1
|
Silberbauer LR, Rischka L, Vraka C, Hartmann AM, Godbersen GM, Philippe C, Pacher D, Nics L, Klöbl M, Unterholzner J, Stimpfl T, Wadsak W, Hahn A, Hacker M, Rujescu D, Kasper S, Lanzenberger R, Gryglewski G. ABCB1 variants and sex affect serotonin transporter occupancy in the brain. Mol Psychiatry 2022; 27:4502-4509. [PMID: 36071112 PMCID: PMC7613909 DOI: 10.1038/s41380-022-01733-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Strategies to personalize psychopharmacological treatment promise to improve efficacy and tolerability. We measured serotonin transporter occupancy immediately after infusion of the widely prescribed P-glycoprotein substrate citalopram and assessed to what extent variants of the ABCB1 gene affect drug target engagement in the brain in vivo. A total of 79 participants (39 female) including 31 patients with major depression and 48 healthy volunteers underwent two PET/MRI scans with the tracer [11C]DASB and placebo-controlled infusion of citalopram (8 mg) in a cross-over design. We tested the effect of six ABCB1 single nucleotide polymorphisms and found lower SERT occupancy in ABCB1 rs2235015 minor allele carriers (n = 26, MAF = 0.18) compared to major allele homozygotes (t73 = 2.73, pFWE < 0.05) as well as in men compared to women (t73 = 3.33, pFWE < 0.05). These effects were robust to correction for citalopram plasma concentration, age and diagnosis. From occupancy we derived the ratio of occupied to unoccupied SERT, because in theory this measure is equal to the product of drug affinity and concentration at target sites. A model combining genotype with basic clinical variables, predicted that, at the same dosage, occupied to unoccupied SERT ratio was -14.48 ± 5.38% lower in rs2235015 minor allele carriers, +19.10 ± 6.95% higher in women, -4.83 ± 2.70% lower per 10 kg bodyweight, and -2.68 ± 3.07% lower per 10 years of age. Our results support the exploration of clinical algorithms with adjustment of initial citalopram dosing and highlight the potential of imaging-genetics for precision pharmacotherapy in psychiatry.
Collapse
Affiliation(s)
- Leo R. Silberbauer
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Lucas Rischka
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Annette M. Hartmann
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Godber Mathis Godbersen
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Daniel Pacher
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Stimpfl
- grid.22937.3d0000 0000 9259 8492Clinical Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria ,grid.499898.dCenter for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Andreas Hahn
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- grid.22937.3d0000 0000 9259 8492Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria. .,Child Study Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Post-mortem analysis of suicide victims shows ABCB1 haplotype 1236T-2677T-3435T as a candidate predisposing factor behind adverse drug reactions in females. Pharmacogenet Genomics 2019; 28:99-106. [PMID: 29481489 DOI: 10.1097/fpc.0000000000000328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Genetic variation in efflux transporter, permeability glycoprotein (P-gp), has recently been associated with completed violent suicides and also violent suicide attempts. As depression is known to be a risk factor for suicide and many antidepressants are P-gp substrates, it has been speculated that inadequate antidepressant treatment response or adverse side effects could be involved. OBJECTIVES The aim of this study was to investigate whether there is an association between the P-gp coding ABCB1 gene and completed suicides in citalopram users. Also, the effect of sex and suicide method used (violent vs. non-violent) was evaluated. MATERIALS AND METHODS All cases included in the study population, 349 completed suicide victims and 284 controls, were shown to be positive for antidepressant citalopram in a post-mortem toxicological drug screen. ABCB1 1236C>T, 2677G>T/A and 3435C>T polymorphisms were determined by TaqMan genotyping assays. Haplotypes were constructed from genotype data using the PHASE software. The association between the manner of death and the ABCB1 haplotype was tested with logistic regression analysis. RESULTS No statistically significant differences were observed in the ABCB1 allele or genotype frequencies between the suicide and control groups. However, the ABCB1 1236T-2677T-3435T haplotype was associated with completed suicides of female citalopram users (odds ratio: 2.23; 95% confidence interval: 1.22-4.07; P=0.009). After stratification by the method used for suicide, the association emerged in fatal intoxications (odds ratio: 2.51; 95% confidence interval: 1.29-4.87; P=0.007). In other groups, no statistically significant associations were observed. CONCLUSION Our results suggest that female citalopram users with ABCB1 1236T-2677T-3435T are more vulnerable to adverse effects of the drugs as this haplotype was enriched in non-violent suicides of female citalopram users. Even though the biological mechanism behind this observation is unknown, the results provide another example of the importance of sex-based segregation in pharmacogenetics studies.
