molecular Science, Uppsala BioCenter, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Galia Zamaratskaia
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Department of Molecular Science, Uppsala BioCenter, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
8
|
Zastrozhin MS, Grishina EA, Denisenko NP, Skryabin VY, Markov DD, Savchenko LM, Bryun EA, Sychev DA. Effects of CYP2D6 genetic polymorphisms on the efficacy and safety of fluvoxamine in patients with depressive disorder and comorbid alcohol use disorder. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2018; 11:113-119. [PMID: 29988737 PMCID: PMC6029588 DOI: 10.2147/pgpm.s160763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Fluvoxamine therapy is used for treatment of patients with depressive disorder, but it is often ineffective, and some patients suffer from dose-dependent undesirable side effects such as vertigo, headache, indigestion, xerostomia, increased anxiety, etc. CYP2D6 is involved in the biotransformation of fluvoxamine. Meanwhile, the genes encoding these isoenzymes have a high level of polymorphism, which may affect the protein synthesis. Objective The primary objective of our study was to investigate the effects of CYP2D6 genetic polymorphisms on the efficacy and safety of fluvoxamine in patients with depressive disorder and comorbid alcohol use disorder, in order to develop the algorithms of optimization of fluvoxamine therapy for reducing the risk of dose-dependent undesirable side effects and pharmacoresistance. Methods The study involved 45 male patients (average age: 36.44±9.96 years) with depressive disorder and comorbid alcohol use disorder. A series of psychometric scales was used in the research. Genotyping of CYP2D6 (1846G>A) was performed using real-time polymerase chain reaction. Results According to results of Mann–Whitney U-test, statistically significant differences between the efficacy and safety of fluvoxamine were obtained on 9th and 16th days of therapy in patients with GG and GA genotypes (The Hamilton Rating Scale for Depression: 10.0 [10.0; 23.0] vs 25.0 [24.0; 16.0] (P<0.001) on the 9th day and 4.0 [2.0; 5.0] vs 6.0 [6.0; 7.0] on the 16th day; The UKU Side Effect Rating Scale: 6.0 [4.0; 6.0] vs 9.0 [9.0; 10.0] (P<0.001) on the 9th day and 5.0 [1.0; 9.0] vs 19.0 [18.0; 22.0] on the 16th day). Conclusion This study demonstrated the lower efficacy and safety of fluvoxamine in patients with depressive disorder and comorbid alcohol use disorders with GA genotype in CYP2D6 1846G>A polymorphic marker.
Collapse
Affiliation(s)
- Mikhail Sergeevich Zastrozhin
- Department of Addictology, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow, Russia,.,Department of Addictology, Moscow Research and Practical Center on Addictions, Moscow, Russia,
| | - Elena Anatolievna Grishina
- Research Centre, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Research Centre, Moscow, Russia
| | - Nataliya Petrovna Denisenko
- Research Centre, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Research Centre, Moscow, Russia
| | | | - Dmitry Dmitrievich Markov
- Research Centre, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Research Centre, Moscow, Russia
| | - Ludmila Mikhailovna Savchenko
- Department of Addictology, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow, Russia,
| | - Evgeny Alekseevich Bryun
- Department of Addictology, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow, Russia,.,Department of Addictology, Moscow Research and Practical Center on Addictions, Moscow, Russia,
| | - Dmitry Alekseevich Sychev
- Department of Clinical Pharmacology and Therapy, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Montané Jaime LK, Paul J, Lalla A, Legall G, Gaedigk A. Impact of CYP2D6 on venlafaxine metabolism in Trinidadian patients with major depressive disorder. Pharmacogenomics 2018; 19:197-212. [PMID: 29327975 DOI: 10.2217/pgs-2017-0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM This study aimed to assess the impact of CYP2D6 and CYP2C19 variation on venlafaxine (VEN) at steady state in patients from Trinidad and Tobago of Indian and African descent with major depressive disorder. PATIENTS & METHODS Patients were phenotyped with dextromethorphan, genotyped for CYP2D6 and CYP2C19, and metabolic ratios for VEN obtained at 2-week intervals. RESULTS Of 61 patients, 55 were genotyped and phenotyped and 47 completed 8 weeks of VEN treatment. The majority of patients had metabolic ratios for VEN that were consistent with those for dextromethorphan and genotype-predicted phenotype using activity scores. One subject presented with a novel no-function allele, CYP2D6*99. No correlations were observed with CYP2C19 genotype. CONCLUSION CYP2D6 genotype analysis provides valuable information to individualize drug therapy with VEN.
