1
|
Guedes Pinto T, de Aguiar GC, da Silva Avanci L, Nunes Dos Santos J, Ramos Cury P, Araki Ribeiro D. Do firefighters constitute a high-risk population for genotoxicity (DNA damage)? A systematic review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-12. [PMID: 39955632 DOI: 10.1080/09603123.2025.2464094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Firefighters regularly undertake high-risk operations in diverse environments, exposing them to extreme temperatures and hazardous pollutants resulting from combustion. For this reason, this systematic review aims to evaluate the potential genotoxicity associated with occupational exposure specific to firefighters. Methodologically, the review included 12 studies assessing genetic damage in firefighters. A thorough quality assessment was performed to account for potential confounding factors, and almost all studies were deemed as either strong or moderate (except for one), ensuring the reliability of the key findings. Likewise, more than half of the articles reviewed (7 out of 12) reported elevated levels of genotoxicity in firefighters, as evidenced by various assays employed in the studies. Taken together, the findings highlight the critical need for implementing biomonitoring strategies for early detection of genotoxicity among firefighters, emphasizing the necessity for further research in this occupational context.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Gabriel Carvalhal de Aguiar
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Lorrany da Silva Avanci
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Jean Nunes Dos Santos
- Department of Periodontics, School of Dentistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Patricia Ramos Cury
- Department of Periodontics, School of Dentistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| |
Collapse
|
2
|
Guedes Pinto T, Dias TA, Renno ACM, de Barros Viana M, Ribeiro DA. The role of genetic polymorphisms for inducing genotoxicity in workers occupationally exposed to benzene: a systematic review. Arch Toxicol 2024; 98:1991-2005. [PMID: 38600397 DOI: 10.1007/s00204-024-03744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Benzene is used worldwide as a major raw material in a number of industrial processes and also a potent airborne pollutant emitted from traffic exhaust fume. The present systematic review aimed to identify potential associations between genetic polymorphisms and occupational benzene-induced genotoxicity. For this purpose, a total of 22 selected studies were carefully analysed. Our results revealed a positive relation between gene polymorphism and genotoxicity in individuals exposed to benzene, since 17 studies (out of 22) observed positive relations between genotoxicity and polymorphisms in xenobiotics metabolizing genes influencing, therefore, individuals' susceptibility to genomic damage induced by benzene. In other words, individuals with some genotypes may show increase or decrease DNA damage and/or higher or lower DNA-repair potential. As for the quality assessment, 17 studies (out of 22) were categorized as Strong or Moderate and, therefore, we consider our findings to be trustworthy. Taken together, such findings are consistent with the notion that benzene induces genotoxicity in mammalian cells being strongly dependent on the genetic polymorphism. Certainly, such findings are important for clarifying the role of biomarkers related to genotoxicity in human biomonitoring studies.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Thayza Aires Dias
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Milena de Barros Viana
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil.
| |
Collapse
|
3
|
Yang JH, Liu WZ, Sun Y, Zhao QK, Zhang XT, Xia ZL, Au W, Sun P. An exploration of biomarkers for noise exposure: mitochondrial DNA copy number and micronucleus frequencies in Chinese workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2430-2440. [PMID: 37669754 DOI: 10.1080/09603123.2023.2253739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
Few studies have been conducted that use biomarkers as early warning signals for noise-associated health hazards. To explore potentially effective biomarkers for noise-exposed populations, we recruited 218 noise-exposed male workers in China. We calculated cumulative noise exposure (CNE) through noise intensity and noise-exposed duration. When the model was fully adjusted, ln-transformed relative mitochondrial DNA copy number (mtDNAcn) decreased by 0.014 (95% confidence interval (CI): -0.026, -0.003) units with each 1 dB(A)∙year increase in CNE levels. CNE was further included in the model as a grouping variable, and the results showed a negative dose-effect relationship between relative mtDNAcn and CNE (P-trend = 0.045). However, we did not find a correlation between CNE and micronucleus (MN) frequencies. Our findings suggest that CNE in workers was associated with a decrease in relative mtDNAcn which may provide a potential biomarker for noise and for certain health risk but not with MN frequencies.
Collapse
Affiliation(s)
- Jia-Hao Yang
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Wu-Zhong Liu
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Yuan Sun
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Qian-Kui Zhao
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Xue-Tao Zhang
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - William Au
- Pharmacy, Science and Technology, University of Medicine, Targu Mures, Romania
- Occupational Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Pin Sun
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Wang T, Cao Y, Xia Z, Christiani DC, Au WW. Review on novel toxicological effects and personalized health hazard in workers exposed to low doses of benzene. Arch Toxicol 2024; 98:365-374. [PMID: 38142431 DOI: 10.1007/s00204-023-03650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Several recent reports indicate health hazards for workers with below occupational limit exposure to benzene (BZ). Our updated review indicates that such low exposures induced traditional as well as novel toxicity/genotoxicity, e.g., increased mitochondria copy numbers, prolongation of telomeres, impairment of DNA damage repair response (DDRR), perturbations of expression in non-coding RNAs, and epigenetic changes. These abnormalities were associated with alterations of gene expression and cellular signaling pathways which affected hematopoietic cell development, expression of apoptosis, autophagy, etc. The overarching mechanisms for induction of health risk are impaired DDRR, inhibition of tumor suppressor genes, and changes of MDM2-p53 axis activities that contribute to perturbed control for cancer pathways. Evaluation of the unusual dose-responses to BZ exposure indicates cellular over-compensation and reprogramming to overcome toxicity and to promote survival. However, these abnormal mechanisms also promote the induction of leukemia. Further investigations indicate that the current exposure limits for workers to BZ are unacceptable. Based on these studies, the new exposure limits should be less than 0.07 ppm rather than the current 1 ppm. This review also emphasizes the need to conduct appropriate bioassays, and to provide more reliable decisions on health hazards as well as on exposure limits for workers. In addition, it is important to use scientific data to provide significantly improved risk assessment, i.e., shifting from a population- to an individual-based risk assessment.