Collapse
|
3
|
Pharmacogenomics in Psychiatric Disorders. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Zeier Z, Carpenter LL, Kalin NH, Rodriguez CI, McDonald WM, Widge AS, Nemeroff CB. Clinical Implementation of Pharmacogenetic Decision Support Tools for Antidepressant Drug Prescribing. Am J Psychiatry 2018; 175:873-886. [PMID: 29690793 PMCID: PMC6774046 DOI: 10.1176/appi.ajp.2018.17111282] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The accrual and analysis of genomic sequencing data have identified specific genetic variants that are associated with major depressive disorder. Moreover, substantial investigations have been devoted to identifying gene-drug interactions that affect the response to antidepressant medications by modulating their pharmacokinetic or pharmacodynamic properties. Despite these advances, individual responses to antidepressants, as well as the unpredictability of adverse side effects, leave clinicians with an imprecise prescribing strategy that often relies on trial and error. These limitations have spawned several combinatorial pharmacogenetic testing products that are marketed to physicians. Typically, combinatorial pharmacogenetic decision support tools use algorithms to integrate multiple genetic variants and assemble the results into an easily interpretable report to guide prescribing of antidepressants and other psychotropic medications. The authors review the evidence base for several combinatorial pharmacogenetic decision support tools whose potential utility has been evaluated in clinical settings. They find that, at present, there are insufficient data to support the widespread use of combinatorial pharmacogenetic testing in clinical practice, although there are clinical situations in which the technology may be informative, particularly in predicting side effects.
Collapse
Affiliation(s)
- Zane Zeier
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| | - Linda L Carpenter
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| | - Ned H Kalin
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| | - Carolyn I Rodriguez
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| | - William M McDonald
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| | - Alik S Widge
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| | - Charles B Nemeroff
- From the Department of Psychiatry and Behavioral Sciences and the Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami; Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif.; Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif.; the Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta; the Department of Psychiatry, Massachusetts General Hospital, Charlestown; and the Center on Aging, University of Miami Leonard M. Miller School of Medicine, Miami
| |
Collapse
|
5
|
Abstract
Pharmacogenetics is the study of how genetics influences drug treatment outcomes. Much research has been conducted to identify and characterize gene variants that impact the pharmacokinetic and pharmacodynamic aspects of medications used to treat neurologic and psychiatric disorders. This chapter reviews the current state of pharmacogenetic aspects of these treatments. Medications with supporting pharmacogenetic information in product labeling, clinical guidelines, or important mechanistic implications are discussed. At this time, clinically relevant genetic variation in drug metabolizing enzymes may inform drug dosing for a number of medications metabolized in the liver. Additionally, genetic variation in immunological genes may be tested to assess risk for severe hypersensitivity reactions to some anticonvulsant drugs. Finally, a growing body of research highlights that genetic polymorphisms in drug targets may influence symptom response or tolerability to some treatments.
Collapse
Affiliation(s)
- Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
6
|
Daud ANA, Bergman JEH, Kerstjens-Frederikse WS, van der Vlies P, Hak E, Berger RMF, Groen H, Wilffert B. Prenatal exposure to serotonin reuptake inhibitors and congenital heart anomalies: an exploratory pharmacogenetics study. Pharmacogenomics 2017. [PMID: 28639488 DOI: 10.2217/pgs-2017-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To explore the role of pharmacogenetics in determining the risk of congenital heart anomalies (CHA) with prenatal use of serotonin reuptake inhibitors. METHODS We included 33 case-mother dyads and 2 mother-only (child deceased) cases of CHA in a case-only study. Ten genes important in determining fetal exposure to serotonin reuptake inhibitors were examined: CYP1A2, CYP2C9, CYP2C19, CYP2D6, ABCB1, SLC6A4, HTR1A, HTR1B, HTR2A and HTR3B. RESULTS Among the exposed cases, polymorphisms that tended to be associated with an increased risk of CHA were SLC6A4 5-HTTLPR and 5-HTTVNTR, HTR1A rs1364043, HTR1B rs6296 and rs6298 and HTR3B rs1176744, but none reached statistical significance due to our limited sample sizes. CONCLUSION We identified several polymorphisms that might potentially affect the risk of CHA among exposed fetuses, which warrants further investigation.
