1
|
Ma Y, Song J, Wu Y, Zhang R, Zhu S, Han M, Wang B, Liang Z, Liu J. First Evidence of the Associations of Exposure to Pyrethroid Insecticides with the Risk of Gestational Diabetes Mellitus. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:418-425. [DOI: 10.1021/acs.estlett.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2024]
Affiliation(s)
- Yubing Ma
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Song
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yihui Wu
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ruixin Zhang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuqi Zhu
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Mengjia Han
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bin Wang
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| | - Zhaoxia Liang
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Hyland C, Hernandez A, Gaudreau É, Larose J, Bienvenu JF, Meierotto L, Som Castellano RL, Curl CL. Examination of urinary pesticide concentrations, protective behaviors, and risk perceptions among Latino and Latina farmworkers in Southwestern Idaho. Int J Hyg Environ Health 2024; 255:114275. [PMID: 37866282 DOI: 10.1016/j.ijheh.2023.114275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Studies have documented high levels of pesticide exposure among men farmworkers; however, few have examined exposures or the experiences of women farmworkers. Data gaps also exist regarding farmworkers' perceived risk and control related to pesticides, information that is critical to develop protective interventions. OBJECTIVE We aimed to compare urinary pesticide biomarker concentrations between Latino and Latina farmworkers and examine associations with occupational characteristics, risk perceptions, perceived control, and protective behaviors. METHODS We enrolled a convenience sample of 62 farmworkers (30 men and 32 women) during the pesticide spray season from April-July 2022 in southwestern Idaho. Participants were asked to complete two visits within a seven-day period; at each visit, we collected a urine sample and administered a questionnaire assessing demographic and occupational information. Urine samples were composited and analyzed for 17 biomarkers of herbicides and of organophosphate (OP) and pyrethroid insecticides. RESULTS Ten pesticide biomarkers (TCPy, MDA, PNP, 3-PBA, 4-F-3-PBA, cis- and trans-DCCA, 2,4-D, Glyphosate, AMPA) were detected in >80% of samples. Men and women had similar urinary biomarker concentrations (p = 0.19-0.94); however, women worked significantly fewer hours than men (p = 0.01), wore similar or greater levels of Personal Protective Equipment (PPE), and were slightly more likely to report having experienced an Acute Pesticide Poisoning (26% of women vs. 14% of men; p = 0.25). We observed inconsistencies in risk perceptions, perceived control, and protective behaviors among men. DISCUSSION Our study is one the first to examine pesticide exposure and risk perceptions among a cohort of farmworkers balanced on gender. Taken with previous findings, our results suggest that factors such as job tasks, biological susceptibility, or access to trainings and protective equipment might uniquely impact women farmworkers' exposure and/or vulnerability to pesticides. Women represent an increasing proportion of the agricultural workforce, and larger studies are needed to disentangle these findings.
Collapse
Affiliation(s)
- Carly Hyland
- School of Public and Population Health, Boise State University, Boise, ID, USA; Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA; Division of Agriculture and Natural Resources, University of California, Berkeley, USA.
| | - Alejandra Hernandez
- School of Public and Population Health, Boise State University, Boise, ID, USA; Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Éric Gaudreau
- Centre de Toxicologie Du Québec (CTQ), Institut National de Santé Publique Du Québec, Québec, QC, Canada
| | - Jessica Larose
- Centre de Toxicologie Du Québec (CTQ), Institut National de Santé Publique Du Québec, Québec, QC, Canada
| | - Jean-François Bienvenu
- Centre de Toxicologie Du Québec (CTQ), Institut National de Santé Publique Du Québec, Québec, QC, Canada
| | - Lisa Meierotto
- School of Public Service, Boise State University, Boise, ID, USA
| | | | - Cynthia L Curl
- School of Public and Population Health, Boise State University, Boise, ID, USA
| |
Collapse
|
3
|
Lepetit C, Gaber M, Zhou K, Chen H, Holmes J, Summers P, Anderson KA, Scott RP, Pope CN, Hester K, Laurienti PJ, Quandt SA, Arcury TA, Vidi PA. Follicular DNA Damage and Pesticide Exposure Among Latinx Children in Rural and Urban Communities. EXPOSURE AND HEALTH 2023; 16:1039-1052. [PMID: 39220725 PMCID: PMC11362388 DOI: 10.1007/s12403-023-00609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 09/04/2024]
Abstract
The intersectional risks of children in United States immigrant communities include environmental exposures. Pesticide exposures and their biological outcomes are not well characterized in this population group. We assessed pesticide exposure and related these exposures to DNA double-strand breaks (DSBs) in Latinx children from rural, farmworker families (FW; N = 30) and from urban, non-farmworker families (NFW; N = 15) living in North Carolina. DSBs were quantified in hair follicular cells by immunostaining of 53BP1, and exposure to 72 pesticides and pesticide degradation products were determined using silicone wristbands. Cholinesterase activity was measured in blood samples. DSB frequencies were higher in FW compared to NFW children. Seasonal effects were detected in the FW group, with highest DNA damage levels in April-June and lowest levels in October-November. Acetylcholinesterase depression had the same seasonality and correlated with follicular DNA damage. Organophosphate pesticides were more frequently detected in FW than in NFW children. Participants with organophosphate detections had increased follicular DNA damage compared to participants without organophosphate detection. Follicular DNA damage did not correlate with organochlorine or pyrethroid detections and was not associated with the total number of pesticides detected in the wristbands. These results point to rural disparities in pesticide exposures and their outcomes in children from vulnerable immigrant communities. They suggest that among the different classes of pesticides, organophosphates have the strongest genotoxic effects. Assessing pesticide exposures and their consequences at the individual level is key to environmental surveillance programs. To this end, the minimally invasive combined approach used here is particularly well suited for children. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00609-1.