Collapse
Affiliation(s)
- Tongshuai Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yiyi Cao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhaolin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - David C Christiani
- Department of Environmental Health, Harvard University TH Chan School of Public Health, Harvard Medical School, Boston, MA, USA
| | - William W Au
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
5
|
Cao Y, Wang T, Xi J, Tian W, Liu W, Sun Y, Liu W, You X, Li A, Zhang G, Zhang X, Xia ZL, Luan Y. Benchmark dose estimation among benzene-exposed workers in China: Based on quantitative multi-endpoint genotoxicity assessments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121765. [PMID: 37142205 DOI: 10.1016/j.envpol.2023.121765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Based on previous exposure studies, benzene (BZ) has been classified as a human carcinogen and occupational exposure limit (OELs) to BZ has been set to be about 1 ppm around the world. However, health hazards have still been reported with exposure below the OEL. Thus, the OEL needs to be updated to reduce health risk. The overall aim of our study was therefore to generate new OEL for BZ via a benchmark dose (BMD) approach and based on quantitative and multi-endpoint genotoxicity assessments. Genotoxicities were determined using the novel human PIG-A gene mutation assay, the micronucleus (MN) test and the COMET assay in benzene-exposed workers. Among the 104 workers with below current OELs, they exhibited significantly higher PIG-A mutant frequencies (MFs) (15.96 ± 14.41 × 10-6) and MN frequencies (11.55 ± 6.83‰) than among the general subjects (PIG-A MFs: 5.45 ± 4.56 × 10-6, MN frequencies: 4.51 ± 1.58‰), but no difference in the COMET assay. A significant association was also observed between BZ exposures and PIG-A MFs and MN frequencies (P < 0.001). Our results indicate that health hazards were induced among workers with below OEL exposures. Based on results from the PIG-A and MN assays, the lower confidence limit of the BMD (BMDL) were calculated to be 8.71 mg/m3-year and 0.44 mg/m3-year, respectively. Based on these calculations, the OEL for BZ was determined to be lower than 0.07 ppm. This value can be considered by regulatory agencies to set new exposure limits and to better protect workers.
Collapse
Affiliation(s)
- Yiyi Cao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tongshuai Wang
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China
| | - Jing Xi
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Tian
- School of Public Health, Xinjiang Medical University, Urumqi, 830000, China
| | - Weiying Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuan Sun
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, 200000, China
| | - Wuzhong Liu
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, 200000, China
| | - Xinyue You
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Anqi Li
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China
| | - Guanghui Zhang
- School of Public Health, 3rd Army University of Medical Science, China
| | - XinYu Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China; School of Public Health, Xinjiang Medical University, Urumqi, 830000, China
| | - Yang Luan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Zhang Z, Liu X, Guo C, Zhang X, Zhang Y, Deng N, Lai G, Yang A, Huang Y, Dang S, Zhu Y, Xing X, Xiao Y, Deng Q. Hematological Effects and Benchmark Doses of Long-Term Co-Exposure to Benzene, Toluene, and Xylenes in a Follow-Up Study on Petrochemical Workers. TOXICS 2022; 10:502. [PMID: 36136467 PMCID: PMC9501893 DOI: 10.3390/toxics10090502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Benzene, toluene, and xylenes (BTX) commonly co-exist. Exposure to individual components and BTX-rich mixtures can induce hematological effects. However, the hematological effects of long-term exposure to BTX are still unclear, and respective reference levels based on empirical evidence should be developed. We conducted a follow-up study in BTX-exposed petrochemical workers. Long-term exposure levels were quantified by measuring cumulative exposure (CE). Generalized weighted quantile sum (WQS) regression models and Benchmark Dose (BMD) Software were used to evaluate their combined effects and calculate their BMDs, respectively. Many hematologic parameters were significantly decreased at the four-year follow-up (p < 0.05). We found positive associations of CE levels of benzene, toluene, and xylene with the decline in monocyte counts, lymphocyte counts, and hematocrit, respectively (β > 0.010, Ptrend < 0.05). These associations were stronger in subjects with higher baseline parameters, males, drinkers, or overweight subjects (Pinteraction < 0.05). BTX had positive combined effects on the decline in monocyte counts, red-blood-cell counts, and hemoglobin concentrations (Ptrend for WQS indices < 0.05). The estimated BMDs for CE levels of benzene, toluene, and xylene were 2.138, 1.449, and 2.937 mg/m3 × year, respectively. Our study demonstrated the hematological effects of long-term BTX co-exposure and developed 8h-RELs of about 0.01 ppm based on their hematological effects.
Collapse
Affiliation(s)
- Zhaorui Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaofan Guo
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinjie Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingying Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Na Deng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanchao Lai
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Aichu Yang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Yongshun Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Shanfeng Dang
- Occupational Disease Prevention and Treatment Institute of Sinopec Maoming Petrochemical Company, Maoming 525000, China
| | - Yanqun Zhu
- Occupational Disease Prevention and Treatment Institute of Sinopec Maoming Petrochemical Company, Maoming 525000, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qifei Deng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
7
|
Verma N, Pandit S, Gupta PK, Kumar S, Kumar A, Giri SK, Yadav G, Priya K. Occupational health hazards and wide spectrum of genetic damage by the organic solvent fumes at the workplace: A critical appraisal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30954-30966. [PMID: 35102507 DOI: 10.1007/s11356-022-18889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Long-term exposure to organic solvents is known to affect human health posing serious occupational hazards. Organic solvents are genotoxic, and they can cause genetic changes in the exposed employees' somatic or germ cells. Chemicals such as benzene, toluene, and gasoline induce an excessive amount of genotoxicity results either in genetic polymorphism or culminates in deleterious mutations when concentration crosses the threshold limits. The impact of genotoxicity is directly related to the time of exposure, types, and quantum of solvent. Genotoxicity affects almost all the physiological systems, but the most vulnerable ones are the nervous system, reproductive system, and blood circulatory system. Based on the available literature report, we propose to evaluate the outcomes of such chemicals on the exposed humans at the workplace. Attempts would be made to ascertain if the long-term exposure makes a person resistant to such chemicals. This may seem to be a far-fetched idea but has not been studied. The health prospect of this study is envisaged to complement the already existing data facilitating a deeper understanding of the genotoxicity across the population. This would also demonstrate if it correlates with the demographic profile of the population and contributes to comorbidity and epidemiology.
