1
|
Islam F, Hain D, Lewis D, Law R, Brown LC, Tanner JA, Müller DJ. Pharmacogenomics of Clozapine-induced agranulocytosis: a systematic review and meta-analysis. THE PHARMACOGENOMICS JOURNAL 2022; 22:230-240. [PMID: 35710824 PMCID: PMC9363274 DOI: 10.1038/s41397-022-00281-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Although clozapine is the most effective pharmacotherapy for treatment-resistant schizophrenia, it is under-utilized, and initiation is often delayed. One reason is the occurrence of a potentially fatal adverse reaction, clozapine-induced agranulocytosis (CIA). Identifying genetic variations contributing to CIA would help predict patient risk of developing CIA and personalize treatment. Here, we (1) review existing pharmacogenomic studies of CIA, and (2) conduct meta-analyses to identify targets for clinical implementation. A systematic literature search identified studies that included individuals receiving clozapine who developed CIA and controls who did not. Results showed that individuals carrying the HLA-DRB1*04:02 allele had nearly sixfold (95% CI 2.20–15.80, pcorrected = 0.03) higher odds of CIA with a negative predictive value of 99.3%. Previously unreplicated alleles, TNFb5, HLA-B*59:01, TNFb4, and TNFd3 showed significant associations with CIA after multiple-testing corrections. Our findings suggest that a predictive HLA-DRB1*04:02-based pharmacogenomic test may be promising for clinical implementation but requires further investigation.
Collapse
|
2
|
Legge SE, Walters JT. Genetics of clozapine-associated neutropenia: recent advances, challenges and future perspective. Pharmacogenomics 2019; 20:279-290. [PMID: 30767710 PMCID: PMC6563116 DOI: 10.2217/pgs-2018-0188] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clozapine is the only effective antipsychotic for treatment-resistant schizophrenia but remains widely under prescribed, at least in part due to its potential to cause agranulocytosis and neutropenia. In this article, we provide an overview of the current understanding of the genetics of clozapine-associated agranulocytosis and neutropenia. We now know that the genetic etiology of clozapine-associated neutropenia is complex and is likely to involve variants from several genes including HLA-DQB1, HLA-B and SLCO1B3/SLCO1B7. We describe recent findings relating to the Duffy-null genotype and its association with benign neutropenia in individuals with African ancestry. Further advances will come from sequencing studies, large, cross-population studies and in understanding the molecular mechanisms underlying these associations.
Collapse
Affiliation(s)
- Sophie E Legge
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| | - James Tr Walters
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
3
|
Numata S, Umehara H, Ohmori T, Hashimoto R. Clozapine Pharmacogenetic Studies in Schizophrenia: Efficacy and Agranulocytosis. Front Pharmacol 2018; 9:1049. [PMID: 30319405 PMCID: PMC6169204 DOI: 10.3389/fphar.2018.01049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Clozapine is an efficacious atypical antipsychotic for treatment-refractory schizophrenia. Clinical response and appearance of adverse events vary among individual patients receiving clozapine, with genetic and non-genetic factors potentially contributing to individual variabilities. Pharmacogenetic studies investigate associations between genetic variants and drug efficacy and toxicity. To date, most pharmacogenetic studies of clozapine have been conducted through candidate gene approaches. A recent advance in technology made it possible to perform comprehensive genetic mapping underlying clinical phenotypes and outcomes, which allow novel findings beyond biological hypotheses based on current knowledge. In this paper, we will summarize the studies on clozapine pharmacogenetics that have extensively examined clinical response and agranulocytosis. While there is still limited evidence on clozapine efficacy, recent genome-wide studies provide further evidence of the involvement of the human leukocyte antigen (HLA) region in clozapine-induced agranulocytosis.