Collapse
Affiliation(s)
- Aizati N A Daud
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Department of Pharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands.,School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Jorieke E H Bergman
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Pieter van der Vlies
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eelko Hak
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Department of Pharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Rolf M F Berger
- Department of Pediatric Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Henk Groen
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bob Wilffert
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Department of Pharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Pharmacogenetics and Imaging-Pharmacogenetics of Antidepressant Response: Towards Translational Strategies. CNS Drugs 2016; 30:1169-1189. [PMID: 27752945 DOI: 10.1007/s40263-016-0385-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genetic variation underlies both the response to antidepressant treatment and the occurrence of side effects. Over the past two decades, a number of pharmacogenetic variants, among these the SCL6A4, BDNF, FKBP5, GNB3, GRIK4, and ABCB1 genes, have come to the forefront in this regard. However, small effects sizes, mixed results in independent samples, and conflicting meta-analyses results led to inherent difficulties in the field of pharmacogenetics translating these findings into clinical practice. Nearly all antidepressant pharmacogenetic variants have potentially pleiotropic effects in which they are associated with major depressive disorder, intermediate phenotypes involved in emotional processes, and brain areas affected by antidepressant treatment. The purpose of this article is to provide a comprehensive review of the advances made in the field of pharmacogenetics of antidepressant efficacy and side effects, imaging findings of antidepressant response, and the latest results in the expanding field of imaging-pharmacogenetics studies. We suggest there is mounting evidence that genetic factors exert their impact on treatment response by influencing brain structural and functional changes during antidepressant treatment, and combining neuroimaging and genetic methods may be a more powerful way to detect biological mechanisms of response than either method alone. The most promising imaging-pharmacogenetics findings exist for the SCL6A4 gene, with converging associations with antidepressant response, frontolimbic predictors of affective symptoms, and normalization of frontolimbic activity following antidepressant treatment. More research is required before imaging-pharmacogenetics informed personalized medicine can be applied to antidepressant treatment; nevertheless, inroads have been made towards assessing genetic and neuroanatomical liability and potential clinical application.
Collapse
|
8
|
Abstract
P-glycoprotein (P-gp), the gene product of ABCB1, is a drug transporter at the blood–brain barrier and could be a limiting factor for entrance of antidepressants into the brain, the target site of antidepressant action. Animal studies showed that brain concentrations of many antidepressants depend on P-gp. In humans, ABCB1 genotyping in the treatment of depression rests on the assumption that genetic variations in ABCB1 explain individual differences in antidepressant response via their effects on P-gp expression at the blood–brain barrier. High P-gp expression is hypothesized to lead to lower and often insufficient brain concentrations of P-gp substrate antidepressants. In this review, we summarize 32 studies investigating the question of whether ABCB1 polymorphisms predict clinical efficacy and/or tolerability of antidepressants in humans and evaluate the clinical application status of ABCB1 genotyping in depression treatment.
Collapse
Affiliation(s)
- Tanja Maria Brückl
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2–10, 80804 Munich, Germany
| | - Manfred Uhr
- Clinical Laboratory, Max Planck Institute of Psychiatry, Kraepelinstr. 2–10, 80804 Munich, Germany
| |
Collapse
|
9
|
Daud ANA, Bergman JEH, Kerstjens-Frederikse WS, Groen H, Wilffert B. The Risk of Congenital Heart Anomalies Following Prenatal Exposure to Serotonin Reuptake Inhibitors-Is Pharmacogenetics the Key? Int J Mol Sci 2016; 17:ijms17081333. [PMID: 27529241 PMCID: PMC5000730 DOI: 10.3390/ijms17081333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Serotonin reuptake inhibitors (SRIs) are often prescribed during pregnancy. Previous studies that found an increased risk of congenital anomalies, particularly congenital heart anomalies (CHA), with SRI use during pregnancy have created concern among pregnant women and healthcare professionals about the safety of these drugs. However, subsequent studies have reported conflicting results on the association between CHA and SRI use during pregnancy. These discrepancies in the risk estimates can potentially be explained by genetic differences among exposed individuals. In this review, we explore the potential pharmacogenetic predictors involved in the pharmacokinetics and mechanism of action of SRIs, and their relation to the risk of CHA. In general, the risk is dependent on the maternal concentration of SRIs and the foetal serotonin level/effect, which can be modulated by the alteration in the expression and/or function of the metabolic enzymes, transporter proteins and serotonin receptors involved in the serotonin signalling of the foetal heart development. Pharmacogenetics might be the key to understanding why some children exposed to SRIs develop a congenital heart anomaly and others do not.