Collapse
Affiliation(s)
- Neha Verma
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Soumya Pandit
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Piyush Kumar Gupta
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Sanjay Kumar
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Anil Kumar
- Center of Medical Biotechnology, Maharishi Dayanand University, Rohtak Haryana, HR, 124001, India
| | - Shiv Kumar Giri
- Department of Biotechnology, Maharaja Agrasen University, Baddi, HP, India
| | - Gulab Yadav
- Department of Biotechnology, Maharaja Agrasen University, Baddi, HP, India
| | - Kanu Priya
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India.
| |
Collapse
|
8
|
Kirsch-Volders M, Fenech M. Inflammatory cytokine storms severity may be fueled by interactions of micronuclei and RNA viruses such as COVID-19 virus SARS-CoV-2. A hypothesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108395. [PMID: 34893160 PMCID: PMC8479308 DOI: 10.1016/j.mrrev.2021.108395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022]
Abstract
In this review we bring together evidence that (i) RNA viruses are a cause of chromosomal instability and micronuclei (MN), (ii) those individuals with high levels of lymphocyte MN have a weakened immune response and are more susceptible to RNA virus infection and (iii) both RNA virus infection and MN formation can induce inflammatory cytokine production. Based on these observations we propose a hypothesis that those who harbor elevated frequencies of MN within their cells are more prone to RNA virus infection and are more likely, through combined effects of leakage of self-DNA from MN and RNA from viruses, to escalate pro-inflammatory cytokine production via the cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING) and the Senescence Associated Secretory Phenotype (SASP) mechanisms to an extent that is unresolvable and therefore confers high risk of causing tissue damage by an excessive and overtly toxic immune response. The corollaries from this hypothesis are (i) those with abnormally high MN frequency are more prone to infection by RNA viruses; (ii) the extent of cytokine production and pro-inflammatory response to infection by RNA viruses is enhanced and possibly exceeds threshold levels that may be unresolvable in those with elevated MN levels in affected organs; (iii) reduction of MN frequency by improving nutrition and life-style factors increases resistance to RNA virus infection and moderates inflammatory cytokine production to a level that is immunologically efficacious and survivable.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Michael Fenech
- Genome Health Foundation, North Brighton, SA, 5048, Australia; Clinical and Health Sciences, University of South Australia, SA, 5000, Australia; Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Ji B, Xiao LY, Ren JC, Zhang GH, Wang Y, Dong T, Li J, Zhang F, Xia ZL. Gene-Environment Interactions Between Environmental Response Genes Polymorphisms and Mitochondrial DNA Copy Numbers Among Benzene Workers. J Occup Environ Med 2021; 63:e408-e415. [PMID: 34184658 DOI: 10.1097/jom.0000000000002225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To determine the effect of mitochondrial DNA copy number (mtDNAcn) as a biomarker of benzene exposure. METHODS A total of 294 benzene-exposed workers and 102 controls were recruited. Biomarkers of mtDNAcn, cytokinesis-block micronucleus (MN) frequency, and peripheral blood white blood cells (WBC) were detected. Eighteen polymorphism sites in DNA damage repair and metabolic genes were analyzed. RESULTS Benzene exposure increased mtDNAcn and indicated a dose-response relationship (P < 0.001). mtDNAcn was negatively correlated with WBC count and DNA methylation and positively correlated with MN frequency. The AG type in rs1695 interacted with benzene exposure to aggravate mtDNAcn (β = 0.006, 95% CI: 0, 0.012, P = 0.050). rs13181, rs1695, rs1800975, and GSTM1 null were associated with benzene-induced mtDNAcn. Rs1695 interacted with benzene to increase mitochondrial damage. CONCLUSIONS Benzene exposure increases mtDNAcn levels in benzene-exposed workers.
Collapse
Affiliation(s)
- Buqiang Ji
- Department of Hematology, Linyi People's Hospital, 27 Jifang Road, Linyi, China (Ji, Xiao), School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, China (Ren, Zhang, Wang, Dong, Li, Zhang), Department of Occupational Health and Toxicology, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, China (Xia)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Poça KSD, Giardini I, Silva PVB, Geraldino BR, Bellomo A, Alves JA, Conde TR, Zamith HPDS, Otero UB, Ferraris FK, Friedrich K, Sarpa M. Gasoline-station workers in Brazil: Benzene exposure; Genotoxic and immunotoxic effects. Mutat Res 2021; 865:503322. [PMID: 33865537 DOI: 10.1016/j.mrgentox.2021.503322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Chronic exposure to benzene is a risk factor for hematological malignancies. Gasoline-station workers are exposed to benzene in gasoline, via both inhalation and dermal contact (attendants and managers) or inhalation (workers in the on-site convenience stores and offices). We have studied the exposure of these workers to benzene and the resulting genotoxic and immunotoxic effects. Levels of urinary trans, trans-muconic acid were higher among gasoline-station workers than among office workers with no known exposure to benzene (comparison group). Among the exposed workers, we observed statistically significant biological effects, including elevated DNA damage (comet assay); higher frequencies of micronuclei and nuclear buds (CBMN assay); lower levels of T-helper lymphocytes and naive Th lymphocytes; lower CD4 / CD8 ratio; and higher levels of NK cells and memory Th lymphocytes. Both groups of exposed workers (inhalation and inhalation + dermal routes) showed similar genotoxic and immunotoxic effects.