Collapse
Affiliation(s)
- Shusuke Numata
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hidehiro Umehara
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuro Ohmori
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan.,Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
4
|
Piatkov I, Caetano D, Assur Y, Lau SL, Jones T, Boyages SC, McLean M. ABCB1 and ABCC1 single-nucleotide polymorphisms in patients treated with clozapine. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:235-242. [PMID: 28919802 PMCID: PMC5587196 DOI: 10.2147/pgpm.s142314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Clozapine (CZ) has superior efficacy to other antipsychotic agents in the treatment of schizophrenia and has been extensively used in clinical practice. ATP-binding cassette (ABC) transporter proteins are responsible for the distribution of various molecules as well as drugs across extracellular and intracellular membranes, including the blood-brain barrier. Genetic variations in these proteins can account for differences in treatment response. We investigated the influence of ABCB1 rs1045642 and ABCC1 rs212090 single-nucleotide polymorphisms (SNPs) on CZ serum level, clinical outcome, and changes in body mass index (BMI) in the first year of CZ treatment. These polymorphisms influenced baseline BMI in males (p=0.009 and 0.054, B1 and C1, respectively), changes in BMI in males after 3 (p=0.026, ABCB1) and 12 months (p=0.022, ABCC1) of CZ treatment, and level of diastolic pressure (p=0.002 and 0.051, respectively). The combination of ABCB1 + ABCC1 homozygote SNPs was associated with increased CZ and norclozapine serum levels (p=0.054 and 0.010, respectively). ABC transporter SNPs could be potential biomarkers for CZ-induced weight gain and cardiovascular complications. Further pharmacogenetic research is warranted to help clinicians with their treatment decision, including concomitant use of drugs and prevention of side effects.
Collapse
Affiliation(s)
- Irina Piatkov
- University Clinic and Research Centre Blacktown, Western Sydney University, Western Sydney Local Health District, Blacktown, NSW, Australia
| | - Dorgival Caetano
- University Clinic and Research Centre Blacktown, Western Sydney University, Western Sydney Local Health District, Blacktown, NSW, Australia
| | - Yolinda Assur
- University Clinic and Research Centre Blacktown, Western Sydney University, Western Sydney Local Health District, Blacktown, NSW, Australia
| | - Sue Lynn Lau
- University Clinic and Research Centre Blacktown, Western Sydney University, Western Sydney Local Health District, Blacktown, NSW, Australia
| | - Trudi Jones
- University Clinic and Research Centre Blacktown, Western Sydney University, Western Sydney Local Health District, Blacktown, NSW, Australia
| | - Steven C Boyages
- University Clinic and Research Centre Blacktown, Western Sydney University, Western Sydney Local Health District, Blacktown, NSW, Australia
| | - Mark McLean
- University Clinic and Research Centre Blacktown, Western Sydney University, Western Sydney Local Health District, Blacktown, NSW, Australia
| |
Collapse
|
5
|
de With SAJ, Pulit SL, Staal WG, Kahn RS, Ophoff RA. More than 25 years of genetic studies of clozapine-induced agranulocytosis. THE PHARMACOGENOMICS JOURNAL 2017; 17:304-311. [PMID: 28418011 DOI: 10.1038/tpj.2017.6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/23/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Clozapine is one of the most effective atypical antipsychotic drugs prescribed to patients with treatment-resistant schizophrenia. Approximately 1% of patients experience potential life-threatening adverse effects in the form of agranulocytosis, greatly hindering its applicability in clinical practice. The etiology of clozapine-induced agranulocytosis (CIA) remains unclear, but is thought to be a heritable trait. We reviewed the genetic studies of CIA published thus far. One recurrent finding from early candidate gene study to more recent genome-wide analysis is that of the involvement of human leukocyte antigen locus. We conclude that CIA is most likely a complex, polygenic trait, which may hamper efforts to the development of a genetic predictor test with clinical relevance. To decipher the genetic architecture of CIA, it is necessary to apply more rigorous standards of phenotyping and study much larger sample sizes.