Collapse
Affiliation(s)
- Lazara Karelia Montané Jaime
- Pharmacology Unit, Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of The West Indies, St Augustine, Trinidad & Tobago
| | | | - Anthony Lalla
- Health Science Technologies Department, College of Science, Technology & Applied Arts of Trinidad & Tobago, El Dorado Campus, Corner College & St. Cecelia Roads, El Dorado, Trinidad & Tobago
| | - George Legall
- Pharmacology Unit, Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of The West Indies, St Augustine, Trinidad & Tobago
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City & Department of Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
10
|
Taranu A, Colle R, Gressier F, El Asmar K, Becquemont L, Corruble E, Verstuyft C. Should a routine genotyping of CYP2D6 and CYP2C19 genetic polymorphisms be recommended to predict venlafaxine efficacy in depressed patients treated in psychiatric settings? Pharmacogenomics 2017; 18:639-650. [PMID: 28480819 DOI: 10.2217/pgs-2017-0003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM The antidepressant venlafaxine (VEN) is metabolized by CYP2D6 and CYP2C19. The aim of this study was to assess the relevance of generalizing to daily practice the genotyping of CYP2D6 and CYP2C19 to predict VEN efficacy in depressed patients treated in psychiatric settings. PATIENTS & METHODS This study was nested in a naturalistic cohort, with 206 patients requiring a new antidepressant treatment and genotyped for CYP2D6 *3, *4, *5 del, *6, *2xN, *10, *41 and CYP2C19 *2, *3, *4, *5, *17 alleles. RESULTS CYP2D6 and CYP2C19 phenotypes were associated neither with the Hamilton depression rating scale score improvement, nor with response and remission. CONCLUSION Routine CYP2D6 and CYP2C19 genotyping cannot be recommended to predict VEN efficacy in depressed patients treated in psychiatry settings.
Collapse
Affiliation(s)
- Adela Taranu
- INSERM UMR1178, Team (Depression & Antidepressants), Faculté de Médecine Paris-Sud, Univ. Paris-Sud, Le Kremlin Bicêtre, France
| | - Romain Colle
- INSERM UMR1178, Team (Depression & Antidepressants), Faculté de Médecine Paris-Sud, Univ. Paris-Sud, Le Kremlin Bicêtre, France.,Service de Psychiatrie, Hôpital Bicêtre, Groupe Hospitalier Paris Sud, AP-HP, Le Kremlin Bicêtre, France
| | - Florence Gressier
- INSERM UMR1178, Team (Depression & Antidepressants), Faculté de Médecine Paris-Sud, Univ. Paris-Sud, Le Kremlin Bicêtre, France.,Service de Psychiatrie, Hôpital Bicêtre, Groupe Hospitalier Paris Sud, AP-HP, Le Kremlin Bicêtre, France
| | - Khalil El Asmar
- INSERM UMR1178, Team (Depression & Antidepressants), Faculté de Médecine Paris-Sud, Univ. Paris-Sud, Le Kremlin Bicêtre, France
| | - Laurent Becquemont
- INSERM UMR1178, Team (Depression & Antidepressants), Faculté de Médecine Paris-Sud, Univ. Paris-Sud, Le Kremlin Bicêtre, France.,Centre de Recherche Clinique (CRC), Hôpital Bicêtre, Groupe Hospitalier Paris Sud, AP-HP, Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- INSERM UMR1178, Team (Depression & Antidepressants), Faculté de Médecine Paris-Sud, Univ. Paris-Sud, Le Kremlin Bicêtre, France.,Service de Psychiatrie, Hôpital Bicêtre, Groupe Hospitalier Paris Sud, AP-HP, Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- INSERM UMR1178, Team (Depression & Antidepressants), Faculté de Médecine Paris-Sud, Univ. Paris-Sud, Le Kremlin Bicêtre, France.,Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, Groupe Hospitalier Paris Sud, AP-HP, Le Kremlin Bicêtre, France.,Centre de Ressources Biologiques, CRB Paris-Sud, Hôpital Bicêtre, Groupe Hospitalier Paris Sud, AP-HP, Le Kremlin Bicêtre, France
| |
Collapse
|
11
|
Risperidone and Venlafaxine Metabolic Ratios Strongly Predict a CYP2D6 Poor Metabolizing Genotype. Ther Drug Monit 2016; 38:127-34. [DOI: 10.1097/ftd.0000000000000251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Preskorn SH. Prediction of individual response to antidepressants and antipsychotics: an integrated concept. DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25733958 PMCID: PMC4336923 DOI: 10.31887/dcns.2014.16.4/spreskorn] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In both clinical trials and daily practice, there can be substantial inter- and even intraindividual variability in response--whether beneficial or adverse--to antidepressants and antipsychotic medications. So far, no tools have become available to predict the outcome of these