Collapse
Affiliation(s)
- Katia Soares da Poça
- Área Técnica Ambiente, Trabalho e Câncer, Instituto Nacional de Câncer José Alencar Gomes da Silva - INCA, Rua Marquês do Pombal, 125/5º andar - Centro, Rio de Janeiro, RJ, CEP 20230-240, Brazil; Laboratório de Mutagênese Ambiental, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (UNIRIO) - Rua Frei Caneca, 94/4º andar - Centro, Rio de Janeiro. CEP 20211-010, Brazil.
| | - Isabela Giardini
- Área Técnica Ambiente, Trabalho e Câncer, Instituto Nacional de Câncer José Alencar Gomes da Silva - INCA, Rua Marquês do Pombal, 125/5º andar - Centro, Rio de Janeiro, RJ, CEP 20230-240, Brazil; Laboratório de Mutagênese Ambiental, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (UNIRIO) - Rua Frei Caneca, 94/4º andar - Centro, Rio de Janeiro. CEP 20211-010, Brazil.
| | - Paula Vieira Baptista Silva
- Área Técnica Ambiente, Trabalho e Câncer, Instituto Nacional de Câncer José Alencar Gomes da Silva - INCA, Rua Marquês do Pombal, 125/5º andar - Centro, Rio de Janeiro, RJ, CEP 20230-240, Brazil; Laboratório de Mutagênese Ambiental, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (UNIRIO) - Rua Frei Caneca, 94/4º andar - Centro, Rio de Janeiro. CEP 20211-010, Brazil.
| | - Barbara Rodrigues Geraldino
- Área Técnica Ambiente, Trabalho e Câncer, Instituto Nacional de Câncer José Alencar Gomes da Silva - INCA, Rua Marquês do Pombal, 125/5º andar - Centro, Rio de Janeiro, RJ, CEP 20230-240, Brazil; Laboratório de Mutagênese Ambiental, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (UNIRIO) - Rua Frei Caneca, 94/4º andar - Centro, Rio de Janeiro. CEP 20211-010, Brazil.
| | - Antonella Bellomo
- Área Técnica Ambiente, Trabalho e Câncer, Instituto Nacional de Câncer José Alencar Gomes da Silva - INCA, Rua Marquês do Pombal, 125/5º andar - Centro, Rio de Janeiro, RJ, CEP 20230-240, Brazil; Laboratório de Mutagênese Ambiental, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (UNIRIO) - Rua Frei Caneca, 94/4º andar - Centro, Rio de Janeiro. CEP 20211-010, Brazil.
| | - Julia Araújo Alves
- Área Técnica Ambiente, Trabalho e Câncer, Instituto Nacional de Câncer José Alencar Gomes da Silva - INCA, Rua Marquês do Pombal, 125/5º andar - Centro, Rio de Janeiro, RJ, CEP 20230-240, Brazil; Laboratório de Mutagênese Ambiental, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (UNIRIO) - Rua Frei Caneca, 94/4º andar - Centro, Rio de Janeiro. CEP 20211-010, Brazil.
| | - Taline Ramos Conde
- Departamento de Farmacologia e Toxicologia, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz (INCQS/FIOCRUZ) - Avenida Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ, DFT/INCQS/FIOCRUZ, CEP 21040-900, Brazil.
| | - Helena Pereira da Silva Zamith
- Departamento de Farmacologia e Toxicologia, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz (INCQS/FIOCRUZ) - Avenida Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ, DFT/INCQS/FIOCRUZ, CEP 21040-900, Brazil.
| | - Ubirani Barros Otero
- Área Técnica Ambiente, Trabalho e Câncer, Instituto Nacional de Câncer José Alencar Gomes da Silva - INCA, Rua Marquês do Pombal, 125/5º andar - Centro, Rio de Janeiro, RJ, CEP 20230-240, Brazil.
| | - Fausto Klabund Ferraris
- Departamento de Farmacologia e Toxicologia, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz (INCQS/FIOCRUZ) - Avenida Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ, DFT/INCQS/FIOCRUZ, CEP 21040-900, Brazil.
| | - Karen Friedrich
- Centro de Estudos em Saúde do Trabalhador e Ecologia Humana, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (CESTEH/ENSP/FIOCRUZ) - Rua Leopoldo Bulhões, 1480 - Manguinho, Rio de Janeiro, RJ, CEP 21041-210, Brazil.
| | - Marcia Sarpa
- Área Técnica Ambiente, Trabalho e Câncer, Instituto Nacional de Câncer José Alencar Gomes da Silva - INCA, Rua Marquês do Pombal, 125/5º andar - Centro, Rio de Janeiro, RJ, CEP 20230-240, Brazil; Laboratório de Mutagênese Ambiental, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (UNIRIO) - Rua Frei Caneca, 94/4º andar - Centro, Rio de Janeiro. CEP 20211-010, Brazil.
| |
Collapse
|
11
|
Schnatter AR, Rooseboom M, Kocabas NA, North CM, Dalzell A, Twisk J, Faulhammer F, Rushton E, Boogaard PJ, Ostapenkaite V, Williams SD. Derivation of an occupational exposure limit for benzene using epidemiological study quality assessment tools. Toxicol Lett 2020; 334:117-144. [PMID: 32497562 DOI: 10.1016/j.toxlet.2020.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 02/04/2023]
Abstract
This paper derives an occupational exposure limit for benzene using quality assessed data. Seventy-seven genotoxicity and 36 haematotoxicity studies in workers were scored for study quality with an adapted tool based on that of Vlaanderen et al., 2008 (Environ Health. Perspect. 116 1700-5). These endpoints were selected as they are the most sensitive and relevant to the proposed mode of action (MOA) and protecting against these will protect against benzene carcinogenicity. Lowest and No- Adverse Effect Concentrations (LOAECs and NOAECs) were derived from the highest quality studies (i.e. those ranked in the top tertile or top half) and further assessed as being "more certain" or "less certain". Several sensitivity analyses were conducted to assess whether alternative "high quality" constructs affected conclusions. The lowest haematotoxicity LOAECs showed effects near 2 ppm (8 h TWA), and no effects at 0.59 ppm. For genotoxicity, studies also showed effects near 2 ppm and showed no effects at about 0.69 ppm. Several sensitivity analyses supported these observations. These data define a benzene LOAEC of 2 ppm (8 h TWA) and a NOAEC of 0.5 ppm (8 h TWA). Allowing for possible subclinical effects in bone marrow not apparent in studies of peripheral blood endpoints, an OEL of 0.25 ppm (8 h TWA) is proposed.