Collapse
Affiliation(s)
- S A J de With
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S L Pulit
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W G Staal
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands.,Department of Psychiatry, Radboud University Nijmegen Medical Center and Karakter, Center for Child and Adolescent Psychiatry, Nijmegen, The Netherlands
| | - R S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R A Ophoff
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.,UCLA Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Relation of the Allelic Variants of Multidrug Resistance Gene to Agranulocytosis Associated With Clozapine. J Clin Psychopharmacol 2016; 36:257-61. [PMID: 27043126 DOI: 10.1097/jcp.0000000000000495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Clozapine use is associated with leukopenia and more rarely agranulocytosis, which may be lethal. The drug and its metabolites are proposed to interact with the multidrug resistance transporter (ABCB1/MDR1) gene product, P-glycoprotein (P-gp). Among various P-glycoprotein genetic polymorphisms, nucleotide changes in exons 26 (C3435T), 21 (G2677T), and 12 (C1236T) have been implicated for changes in pharmacokinetics and pharmacodynamics of many substrate drugs. In this study, we aimed to investigate the association between these specific ABCB1 polymorphisms and clozapine-associated agranulocytosis (CAA). Ten patients with a history of CAA and 91 control patients without a history of CAA, despite 10 years of continuous clozapine use, were included. Patient recruitment and blood sample collection were conducted at the Hacettepe University Faculty of Medicine, Department of Psychiatry, in collaboration with the members of the Schizophrenia and Other Psychotic Disorders Section of the Psychiatric Association of Turkey, working in various psychiatry clinics. After DNA extraction from peripheral blood lymphocytes, genotyping was performed using polymerase chain reaction and endonuclease digestion. Patients with CAA had shorter duration of clozapine use but did not show any significant difference in other clinical, sociodemographic characteristics and in genotypic or allelic distributions of ABCB1 variants and haplotypes compared with control patients. Among the 10 patients with CAA, none carried the ABCB1 all-variant haplotype (TT-TT-TT), whereas the frequency of this haplotype was approximately 12% among the controls. Larger sample size studies and thorough genetic analyses may reveal both genetic risk and protective factors for this serious adverse event.
Collapse
|
7
|
van der Weide K, Loovers H, Pondman K, Bogers J, van der Straaten T, Langemeijer E, Cohen D, Commandeur J, van der Weide J. Genetic risk factors for clozapine-induced neutropenia and agranulocytosis in a Dutch psychiatric population. THE PHARMACOGENOMICS JOURNAL 2016; 17:471-478. [PMID: 27168101 DOI: 10.1038/tpj.2016.32] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/03/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022]
Abstract
Prescription of clozapine is complicated by the occurrence of clozapine-induced reduction of neutrophils. The aim of this study was to identify genetic risk factors in a population of 310 Dutch patients treated with clozapine, including 38 patients developing neutropenia and 31 patients developing agranulocytosis. NQO2 1541AA (NRH quinone oxidoreductase 2; protects cells against oxidative metabolites) was present at a higher frequency in agranulocytosis patients compared with control (23% versus 7%, P=0.03), as was ABCB1 (ABC-transporter-B1; drug efflux transporter) 3435TT (32% versus 20%, P=0.05). In patients developing neutropenia, ABCB1 3435TT and homozygosity for GSTT1null (glutathione-S-transferase; conjugates reactive clozapine metabolites into glutathione) were more frequent compared with control (34% versus 20%, P=0.05 and 31% versus 14%, P=0.03), whereas GSTM1null was less frequent in these patients (31% versus 52%, P=0.03). To investigate whether combinations of the identified genetic risk factors have a higher predictive value, should be confirmed in a larger case-control study.