treatments in specific patients. This is because the causes of such variability are often not known, and when they are, there is no way of predicting the effects of their various potential combinations in an individual. Given this background, this paper presents a conceptual framework for understanding known factors and their combinations so that eventually clinicians can better predict what medication(s) to select and at what dose they can optimize the outcome for a given individual. This framework is flexible enough to be readily adaptable as new information becomes available. The causes of variation in patient response are grouped into four categories: (i) genetics; (ii) age; (iii) disease; and (iv) environment (internal). Four cases of increasing complexity are used to illustrate the applicability of this framework in a clinically relevant way In addition, this paper reviews tools that the clinician can use to assess for and quantify such inter- and intraindividual variability. With the information gained, treatment can be adjusted to compensate for such variability, in order to optimize outcome. Finally, the limitations of existing antidepressant and antipsychotic therapy and the way they reduce current ability to predict response is discussed.
Collapse
Affiliation(s)
- Sheldon H Preskorn
- Professor of Psychiatry, Kansas University School of Medicine, Wichita, Kansas, USA; Professor of Psychiatry, Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| |
Collapse
|
13
|
Zhan YY, Liang BQ, Wang H, Wang ZH, Weng QH, Dai DP, Cai JP, Hu GX. Effect of CYP2D6 variants on venlafaxine metabolism in vitro. Xenobiotica 2015; 46:424-9. [DOI: 10.3109/00498254.2015.1089364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Fabbri C, Serretti A. Pharmacogenetics of major depressive disorder: top genes and pathways toward clinical applications. Curr Psychiatry Rep 2015; 17:50. [PMID: 25980509 DOI: 10.1007/s11920-015-0594-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pharmacogenetics of antidepressants has been not only a challenging but also frustrating research field since its birth in the 1990s. Indeed, great expectations followed the first evidence of familiar aggregation of antidepressant response. Despite the progress from candidate gene studies to genome-wide association studies (GWAS), results fell out the expectations and they were often inconsistent. Anyway, the cumulative evidence supports the involvement of some genes and molecular pathways in antidepressant efficacy. The best single genes are SLC6A4, HTR2A, BDNF, GNB3, FKBP5, ABCB1, and cytochrome P450 genes (CYP2D6 and CYP2C19). Molecular pathways involved in inflammation and neuroplasticity show the greatest support. The first studies evaluating benefits of genotype-guided antidepressant treatments provided encouraging results and confirmed the relevance of SLC6A4, HTR2A, ABCB1, and cytochrome P450 genes. Further progress in genotyping and data analysis would allow to move forward and complete the understanding of antidepressant pharmacogenetics and its translation into clinical applications.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy,
| | | |
Collapse
|
15
|
Grundmann M, Kacirova I, Urinovska R. Therapeutic monitoring of psychoactive drugs - antidepressants: A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:35-43. [DOI: 10.5507/bp.2013.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/06/2013] [Indexed: 11/23/2022] Open
|
16
|
Sicras-Mainar A, Guijarro P, Armada B, Blanca-Tamayo M, Navarro-Artieda R. Influence of the CYP2D6 isoenzyme in patients treated with venlafaxine for major depressive disorder: clinical and economic consequences. PLoS One 2014; 9:e90453. [PMID: 25369508 PMCID: PMC4219665 DOI: 10.1371/journal.pone.0090453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