Collapse
Affiliation(s)
| | | | | | - Colin M North
- ExxonMobil Biomedical Sciences, Inc, Annandale, NJ, USA
| | | | - Johannes Twisk
- Dow Chemical International Pvt. Ltd, Terneuzen, the Netherlands
| | | | - Erik Rushton
- Basell Service Company B.V., Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
12
|
Ren JC, Wang T, Wu H, Zhang GH, Sun D, Guo K, Li H, Zhang F, Wu W, Xia ZL. Promoter hypermethylation in CSF3R induces peripheral neutrophil reduction in benzene-exposure poisoning. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:786-796. [PMID: 32329128 DOI: 10.1002/em.22382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/22/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Benzene is a global pollutant and has been established to cause leukemia. To better understand the role of DNA methylation in benzene toxicity, peripheral blood mononuclear cells were collected from six benzene-poisoning patients and six matched controls for genome-wide DNA methylation screening by Illumina Infinium Methylation 450 BeadChip. The Gene Chip Human Gene 2.0 ST Array (Affymetrix) was used to analyze global mRNA expression. Compared with the corresponding sites of controls, 442 sites in patients were hypermethylated, corresponding to 253 genes, and 237 sites were hypomethylated, corresponding to 130 genes. The promoter methylation and mRNA expression of CSF3R, CREB5, and F2R were selected for verification by bisulfite sequencing and real-time PCR in a larger data set with 21 cases and 23 controls. The results indicated that promoter methylation of CSF3R (p = .005) and F2R (p = .015) was significantly higher in cases than in controls. Correlation analysis showed that the promoter methylation of CSF3R (p < .001) and F2R (p < .001) was highly correlated with its mRNA expression. In the poisoning cases, neutrophil percentage was significantly different among the high, middle, and low CSF3R-methylation groups (p = .002). In particular, the neutrophil percentage in the high CSF3R-methylation group (48.10 ± 9.63%) was significantly lower than that in the low CSF3R-methylation group (59.30 ± 6.26%) (p = .012). The correlation coefficient between promoter methylation in CSF3R and the neutrophil percentage was -0.445 (p = .020) in cases and - 0.398 (p = .060) in controls. These results imply that hypermethylation occurs in the CSF3R promoter due to benzene exposure and is significantly associated with a reduction in neutrophils.
Collapse
Affiliation(s)
- Jing-Chao Ren
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Tongshuai Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Hantian Wu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Guang-Hui Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Daoyuan Sun
- Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Kongrong Guo
- Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Ren JC, Liu H, Zhang GH, Wang T, Li J, Dong T, Wu H, Xia ZL. Interaction effects of environmental response gene polymorphisms and benzene exposure on telomere length in shoe-making workers. CHEMOSPHERE 2020; 255:126841. [PMID: 32416388 DOI: 10.1016/j.chemosphere.2020.126841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Benzene is a globally occurring environmental and occupational pollutant that causes leukemia. To better understand telomere length (TL) as a function of benzene toxicity, we recruited 294 shoe-making workers and 102 controls from Wenzhou, China in 2011. Biomarkers of TL, cytokinesis-block micronucleus (MN) frequency, and white blood cells (WBC) were measured. In total, 18 polymorphic sites in environmental response genes, including metabolic and DNA repair genes, were analyzed. Results indicate that benzene exposure led to a longer TL at a threshold of 32 mg/m3-year of cumulative exposure dose (CED). Furthermore, the TL was longer in members of the damaged group, when evaluated for MN frequency (P < 0.001) and reduced WBC (P < 0.001), than in those of the normal group. Workers carrying genotype TT (β = 0.32, P = 0.042) in rs3212986 of ERCC1 and genotype TC (β = 0.24, P = 0.082) in rs1051740 of mEH exon3 were associated with a longer TL as compared to the wild-type group. TA (β = -0.53, P < 0.001) in rs6413432 of CYP2E1 was associated with a shorter TL. Benzene exposure interacted with the TA type in rs6413432 (β = 0.003, 95% CI: 0, 0.006, P = 0.042) and the CC type in rs1051740 (β = 0.007, 95% CI: 0.001, 0.013, P = 0.015) after adjusting for confounding factors. Our results indicate that benzene induces an increase in TL at a threshold of CED ≥32mg/m3-year. Rs1051740, rs3212986, and rs6413432 were found to be involved in benzene-induced telomere growth; in particular, rs1051740 and rs6413432 interacted with the benzene exposure, resulting in an extended TL.
Collapse
Affiliation(s)
- Jing-Chao Ren
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Huan Liu
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Guang-Hui Zhang
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China.