Collapse
Affiliation(s)
- K van der Weide
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, The Netherlands
| | - H Loovers
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, The Netherlands.,Psychiatric Hospital GGz Centraal, Dependance Meerkanten, Ermelo, The Netherlands
| | - K Pondman
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, The Netherlands
| | - J Bogers
- Mental Health Services Rivierduinen, Oegstgeest, The Netherlands
| | - T van der Straaten
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - E Langemeijer
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - D Cohen
- Mental Health Services North-Holland North, Heerhugowaard, The Netherlands
| | - J Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU Amsterdam, Amsterdam, The Netherlands
| | - J van der Weide
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, The Netherlands.,Psychiatric Hospital GGz Centraal, Dependance Meerkanten, Ermelo, The Netherlands
| |
Collapse
|
8
|
Aydin M, Ilhan BC, Calisir S, Yildirim S, Eren I. Continuing clozapine treatment with lithium in schizophrenic patients with neutropenia or leukopenia: brief review of literature with case reports. Ther Adv Psychopharmacol 2016; 6:33-8. [PMID: 26913176 PMCID: PMC4749743 DOI: 10.1177/2045125315624063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Clozapine is a second-generation antipsychotic used for treatment-resistant schizophrenia. Despite its effectiveness, clozapine is largely underused due to serious side effects such as leukopenia or neutropenia. We aimed to review whether to continue, discontinue or rechallenge clozapine treatment after such haematological side effects. METHODS We reviewed and summarized the literature on the use of clozapine, how to deal with its side effects, and suitable options in case of any haematological problems. Then, we described several cases successfully treated with clozapine and lithium after development of neutropenia or leukopenia. RESULTS We present three patients with treatment-resistant schizophrenia. While they had demonstrated poor response to multiple antipsychotic trials, clozapine was started. Clozapine induced neutropenia; or leukopenia developed in some cases that was successfully reversed after lithium onset. Increased serious side effects related with coprescription of lithium and clozapine were not observed. CONCLUSION Lithium increases neutrophil and total white blood cell count as a side effect that may be useful in patients who develop neutropenia or leukopenia while being treated with clozapine.
Collapse
Affiliation(s)
- Memduha Aydin
- Konya Training and Research Hospital, Department of Psychiatry, Selcuklu, 42130, Konya, Turkey
| | | | | | | | | |
Collapse
|
9
|
Kohlrausch FB. Pharmacogenetics in schizophrenia: a review of clozapine studies. BRAZILIAN JOURNAL OF PSYCHIATRY 2014; 35:305-17. [PMID: 24142094 DOI: 10.1590/1516-4446-2012-0970] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/19/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Clozapine is quite effective to treat schizophrenia, but its use is complicated by several factors. Although many patients respond to antipsychotic therapy, about 50% of them exhibit inadequate response, and ineffective medication trials may entail weeks of unremitted illness, potential adverse drug reactions, and treatment nonadherence. This review of the literature sought to describe the main pharmacogenetic studies of clozapine and the genes that potentially influence response to treatment with this medication in schizophrenics. METHODS We searched the PubMed database for studies published in English in the last 20 years using keywords related to the topic. RESULTS AND CONCLUSIONS Our search yielded 145 studies that met the search and selection criteria. Of these, 21 review articles were excluded. The 124 studies included for analysis showed controversial results. Therefore, efforts to identify key gene mechanisms that will be useful in predicting clozapine response and side effects have not been fully successful. Further studies with new analysis approaches and larger sample sizes are still required.
Collapse
|
10
|
|
11
|
Moons T, de Roo M, Claes S, Dom G. Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics 2011; 12:1193-211. [PMID: 21843066 DOI: 10.2217/pgs.11.55] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The membrane transport protein P-glycoprotein (P-gp) is an interesting candidate for individual differences in response to antipsychotics. To present an overview of the current knowledge of P-gp and its interaction with second-generation antipsychotics (SGAs), an internet search for all relevant English original research articles concerning P-gp and SGAs was conducted. Several SGAs are substrates for P-gp in therapeutic concentrations. These include amisulpride, aripiprazole, olanzapine, perospirone, risperidone and paliperidone. Clozapine and quetiapine are not likely to be substrates of P-gp. However, most antipsychotics act as inhibitors of P-gp, and can therefore influence plasma and brain concentrations of other substrates. No information was available for sertindole, ziprasidone or zotepine. Research in animal models demonstrated significant differences in antipsychotic brain concentration and behavior owing to both P-gp knockout and inhibition. Results in patients are less clear, as several external factors have to be accounted for. Patients with polymorphisms which decrease P-gp functionality tend to perform better in clinical settings. There is some variability in the findings concerning adverse effects, and no definitive conclusions can be drawn at this point.
Collapse
Affiliation(s)
- Tim Moons
- University Psychiatric Centre, Catholic University Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|