Background Antidepressant drugs are the mainstay of drug therapy for sustained remission of symptoms. However, the clinical results are not encouraging. This lack of response could be due, among other causes, to factors that alter the metabolism of the antidepressant drug. Objective: to evaluate the impact of concomitant administration of CYP2D6 inhibitors or substrates on the efficacy, tolerability and costs of patients treated with venlafaxine for major depressive disorder in clinical practice. Methods We designed an observational study using the medical records of outpatients. Subjects aged ≥18 years who started taking venlafaxine during 2008–2010 were included. Three study groups were considered: no combinations (reference), venlafaxine-substrate, and venlafaxine-inhibitor. The follow-up period was 12 months. The main variables were: demographic data, comorbidity, remission (Hamilton <7), response to treatment, adverse events and costs. The statistical analysis included logistic regression models and ANCOVA, with p values <0.05 considered significant. Results A total of 1,115 subjects were recruited. The mean age was 61.7 years and 75.1% were female. Approximately 33.3% (95% CI: 30.5 to 36.1) were receiving some kind of drug combination (venlafaxine-substrate: 23.0%, and venlafaxine-inhibitor: 10.3%). Compared with the venlafaxine-substrate and venlafaxine-inhibitor groups, patients not taking concomitant drugs had a better response to therapy (49.1% vs. 39.9% and 34.3%, p<0.01), greater remission of symptoms (59.9% vs. 50.2% and 43.8%, p<0.001), fewer adverse events (1.9% vs. 7.0% and 6.1%, p<0.05) and a lower mean adjusted cost (€2,881.7 vs. €4,963.3 and €7,389.1, p<0.001), respectively. All cost components showed these differences. Conclusions The patients treated with venlafaxine alone showed a better response to anti-depressant treatment, greater remission of symptoms, a lower incidence of adverse events and lower healthcare costs.
Collapse
Affiliation(s)
- Antoni Sicras-Mainar
- Directorate of Planning, Badalona Serveis Assistencials, S.A., Badalona, Barcelona, Spain
- * E-mail:
| | | | | | | | - Ruth Navarro-Artieda
- Medical Documentation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| |
Collapse
|
17
|
First MEPS/HPLC assay for the simultaneous determination of venlafaxine and O-desmethylvenlafaxine in human plasma. Bioanalysis 2014; 6:3025-38. [DOI: 10.4155/bio.14.222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: A new high-performance liquid chromatography–fluorescence detection assay based on microextraction by packed sorbent as sample preparation approach is described to quantify venlafaxine (VEN) and its main metabolite [O-desmethylvenlafaxine (ODV)]in human plasma. Methods & results: Chromatographic separation of the target analytes (VEN and ODV) and internal standard (licarbazepine) was achieved in less than 6 min on a reverse-phase C18 column using isocratic elution. Calibration curves were linear in the ranges of 10–1000 ng ml-1 for VEN and 20–1000 ng ml-1 for ODV. The method was successfully applied to real plasma samples. Conclusion: This microextraction by packed sorbent/high-performance liquid chromatography–fluorescence detection assay offers a cost-effective tool that can be applied for therapeutic drug monitoring and also support other pharmacokinetic-based studies in humans.
Collapse
|
18
|
Spina E, de Leon J. Clinical applications of CYP genotyping in psychiatry. J Neural Transm (Vienna) 2014; 122:5-28. [PMID: 25200585 DOI: 10.1007/s00702-014-1300-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/18/2014] [Indexed: 12/13/2022]
|
19
|
O'Leary OF, O'Brien FE, O'Connor RM, Cryan JF. Drugs, genes and the blues: Pharmacogenetics of the antidepressant response from mouse to man. Pharmacol Biochem Behav 2014; 123:55-76. [PMID: 24161683 DOI: 10.1016/j.pbb.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/04/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
|
20
|
|
21
|
Breitenstein B, Scheuer S, Holsboer F. Are there meaningful biomarkers of treatment response for depression? Drug Discov Today 2014; 19:539-61. [PMID: 24561326 DOI: 10.1016/j.drudis.2014.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/29/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
Abstract
During the past decades, the prevalence of affective disorders has been on the rise globally, with only one out of three patients achieving remission in acute treatment with antidepressants. The identification of physiological markers that predict treatment course proves useful in increasing therapeutic success. On the basis of well-documented, recent findings in depression research, we highlight and discuss the most promising biomarkers for antidepressant therapy response. These include genetic variants and gene expression profiles, proteomic and metabolomic markers, neuroendocrine function tests, electrophysiology and imaging techniques. Ultimately, this review proposes an integrative use of biomarkers for antidepressant treatment outcome.