| | - Tongshuai Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jingzhi Li
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Tingting Dong
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Hantian Wu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
14
|
Zhou Y, Wang K, Wang B, Pu Y, Zhang J. Occupational benzene exposure and the risk of genetic damage: a systematic review and meta-analysis. BMC Public Health 2020; 20:1113. [PMID: 32669091 PMCID: PMC7362416 DOI: 10.1186/s12889-020-09215-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/06/2020] [Indexed: 12/29/2022] Open
Abstract
Background Benzene, an important component of organic solvents, is commonly used in industry. Meanwhile, benzene is a human carcinogen leading to leukemia. Although the links between benzene and various types of genetic damage indicators have been evaluated in several studies, but their results remain inconsistent. So we conducted a meta-analysis, and to explore the influence of low concentration benzene exposure on workers’ genetic damage indicators using 3.25 mg/m3 as the boundary value, in order to provide a basis for improved prevention and control of the harm from benzene exposure to the occupational population. Methods We conducted a search of five databases, including Pub Med, Web of Science, China National Knowledge Infrastructure (CNKI), Wan Fang Data and Chongqing VIP, to identify relevant articles up to December 25, 2018. Two researchers independently extracted and evaluated the data according to the inclusion and exclusion criteria of the literature. The imported articles were managed by Endnote X7, and the data were extracted and sorted by Excel 2013. We utilized Stata 12.0 software to perform the meta-analysis in the present study. Results A total of 68 eligible articles were finally included for the synthetic analyses. The meta-analysis results showed that occupational benzene exposure led to significantly increased Micronucleus (MN) frequency, Sister chromatid exchange (SCE) frequency, Chromosome aberration (CA) frequency, Olive Tail moment (OTM), Tail moment (TM), Tail length (TL), and Tail DNA% (T DNA%) compared to the control group (P < 0.05), and the pooled effect value estimates were 1.36, 0.98, 0.76, 1.06, 0.96, 1.78, and 1.42, respectively. Subsequent analysis of the effect of low concentration benzene exposure on genetic damage found significantly increased MN frequency increased compared with the control group (P < 0.05). Conclusions Occupational benzene exposure can affect multiple genetic damage indicators. Even at an exposure concentration lower than 3.25 mg/m3, benzene exposure has genotoxicity. These data provide an important scientific basis for the further revision of occupational disease prevention strategies. At the same time, increased attention should be focused on the health monitoring of the occupational population exposed to benzene, and health management should be strengthened to improve the health of the occupational population.
Collapse
Affiliation(s)
- Yanhua Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Kun Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Boshen Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
15
|
Li A, Sun Y, Wang T, Wang K, Wang T, Liu W, Li K, Au WW, Wang Z, Xia ZL. Effects of Micronucleus Frequencies and Mitochondrial DNA Copy Numbers among Benzene-Exposed Workers in China. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:355-360. [PMID: 31899575 DOI: 10.1002/em.22354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
To provide a more comprehensive understanding of genotoxic effects from benzene exposure, its effects on induction of mitochondrial DNA copy number (MtDNAcn) and of micronucleus (MN) were investigated using peripheral blood from workers in China. Changes in mtDNAcn and MN were determined using quantitative real-time polymerase chain reaction (PCR) and cytokinesis-block micronucleus assays (CBMN), respectively, in 58 control and 174 benzene-exposed workers in Shanghai, China. Among the exposed workers, relative mtDNAcn increased and then decreased with increasing doses of benzene exposure. Significant and dose-dependent increase in MN frequencies were observed among the different exposure groups. In addition, the relative mtDNAcn were significantly associated with the MN frequencies in the low-level exposure group (P = 0.046), but not in the high dose groups. Therefore, the mechanisms for induction of MtDNAcn and MN by benzene may be similar from exposure to low doses but different from high doses. Similar increase of MN frequencies and MtDNAcn may be due to oxidative stress induced by benzene at low concentrations, while higher concentrations may start to initiate the cell death pathway. The pathway may be associated with excessive MtDNAcn which can initiate apoptosis while MN can continue to be induced. However, the differential mechanisms need to be investigated because they may represent different levels of risk for different health consequences. On the other hand, our data indicate that induction of MtDNAcn may be a sensitive genotoxic biomarker for workers with exposure to low dose of benzene. Environ. Mol. Mutagen. 61:355-360, 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anqi Li
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| | - Yuan Sun
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Tongshuai Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| | - Kan Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| | - Tuanwei Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| | - Wuzhong Liu
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Keyong Li
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Technology, Tirgu Mures, Romania and University of Texas Medical Branch, Galveston, TX
| | - Zubing Wang
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| |
Collapse
|
16
|
MTHFR Gene Polymorphism Is Associated With DNA Hypomethylation and Genetic Damage Among Benzene-Exposed Workers in Southeast China. J Occup Environ Med 2019; 60:e188-e192. [PMID: 29370017 DOI: 10.1097/jom.0000000000001288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE AND METHODS To analyze the association between global DNA methylation and single-nucleotide polymorphisms (SNPs) in methylenetetrahydrofolate reductase (MTHFR). MTHFR polymorphisms rs1801133 and rs1801131 were detected using the restriction fragment length polymorphism method, and cytokinesis-block micronucleus (MN) frequency and global DNA methylation was measured in workers from 410 shoe factories. RESULTS A multilinear regression analysis demonstrated that DNA methylation of the TT variant allele of rs1801133 was lower than that of the CC wild type allele (Exp(β) [95% CI], 0.76 [0.56, 1.02], P = 0.071), with a P-value approaching significance. A significantly increased MN frequency was observed for carriers of the TT genotype (frequency ratio = 1.27, 95% CI: 1.07-1.51, P < 0.01). CONCLUSION The results imply that the TT genotype in rs1801133 is associated with global DNA hypomethylation, which may influence the induction of MN following exposure to benzene.
Collapse
|
17
|
Ren J, Cui JP, Luo M, Liu H, Hao P, Wang X, Zhang GH. The prevalence and persistence of aberrant promoter DNA methylation in benzene-exposed Chinese workers. PLoS One 2019; 14:e0220500. [PMID: 31381583 PMCID: PMC6681966 DOI: 10.1371/journal.pone.0220500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant DNA methylation patterns are common in cancers and environmental pollutant exposed subjects. Up to date, few studies have examined the aberrant DNA methylation patterns in benzene exposed workers. We recruited 141 benzene-exposed workers, including 83 benzene-exposed workers from a shoe factory in Wenzhou and 58 workers from a painting workshop in Wuhu, 35 workers in Wuhu were followed from 2009 to 2013, and 48 indoor workers as controls from Wenzhou. We used high-resolution melting (HRM) to quantitate human samples of DNA methylation in long interspersed nuclear element-1 (LINE-1), (6)-methylguanine-DNA methyltransferase (MGMT), and DNA mismatch repair gene human mutator L homologue 1 (hMLH1). AML-5 cells were treated with benzoquinone (BQ) and hydroquinone (HQ), and the promoter methylation of MGMT and hMLH1 was detected using the bisulfite sequencing PCR method. The degree of LINE-1 methylation in benzene-exposed workers was significantly lower than that of the controls (p<0.001), and the degree of MGMT (p<0.001) and hMLH1 (p = 0.01) methylation was significantly higher than that of the controls. The in vitro study validated the aberrant hypermethylation of hMLH1 after treatment with BQ. Among the cohort workers who were followed from 2009 to 2013, the LINE1 methylation elevated in 2013 than 2009 (p = 0.004), and premotor methylation in hMLH1 reduced in 2013 than 2009 (p = 0.045) with the reduction of the benzene exposure. This study provides evidence that benzene exposure can induce LINE-1 hypomethylation and DNA repair gene hypermethylation.