Collapse
Affiliation(s)
- Aizati N A Daud
- Department of Pharmacy, Unit of PharmacoTherapy, -Epidemiology and -Economics, University of Groningen, 9713AV Groningen, The Netherlands.
- School of Pharmaceutical Sciences, Discipline of Clinical Pharmacy, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Jorieke E H Bergman
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713AV Groningen, The Netherlands.
| | | | - Henk Groen
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713AV Groningen, The Netherlands.
| | - Bob Wilffert
- Department of Pharmacy, Unit of PharmacoTherapy, -Epidemiology and -Economics, University of Groningen, 9713AV Groningen, The Netherlands.
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713AV Groningen, The Netherlands.
| |
Collapse
|
10
|
Noordam R, Avery CL, Visser LE, Stricker BH. Identifying genetic loci affecting antidepressant drug response in depression using drug-gene interaction models. Pharmacogenomics 2016; 17:1029-40. [PMID: 27248517 DOI: 10.2217/pgs-2016-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antidepressants are often only moderately successful in decreasing the severity of depressive symptoms. In part, antidepressant treatment response in patients with depression is genetically determined. However, although a large number of studies have been conducted aiming to identify genetic variants associated with antidepressant drug response in depression, only a few variants have been repeatedly identified. Within the present review, we will discuss the methodological challenges and limitations of the studies that have been conducted on this topic to date (e.g., 'treated-only design', statistical power) and we will discuss how specifically drug-gene interaction models can be used to be better able to identify genetic variants associated with antidepressant drug response in depression.
Collapse
Affiliation(s)
- Raymond Noordam
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.,Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Loes E Visser
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Apotheek Haagse Ziekenhuizen - HAGA, The Hague, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.,Inspectorate of Health Care, Utrecht, The Netherlands
| |
Collapse
|
11
|
Abstract
The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in over 1200 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy ). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods.
Collapse
|
12
|
Bet PM, Verbeek EC, Milaneschi Y, Straver DBM, Uithuisje T, Bevova MR, Hugtenburg JG, Heutink P, Penninx BWJH, Hoogendijk WJG. A common polymorphism in the ABCB1 gene is associated with side effects of PGP-dependent antidepressants in a large naturalistic Dutch cohort. THE PHARMACOGENOMICS JOURNAL 2015; 16:202-8. [DOI: 10.1038/tpj.2015.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 11/09/2022]
|
13
|
Jeleń AM, Sałagacka A, Żebrowska MK, Mirowski M, Talarowska M, Gałecki P, Balcerczak EI. The Influence of C3435T Polymorphism of the ABCB1 Gene on Genetic Susceptibility to Depression and Treatment Response in Polish Population - Preliminary Report. Int J Med Sci 2015; 12:974-9. [PMID: 26664259 PMCID: PMC4661296 DOI: 10.7150/ijms.13119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/11/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Despite the high prevalence of depression, the mechanism of the origin of this disease as well as the causes of resistance to therapy in some patients are still not fully understood. Increasingly, the possible role of genetic factors is considered. One of them is polymorphisms in the ABCB1 (MDR1) gene which encodes P-glycoprotein, responsible for the transport of xenobiotics, including antidepressant drugs, through the blood-brain barrier. METHODS C3435T was evaluated in 90 patients with recurrent depressive disorders (rDD). Genotyping was performed using a polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). RESULTS The obtained results indicate that the TT genotype occurred more frequently among patients with rDD than in healthy volunteers (p=0.0441). Also, at least one C allele was present significantly less frequent in the study group than in healthy individuals (p=0.0300). The severity of depressive symptoms was higher among patient with the CC genotype in comparison with the other genotypes (p=0.0106) but treatment response to antidepressants was better in this group than among patients with CT or TT genotypes (p=0.0301). Likewise, patients with the T allele have a significantly lower severity of symptoms (p=0.0026) and decreased therapy effectiveness (p=0.0142) than C allele carriers. CONCLUSIONS This study suggests that C3435T polymorphisms in the ABCB1 gene are strongly associated with a predisposition to depression development, the severity of depressive symptoms and the effectiveness of therapy with using different groups of antidepressant agents.