Collapse
Affiliation(s)
- Barbara Breitenstein
- HolsboerMaschmeyerNeuroChemie, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Florian Holsboer
- HolsboerMaschmeyerNeuroChemie, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
22
|
Murrell MD, Cruz DA, Javors MA, Thompson PM. Distribution of venlafaxine, O-desmethylvenlafaxine, and O-desmethylvenlafaxine to venlafaxine ratio in postmortem human brain tissue. J Forensic Sci 2014; 59:683-9. [PMID: 24502274 DOI: 10.1111/1556-4029.12393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/08/2013] [Accepted: 03/24/2013] [Indexed: 12/01/2022]
Abstract
Venlafaxine (VEN) and its metabolite O-desmethylvenlafaxine (ODV) inhibit reuptake of serotonin and norepinephrine. This study examines whether VEN is differentially distributed in postmortem brain and examines relationships between brain and femoral blood concentrations from donors prescribed VEN for treatment of depression. Using high-pressure liquid chromatography-ultraviolet detection, VEN and ODV concentrations were measured in temporal, occipital, and cerebellar cortex of six postmortem brains. The ODV/VEN ratio was calculated as a relative measure of drug metabolism within each region where higher ratios indicated a greater conversion of VEN to ODV. Compared to the other regions examined, the cerebellum showed decreased VEN (p = 0.056), ODV (p = 0.006), and ODV/VEN (p = 0.027) ratios. In parts per million, VEN was higher in temporal and occipital cortex, but not cerebellum, as compared to femoral blood concentration. These observations suggest that VEN and ODV are differentially distributed in the brain, and metabolism of VEN to ODV may vary across brain regions.
Collapse
Affiliation(s)
- Meredith D Murrell
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229
| | | | | | | |
Collapse
|
23
|
Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:487-520. [PMID: 23852853 DOI: 10.1002/ajmg.b.32184] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is an emergent cause of personal and socio-economic burden, both for the high prevalence of the disorder and the unsatisfying response rate of the available antidepressant treatments. No reliable predictor of treatment efficacy and tolerance in the single patient is available, thus drug choice is based on a trial and error principle with poor clinical efficiency. Among modulators of treatment outcome, genetic polymorphisms are thought to explain a significant share of the inter-individual variability. The present review collected the main pharmacogenetic findings primarily about antidepressant response and secondly about antidepressant induced side effects, and discussed the main strengths and limits of both candidate and genome-wide association studies and the most promising methodological opportunities and challenges of the field. Despite clinical applications of antidepressant pharmacogenetics are not available yet, previous findings suggest that genotyping may be applied in the clinical practice. In order to reach this objective, further rigorous pharmacogenetic studies (adequate sample size, study of better defined clinical subtypes of MDD, adequate covering of the genetic variability), their combination with the results obtained through complementary methodologies (e.g., pathway analysis, epigenetics, transcriptomics, and proteomics), and finally cost-effectiveness trials are required.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
24
|
Influence of CYP2D6 and CYP2C19 gene variants on antidepressant response in obsessive-compulsive disorder. THE PHARMACOGENOMICS JOURNAL 2013; 14:176-81. [PMID: 23545896 DOI: 10.1038/tpj.2013.12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 12/31/2022]
Abstract
Numerous studies have reported on pharmacogenetics of antidepressant response in depression. In contrast, little is known of response predictors in obsessive-compulsive disorder (OCD), a disorder with among the lowest proportion of responders to medication (40-60%). Our study is the largest investigation to date (N=184) of treatment response and side effects to antidepressants in OCD based on metabolizer status for CYP2D6 and CYP2C19. We observed significantly more failed medication trials in CYP2D6 non-extensive compared with extensive metabolizers (P=0.007). CYP2D6 metabolizer status was associated with side effects to venlafaxine (P=0.022). There were nonsignificant trends for association of CYP2D6 metabolizer status with response to fluoxetine (P=0.056) and of CYP2C19 metabolizer status with response to sertraline (P=0.064). Our study is the first to indicate that CYP genes may have a role in antidepressant response in OCD. More research is required for a future clinical application of genetic testing, which could lead to improved treatment outcomes.