Collapse
Affiliation(s)
- Jingchao Ren
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Jun-peng Cui
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Mengkai Luo
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Huan Liu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Pengfei Hao
- Xinxiang Center for Disease Control and Prevention, Xinxiang, China
| | - Xiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
- * E-mail: (GZ); (XW)
| | - Guang-hui Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
- * E-mail: (GZ); (XW)
| |
Collapse
|
18
|
Association of BER and NER pathway polymorphism haplotypes and micronucleus frequencies with global DNA methylation in benzene-exposed workers of China: Effects of DNA repair genes polymorphisms on genetic damage. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 839:13-20. [PMID: 30744808 DOI: 10.1016/j.mrgentox.2019.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/19/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The base excision repair (BER) pathway and nucleotide excision repair (NER) pathway play important roles in the repair of benzene-induced genetic damage, and the effects of polymorphisms in these pathways on genetic damage and global DNA methylation are of great interest. METHODS Ten single nucleotide polymorphisms (SNPs) in the BER (XRCC1: rs25489, rs25487; APE1: rs1130409) and NER pathways (XPA: rs1800975; XPC: rs2228000, rs2228002; XPD: rs13181, rs1799793; XPG: rs17655; ERCC1: rs3212986) were analyzed by a Kompetitive allele-specific PCR (KASP) assay to find associations with cytokinesis-block micronucleus (MN) frequency and global DNA methylation in 294 shoe factory workers and 102 control participants. RESULTS Workers who possessed the following genotypes were associated with high MN frequency: rs25487 AA (FR (95% CI): 1.50 (1.16,1.9), p = 0.002, reference GG); rs1130409 GG (FR (95% CI): 1.28 (1.05,1.55), p = 0.010, reference TT); rs17655 GC (FR (95% CI): 1.18 (1.02,1.38), p = 0.038, reference GG); and rs3212986 TT (FR (95% CI): 1.55 (1.31,1.83), p < 0.001, reference GG). Workers with four and three mutant alleles showed 3.72-fold (OR (95% CI): 3.72 (1.34, 10.03), p = 0.009) and 2.48-fold (OR (95% CI): 2.48 (1.27, 4.88), p = 0.008) increased risk of genetic damage compared with workers with no or one mutant allele, and a dose-response relationship was found by the trend test (p = 0.006). The rs1130409 variant allele (GG+GT) was associated with low global DNA methylation (β=-0.20, 95% CI: -0.42, 0.03, p = 0.045). CONCLUSION In benzene-exposed workers, BER and NER pathway polymorphism haplotypes are associated with different levels of chromosome damage and had little effect on global DNA methylation.
Collapse
|
19
|
Sauer E, Gauer B, Nascimento S, Nardi J, Göethel G, Costa B, Correia D, Matte U, Charão M, Arbo M, Duschl A, Moro A, Garcia SC. The role of B7 costimulation in benzene immunotoxicity and its potential association with cancer risk. ENVIRONMENTAL RESEARCH 2018; 166:91-99. [PMID: 29883905 DOI: 10.1016/j.envres.2018.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Benzene is a recognized human carcinogen; however, there are still some gaps in the knowledge regarding the mechanism of toxicity of this organic solvent and potential early biomarkers for the damage caused by it. In a previous study, our research group demonstrated that the adhesion molecules of the immune system (B7.1 and B7.2) could be potential biomarkers in the early detection of immunotoxicity caused by benzene exposure. Therefore, this study was developed to deepen the understanding regarding this important topic, aiming to contribute to the comprehension of the benzene toxicity mechanism mediated by B7.1 and B7.2 and its potential association with the risk of carcinogenicity. B7.1 and B7.2 protein expression in blood monocytes and B7.1 and B7.2 gene expression in PBMCs were evaluated. Additionally, complement C3 and C4 levels in serum were measured, as well as p53 gene expression in PBMCs. Seventy-four gas station workers (GSW group) and 71 non-occupationally exposed subjects (NEG) were evaluated. Our results demonstrated decreased levels of B7.1 and B7.2 protein and gene expression in the GSW group compared to the NEG (n = 71) (p < 0.01). Along the same lines, decreased levels of the complement system were observed in the GSW group (p < 0.01), demonstrating the impairment of this immune system pathway as well. Additionally, a reduction was observed in p53 gene expression in the GSA group (p < 0.01). These alterations were associated with both the benzene exposure biomarker evaluated, urinary trans, trans-muconic acid, and with exposure time (p < 0.05). Moreover, strong correlations were observed between the gene expression of p53 vs. B7.1 (r = 0.830; p < 0.001), p53 vs. B7.2 (r = 0.685; p < 0.001), and B7.1 vs. B7.2 (r = 0.702; p < 0.001). Taken together, these results demonstrate that the immune system co-stimulatory molecule pathway is affected by benzene exposure. Also, the decrease in p53 gene expression, even at low exposure levels, reinforces the carcinogenicity effect of benzene in this pathway. Therefore, our results suggest that the promotion of immune evasion together with a decrease in p53 gene expression may play an important role in the benzene toxicity mechanism. However, further and targeted studies are needed to confirm this proposition.