Collapse
Affiliation(s)
- Agnieszka Maria Jeleń
- 1. Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interdepartmental Chair of Laboratory and Molecular Diagnostics, Medical University of Lodz, Poland
| | - Aleksandra Sałagacka
- 1. Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interdepartmental Chair of Laboratory and Molecular Diagnostics, Medical University of Lodz, Poland
| | - Marta Karolina Żebrowska
- 1. Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interdepartmental Chair of Laboratory and Molecular Diagnostics, Medical University of Lodz, Poland
| | - Marek Mirowski
- 1. Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interdepartmental Chair of Laboratory and Molecular Diagnostics, Medical University of Lodz, Poland
| | - Monika Talarowska
- 2. Department of Adult Psychiatry, Medical University of Lodz, Poland
| | - Piotr Gałecki
- 2. Department of Adult Psychiatry, Medical University of Lodz, Poland
| | - Ewa Izabela Balcerczak
- 1. Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interdepartmental Chair of Laboratory and Molecular Diagnostics, Medical University of Lodz, Poland
| |
Collapse
|
14
|
Ray A, Tennakoon L, Keller J, Sarginson JE, Ryan HS, Murphy GM, Lazzeroni LC, Trivedi MH, Kocsis JH, DeBattista C, Schatzberg AF. ABCB1 (MDR1) predicts remission on P-gp substrates in chronic depression. THE PHARMACOGENOMICS JOURNAL 2014; 15:332-9. [PMID: 25487678 DOI: 10.1038/tpj.2014.72] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/04/2014] [Accepted: 09/19/2014] [Indexed: 01/16/2023]
Abstract
The hypothesis that allelic variation in the multidrug resistance-1 (MDR1 or ABCB1) gene encoding the P-glycoprotein (P-gp) blood-brain barrier efflux pump is associated with remission and side effects was tested in chronic major depression patients treated with P-gp substrates. In 83 patients from the REVAMP trial, frequency of and time to remission as well as side effects was tested among genotype groups at 6 ABCB1 single nucleotide polymorphisms (SNPs). These six SNPs are significantly associated with remission and time to remission, with minor allele carriers on rs2235040 and rs9282564 attaining statistical significance after controlling for the other ABCB1 SNPs. The six ABCB1 SNPs are also significantly associated with the average side effects. However, here common homozygotes on rs2235040 and rs9282564 demonstrated significantly higher side effects after controlling for the effects of the other ABCB1 SNPs. These findings confirm and extend previous observations that minor alleles of two ABCB1 SNPs predict remission to treatment with substrates and demonstrate that common homozygotes on these SNPs experience greater side effects. Results point to the potential importance of ABCB1 variation for personalized medicine approaches to treating depression.
Collapse
Affiliation(s)
- A Ray
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - L Tennakoon
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - J Keller
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - J E Sarginson
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - H S Ryan
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - G M Murphy
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - L C Lazzeroni
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - M H Trivedi
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - J H Kocsis
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - C DeBattista
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - A F Schatzberg
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Poor adherence and discontinuation of treatment are the major challenges of pharmacotherapy among patients with depression. This article reviews the factors predicting adherence to and persistence of antidepressant treatment identified in recent years. RECENT FINDINGS Study populations have been extended to subgroups of patients with depression or depressive patients with comorbid medical conditions. Some studies have investigated the issues by analysing medical claims databases. Socio-demographic variables, clinical features of depression, comorbidities, pharmacological factors, attitudes towards antidepressants, previous experiences of antidepressant treatment, patient-professional relationship and genes were found to be common factors. An older age, positive attitudes to antidepressants and previous experiences and vicarious experiences of depression or treatment were found to be factors predicting better adherence or persistence. Conversely, patients in minority groups, those with a low family income, pregnancy, experience of side effects, dissatisfaction with treatment and a poor patient-professional relationship were found to be associated with poorer adherence or persistence. SUMMARY The factors predicting adherence and persistence are complex and interactive. Different methods of studies have limitations in terms of exploring all these factors. Future studies should integrate these factors simultaneously and explore specific factors predicting adherence and persistence among subgroups of patients with depression.