Collapse
|
25
|
Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry 2013; 18:273-87. [PMID: 22565785 DOI: 10.1038/mp.2012.42] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polymorphic drug-metabolizing enzymes (DMEs) are responsible for the metabolism of the majority of psychotropic drugs. By explaining a large portion of variability in individual drug metabolism, pharmacogenetics offers a diagnostic tool in the burgeoning era of personalized medicine. This review updates existing evidence on the influence of pharmacogenetic variants on drug exposure and discusses the rationale for genetic testing in the clinical context. Dose adjustments based on pharmacogenetic knowledge are the first step to translate pharmacogenetics into clinical practice. However, also clinical factors, such as the consequences on toxicity and therapeutic failure, must be considered to provide clinical recommendations and assess the cost-effectiveness of pharmacogenetic treatment strategies. DME polymorphisms are relevant not only for clinical pharmacology and practice but also for research in psychiatry and neuroscience. Several DMEs, above all the cytochrome P (CYP) enzymes, are expressed in the brain, where they may contribute to the local biochemical homeostasis. Of particular interest is the possibility of DMEs playing a physiological role through their action on endogenous substrates, which may underlie the reported associations between genetic polymorphisms and cognitive function, personality and vulnerability to mental disorders. Neuroimaging studies have recently presented evidence of an effect of the CYP2D6 polymorphism on basic brain function. This review summarizes evidence on the effect of DME polymorphisms on brain function that adds to the well-known effects of DME polymorphisms on pharmacokinetics in explaining the range of phenotypes that are relevant to psychiatric practice.
Collapse
|
26
|
Jeon J, Kurth D, Hollender J. Biotransformation Pathways of Biocides and Pharmaceuticals in Freshwater Crustaceans Based on Structure Elucidation of Metabolites Using High Resolution Mass Spectrometry. Chem Res Toxicol 2013; 26:313-24. [DOI: 10.1021/tx300457f] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Junho Jeon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf,
Switzerland
| | - Denise Kurth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf,
Switzerland
- Institute of
Biogeochemistry
and Pollutant Dynamics, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf,
Switzerland
- Institute of
Biogeochemistry
and Pollutant Dynamics, ETH Zürich, CH-8092, Zürich, Switzerland
| |
Collapse
|
27
|
Martiny K, Lunde M, Bech P, Plenge P. A short-term double-blind randomized controlled pilot trial with active or placebo pindolol in patients treated with venlafaxine for major depression. Nord J Psychiatry 2012; 66:147-54. [PMID: 22458638 DOI: 10.3109/08039488.2012.674553] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Pindolol has been widely investigated as an augmenter of antidepressant drug response. Results have been inconsistent. In this study, we used pindolol together with venlafaxine because of its ability to achieve a rapid onset of serotonin transporter blockade. AIMS The object of this study was thus to investigate if pindolol augments the antidepressant response to venlafaxine. METHODS Patients with major depression were randomized to either active or placebo pindolol 20 mg retard daily dosage and concomitantly treated with venlafaxine for 19 days. Depression severity was evaluated at four visits. Plasma concentrations of venlafaxine and its major metabolites O-desmethylvenlafaxine (ODV) and N-desmethylvenlafaxine (NDV) and pindolol were analysed. The ratio of ODV/venlafaxine was calculated. A low ratio corresponds to patients being poor metabolizers and a high ratio corresponds to patients being extensive metabolizers. RESULTS No statistically significant difference in depression outcome was found between treatment groups. A statistically significant effect was, however, found of the ratio of ODV/venlafaxine on depression outcome, showing an augmenting effect of pindolol in patients with a low ratio, and the reverse in patients with a high ratio. CONCLUSION The differential effect of pindolol, on depression outcome, in patients with varying degrees of venlafaxine metabolism into ODV, corresponds to patients being poor or extensive metabolizers of venlafaxine. From this finding, we conclude that only patients who are poor metabolizers of venlafaxine might benefit from pindolol augmentation. This mechanism might explain some of the variability of outcome in pindolol augmentation studies.