Collapse
Affiliation(s)
- Elisa Sauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruna Gauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sabrina Nascimento
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jessica Nardi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bárbara Costa
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Douglas Correia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ursula Matte
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariele Charão
- Instituto de Ciências das Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Marcelo Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Angela Moro
- Faculdade Especializada na Área de Saúde do Rio Grande do Sul, Passo Fundo, RS, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Benchmark Doses Based on Abnormality of WBC or Micronucleus Frequency in Benzene-Exposed Chinese Workers. J Occup Environ Med 2017. [DOI: 10.1097/jom.0000000000001208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Loomis D, Guyton KZ, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Vilahur N, Mattock H, Straif K. Carcinogenicity of benzene. Lancet Oncol 2017; 18:1574-1575. [PMID: 29107678 DOI: 10.1016/s1470-2045(17)30832-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dana Loomis
- International Agency for Research on Cancer, Lyon, France
| | | | - Yann Grosse
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | - Neela Guha
- International Agency for Research on Cancer, Lyon, France
| | - Nadia Vilahur
- International Agency for Research on Cancer, Lyon, France
| | - Heidi Mattock
- International Agency for Research on Cancer, Lyon, France
| | - Kurt Straif
- International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
22
|
Zhang GH, Lu Y, Ji BQ, Ren JC, Sun P, Ding S, Liao X, Liao K, Liu J, Cao J, Lan Q, Rothman N, Xia ZL. Do mutations in DNMT3A/3B affect global DNA hypomethylation among benzene-exposed workers in Southeast China?: Effects of mutations in DNMT3A/3B on global DNA hypomethylation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:678-687. [PMID: 28945286 DOI: 10.1002/em.22136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/01/2017] [Accepted: 08/15/2017] [Indexed: 02/05/2023]
Abstract
Global DNA hypomethylation is commonly observed in benzene-exposed workers, but the underlying mechanisms remain unclear. We sought to discover the relationships among reduced white blood cell (WBC) counts, micronuclear (MN) frequency, and global DNA methylation to determine whether there were associations with mutations in DNMT3A/3B. Therefore, we recruited 410 shoe factory workers and 102 controls from Wenzhou in Zhenjiang Province. A Methylated DNA Quantification Kit was used to quantify global DNA methylation, and single nucleotide polymorphisms (SNPs) in DNMT3A (rs36012910, rs1550117, and R882) and DNMT3B (rs1569686, rs2424909, and rs2424913) were identified using the restriction fragment length polymorphism method. A multilinear regression analysis demonstrated that the benzene-exposed workers experienced significant global DNA hypomethylation compared with the controls (β = -0.51, 95% CI: -0.69 to -0.32, P < 0.001). The DNMT3A R882 mutant allele (R882H and R882C) (β = -0.25, 95% CI: -0.54 to 0.04, P = 0.094) and the DNMT3B rs2424909 GG allele (β = -0.37, 95% CI: -0.70 to -0.03, P = 0.031) were significantly associated with global DNA hypomethylation compared with the wild-type genotype after adjusting for confounding factors. Furthermore, the MN frequency in the R882 mutant allele (R882H and R882C) (FR = 1.18, 95% CI: 0.99 to 1.40, P = 0.054) was higher than that of the wild-type. The results imply that hypomethylation occurs due to benzene exposure and that mutations in DNMTs are significantly associated with global DNA methylation, which might have influenced the induction of MN following exposure to benzene. Environ. Mol. Mutagen. 58:678-687, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guang-Hui Zhang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Ye Lu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Bu-Qiang Ji
- Department of Hematology, Linyi People's Hospital, 27 Jifang Road, Linyi, 276003, China
| | - Jing-Chao Ren
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Pin Sun
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Shibin Ding
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
| | - Xiaoling Liao
- The Second Affiliated Hospital of Shantou University Medical College, Shantou university, Dongxiabei Road, Shantou, 515021, China
| | - Kaiju Liao
- Health Emergency Center, Chinese Centers for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gao tanyan Chongqing, 400040, China
| | - Jia Cao
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, China
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gao tanyan Chongqing, 400040, China
| | - Qing Lan
- Department of Health and Human Services (DHHS), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Nathaniel Rothman
- Department of Health and Human Services (DHHS), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
23
|
Fang Y, Wu HT, Ye YJ, Zhou LF, Hu W, Zhang GH, Sun P, Au W, Xia ZL. Association Between Polymorphisms of Metabolic Enzyme Genes and Chromosomal Damage in Benzene-Exposed Workers in China. J Occup Environ Med 2017; 59:e215-e220. [PMID: 29116991 DOI: 10.1097/jom.0000000000001148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To provide better understanding of genetic susceptibility for health risk among current benzene-exposed workers. METHODS Four hundred sixty one benzene-exposed workers and 88 matched controls were recruited, and their benzene exposure doses were monitored. Associations between genetic susceptibility for polymorphisms of metabolic enzymes CYP2E1 and NQO1, and expression of cytokinesis-block micronucleus (MN) were investigated. RESULTS Mean MN frequency in the exposed workers was significantly higher than that in the control group (P < 0.01). Individuals with the NQO1 CC genotype showed significantly higher MN frequencies than those with the TT genotype (P < 0.05) in either single- or multiple-factor analyses. Age was an effect modifier for elevated MN frequency, while sex, smoking, and alcohol consumption had no relationship. CONCLUSION Exposure to low dose of benzene among current workers can still cause health risk, especially among those with the NQO1 CC genotype.
Collapse
Affiliation(s)
- Yan Fang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Key Laboratory of Public Health and Safety of Ministry of Education of China (Drs Fang, Wu, Ye, Zhou, Zhang, Sun, Xia); Department of Community Collaboration, Shanghai Changning District Center for Disease Control and Prevention (Ms Fang); Department of Chronic Disease Control and Prevention, Shanghai Putuo District Center for Disease Control and Prevention (Dr Wu), Shanghai; Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda (Dr Hu), MD; Department of Preventive Medicine, Shantou University Medical College, Shantou (Dr Au), China
| | | | | | | | | | | | | | | | | |
Collapse
|