Collapse
|
16
|
Fabbri C, Minarini A, Niitsu T, Serretti A. Understanding the pharmacogenetics of selective serotonin reuptake inhibitors. Expert Opin Drug Metab Toxicol 2014; 10:1093-118. [PMID: 24930681 DOI: 10.1517/17425255.2014.928693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The genetic background of antidepressant response represents a unique opportunity to identify biological markers of treatment outcome. Encouraging results alternating with inconsistent findings made antidepressant pharmacogenetics a stimulating but often discouraging field that requires careful discussion about cumulative evidence and methodological issues. AREAS COVERED The present review discusses both known and less replicated genes that have been implicated in selective serotonin reuptake inhibitors (SSRIs) efficacy and side effects. Candidate genes studies and genome-wide association studies (GWAS) were collected through MEDLINE database search (articles published till January 2014). Further, GWAS signals localized in promising genetic regions according to candidate gene studies are reported in order to assess the general comparability of results obtained through these two types of pharmacogenetic studies. Finally, a pathway enrichment approach is applied to the top genes (those harboring SNPs with p < 0.0001) outlined by previous GWAS in order to identify possible molecular mechanisms involved in SSRI effect. EXPERT OPINION In order to improve the understanding of SSRI pharmacogenetics, the present review discusses the proposal of moving from the analysis of individual polymorphisms to genes and molecular pathways, and from the separation across different methodological approaches to their combination. Efforts in this direction are justified by the recent evidence of a favorable cost-utility of gene-guided antidepressant treatment.
Collapse
Affiliation(s)
- Chiara Fabbri
- University of Bologna, Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences , Viale Carlo Pepoli 5, 40123 Bologna , Italy +39 051 6584233 ; +39 051 521030 ;
| | | | | | | |
Collapse
|
17
|
Gassó P, Rodríguez N, Mas S, Pagerols M, Blázquez A, Plana MT, Torra M, Lázaro L, Lafuente A. Effect of CYP2D6, CYP2C9 and ABCB1 genotypes on fluoxetine plasma concentrations and clinical improvement in children and adolescent patients. THE PHARMACOGENOMICS JOURNAL 2014; 14:457-62. [DOI: 10.1038/tpj.2014.12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 11/09/2022]
|
18
|
Abstract
BACKGROUND There is wide variation in antidepressant efficacy and tolerability during the treatment of major depressive disorder, a brain disease associated with significant morbidity and mortality risk. The ability to rapidly identify optimal treatment, thereby shortening the time to symptomatic remission, could reduce these risks and associated costs. CONTENT Up to 42% of variance in antidepressant response is associated with common genetic variation, and there are over 10 psychotropic medications for which the US Food and Drug Administration-approved labeling reflects a genetic test. Most published studies have examined functional variations in genes of the cytochrome p450 system, relevant to metabolism of many antidepressants. However, there are few data supporting the clinical usefulness of specific pharmacogenetic tests. Randomized trials and cost-effectiveness studies are emerging, but larger-scale studies are needed. Specific challenges in translating genetic association results to clinical practice include need for replication to address risk of type I error, overestimation of effect sizes, absence of data from generalizable cohorts, and absence of comparative data that would suggest one specific intervention over another. Several opportunities to accelerate development and validation of new tools for stratification remain, including integration of these tests with clinical data or other biomarkers and application of electronic health records for test development and investigation. SUMMARY Although common genetic variation, particularly in genes of the cytochrome p450 system, has been associated with antidepressant response, evidence that this variation may be successfully applied to guide treatment selection is just emerging. Larger-scale studies facilitated by informatics tools will clarify the usefulness of such tests.
Collapse
Affiliation(s)
- Roy H Perlis
- Center for Experimental Drugs and Diagnostics, Massachusetts General Hospital, Boston, MA
| |
Collapse
|