Collapse
Affiliation(s)
- Klaus Martiny
- Department of Psychiatry, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
28
|
Abstract
After the introduction of selective serotonin reuptake inhibitors (SSRIs), other newer antidepressants with different mechanisms of action have been introduced in clinical practice. Because antidepressants are commonly prescribed in combination with other medications used to treat co-morbid psychiatric or somatic disorders, they are likely to be involved in clinically significant drug interactions. This review examines the drug interaction profiles of the following newer antidepressants: escitalopram, venlafaxine, desvenlafaxine, duloxetine, milnacipran, mirtazapine, reboxetine, bupropion, agomelatine and vilazodone. In general, by virtue of a more selective mechanism of action and receptor profile, newer antidepressants carry a relatively low risk for pharmacodynamic drug interactions, at least as compared with first-generation antidepressants, i.e. monoamine oxidase inhibitors (MAOIs) and tricyclic antidepressants (TCAs). On the other hand, they are susceptible to pharmacokinetic drug interactions. All new antidepressants are extensively metabolized in the liver by cytochrome P450 (CYP) isoenzymes, and therefore may be the target of metabolically based drug interactions. Concomitant administration of inhibitors or inducers of the CYP isoenzymes involved in the biotransformation of specific antidepressants may cause changes in their plasma concentrations. However, due to their relatively wide margin of safety, the consequences of such kinetic modifications are usually not clinically relevant. Conversely, some newer antidepressants may cause pharmacokinetic interactions through their ability to inhibit specific CYPs. With regard to this, duloxetine and bupropion are moderate inhibitors of CYP2D6. Therefore, potentially harmful drug interactions may occur when they are coadministered with substrates of these isoforms, especially compounds with a narrow therapeutic index. The other new antidepressants are only weak inhibitors or are not inhibitors of CYP isoforms at usual therapeutic concentrations and are not expected to affect the disposition of concomitantly administered medications. Although drug interactions with newer antidepressants are potentially, but rarely, clinically significant, the use of antidepressants with a more favourable drug interaction profile is advisable. Knowledge of the interaction potential of individual antidepressants is essential for safe prescribing and may help clinicians to predict and eventually avoid certain drug combinations.
Collapse
Affiliation(s)
- Edoardo Spina
- Section of Pharmacology, Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy.
| | | | | |
Collapse
|
29
|
Abstract
BACKGROUND Many currently used antidepressants are substrates of the cytochrome P450 (CYP) 2D6 enzyme. In patients who experience variations in the activity of this enzyme (e.g., CYP2D6 poor and ultrarapid metabolizers [PMs and UMs]), whether caused by genetic polymorphisms or concomitant administration of a CYP2D6 inhibitor (i.e., phenoconversion), the pharmacokinetics, and hence the effects, of CYP2D6 substrate antidepressants can be altered. METHODS This literature review describes the clinical and empirical evidence indicating that alterations in CYP2D6 activity can negatively affect treatment outcomes in patients receiving antidepressant pharmacotherapies that are CYP2D6 substrates. RESULTS Based on results from a small, prospective trial, a population analysis, and a pooled analysis, CYP2D6 PMs treated with agents dependent on CYP2D6 metabolism to form an active metabolite can experience a decline in antidepressant effect. Based on a population analysis and two case studies, CYP2D6 UMs treated with antidepressants that are CYP2D6 substrates and administered in a pharmacologically active form do not experience an antidepressant effect due to the agent being too rapidly eliminated from the body. Conversely, based on prospective trials, population analyses, and case studies, phenotypic and phenoconverted CYP2D6 PMs can experience an increase in concentration-dependent adverse events due to the agent being eliminated too slowly from the body. CONCLUSIONS Despite these examples, few large-scale, prospective trials exploring the effect of altered CYP2D6 metabolism on antidepressant outcomes have been conducted. Future clinical trials of CYP2D6-dependent antidepressants should be designed to allow for stratification of treatment outcomes by CYP2D6 metabolizer status.
Collapse
|
30
|
Porcelli S, Fabbri C, Spina E, Serretti A, De Ronchi D. Genetic polymorphisms of cytochrome P450 enzymes and antidepressant metabolism. Expert Opin Drug Metab Toxicol 2011; 7:1101-15. [PMID: 21736534 DOI: 10.1517/17425255.2011.597740] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The cytochrome P450 (CYP) enzymes are the major enzymes responsible for Phase I reactions in the metabolism of several substances, including antidepressant medications. Thus, it has been hypothesized that variants in the CYP network may influence antidepressant efficacy and safety. Nonetheless, data on this field are still contradictory. The authors aim to give an overview of the published studies analyzing the influence of CYP highly polymorphic loci on antidepressant treatment in order to translate the acquired knowledge to a clinical level. AREAS COVERED The authors collected and compared experimental works and reviews published from the 1980s to the present and included in the Medline database. The included studies pertain to the effects of CYP gene polymorphisms on antidepressant pharmacokinetic parameters and clinical outcomes (response and drug-related adverse effects), with a focus on applications in clinical practice. The authors focused mainly on in vivo studies in humans (patients or healthy volunteers). EXPERT OPINION Great variability in antidepressant metabolism among individuals has been demonstrated. Thus, with the current interest in individualized medicine, several genetic tests to detect CYP variants have been produced. They provide a potentially useful way to anticipate some clinical outcomes of antidepressant treatment, although they will only be extensively used in clinical practice if precise and specific treatment options and guidelines based on genetic tests can be provided.
Collapse
|
31
|
CYP 2D6 PM status and antidepressant response to nortriptyline and venlafaxine: is it more than just drug metabolism? J Clin Psychopharmacol 2011; 31:143-5. [PMID: 21346604 DOI: 10.1097/jcp.0b013e318212d7cb] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Nichols AI, Focht K, Jiang Q, Preskorn SH, Kane CP. Pharmacokinetics of Venlafaxine Extended Release 75 mg and Desvenlafaxine 50 mg in Healthy CYP2D6 Extensive and Poor Metabolizers. Clin Drug Investig 2011; 31:155-67. [DOI: 10.2165/11586630-000000000-00000] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Kandasamy M, Srinivas P, Subramaniam K, Ravi S, John J, Shekar R, Srinivas N, Thangam S. Differential outcomes from metabolic ratios in the identification of CYP2D6 phenotypes–focus on venlafaxine and O-desmethylvenlafaxine. Eur J Clin Pharmacol 2010; 66:879-87. [DOI: 10.1007/s00228-010-0829-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/12/2010] [Indexed: 11/29/2022]
|
34
|
Outliers on the dose-response curve: how to minimize this problem using therapeutic drug monitoring, an underutilized tool in psychiatry. J Psychiatr Pract 2010; 16:177-82. [PMID: 20485106 DOI: 10.1097/01.pra.0000375714.93078.a8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This column continues the discussion of outliers on the dose-response curve begun in earlier columns. It focuses on therapeutic drug monitoring (TDM) as an underutilized tool in psychiatry to minimize this problem. The scientific rationale for dose adjustment based on TDM is presented and its efficiency is contrasted with dose adjustment based on clinical assessment of response. In current practice, the use of TDM with psychiatric drugs is generally restricted to drugs with narrow therapeutic windows or drugs imported into psychiatry from neurology where TDM is more commonly used. Examples of each of these types of drugs are cited.
Collapse
|
35
|
Understanding outliers on the usual dose-response curve: venlafaxine as a way to phenotype patients in terms of their CYP 2D6 status and why it matters. J Psychiatr Pract 2010; 16:46-9. [PMID: 20098230 DOI: 10.1097/01.pra.0000367777.96012.83] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Venlafaxine is a model substrate for the drug metabolizing cytochrome P450 (CYP) enzyme 2D6. The desvenlafaxine/venlafaxine ratio, either after a single dose or at steady state, can be used to determine whether a patient is functionally (i.e., phenotypically) a CYP 2D6 extensive or poor metabolizer (EM or PM). In turn, CYP 2D6 EM and PM status is important in determining the efficacy of venlafaxine as an antidepressant. Based on a secondary analysis of four of the venlafaxine registration trials, venlafaxine was effective in patients who were CYP 2D6 EMs versus a parallel placebo-treated control group, whereas it was not effective in patients who were CYP 2D6 PMs. Thus, venlafaxine is a useful example of how drugs can be used to quantify differences in drug metabolizing capacity among patients and how such differences can in turn affect the efficacy of a drug (i.e., make a patient an outlier on the usual dose-response curve).
Collapse
|