Collapse
Affiliation(s)
- Cassandra Lepetit
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
| | - Mohamed Gaber
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Ke Zhou
- Sciences Humaines et Sociales, Institut de Cancérologie de l’Ouest, 44805 Saint Herblain, France
| | - Haiying Chen
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Julia Holmes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Phillip Summers
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 USA
| | - Richard P. Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 USA
| | - Carey N. Pope
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Kirstin Hester
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Paul J. Laurienti
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Thomas A. Arcury
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Pierre-Alexandre Vidi
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
4
|
Harwell EL, Wright MZ, LePrevost CE, Bloss JE, Lee JGL. An Analysis of the Availability of Health Education Materials for Migrant and Seasonal Farmworkers. J Agromedicine 2023; 28:615-619. [PMID: 36650101 PMCID: PMC10225309 DOI: 10.1080/1059924x.2023.2169424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Community health workers (CHWs) have reported a paucity of farmworker-specific education materials for use during health outreach to farmworkers. To improve our understanding of the availability of topically and culturally relevant health education materials for farmworkers, we identified 15 key health topics to examine across four major online health information services: MedlinePlus.gov, Migrant Clinicians Network, National Agricultural Safety Database, and National Center for Farmworker Health. We established inter-coder reliability and conducted coding for health education materials by topic and identified the percentage of materials specifically designed for farmworkers. The availability of materials ranged from, on the low end, accessing clinic services, having one health education material total across all four online services, to alcohol, tobacco, and other drugs, having 50 materials across the four online services. Online health information services ranged from 0.6% of the materials designed specifically for farmworkers (MedlinePlus.gov) to 42.9% (Migrant Clinicians Network). The findings from this study underscore the need to support community-based projects centering CHWs' roles as advocates and facilitators to develop educational materials for farmworker health outreach.
Collapse
Affiliation(s)
- Emery L Harwell
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Michael Z Wright
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, USA
| | | | - Jamie E Bloss
- Laupus Health Sciences Library, East Carolina University, Greenville, NC, USA
| | - Joseph G L Lee
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, USA
| |
Collapse
|
5
|
Bossou YM, Côté J, Morin É, Dumais É, Bianchi C, Bouchard M. Assessing the impact of coexposure on the measurement of biomarkers of exposure to the pyrethroid lambda-cyhalothrin in agricultural workers. Int J Hyg Environ Health 2023; 251:114194. [PMID: 37290330 DOI: 10.1016/j.ijheh.2023.114194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
There are few published data on the impact of combined exposure to multiple pesticides (coexposure) on levels of biomarkers of exposure in workers, which may alter their toxicokinetics and thus the interpretation of biomonitoring data. This study aimed to assess the impact of coexposure to two pesticides with shared metabolism pathways on levels of biomarkers of exposure to pyrethroid pesticides in agricultural workers. The pyrethroid lambda-cyhalothrin (LCT) and the fungicide captan were used as sentinel pesticides, since they are widely sprayed concomitantly in agricultural crops. Eighty-seven (87) workers assigned to different tasks (application, weeding, picking) were recruited. The recruited workers provided two-consecutive 24-h urine collections following an episode of lambda-cyhalothrin application alone or in combination with captan or following tasks in the treated fields, as well as a control collection. Concentrations of lambda-cyhalothrin metabolites - 3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethyl-cyclopropanecarboxylic acid (CFMP) and 3-phenoxybenzoic acid (3-PBA) - were measured in the samples. Potential determinants of exposure established in a previous study, including the task performed and personal factors were documented by questionnaire. Multivariate analyses showed that coexposure did not have a statistically significant effect on the observed urinary levels of 3-PBA (Exp(β) (95% confidence interval (95% CI)): 0.94 (0.78-1.13)) and CFMP (1.10 (0.93-1.30). The repeated biological measurements ("time variable") - defined as the within-subjects variable - was a significant predictor of observed biological levels of 3-PBA and CFMP; the within-subjects variance (Exp(β) (95% (95% CI)) for 3-PBA and CFMP was 1.11 (1.09-3.49) and 1.25 (1.20-1.31). Only the main occupational task was associated with urinary levels of 3-PBA and CFMP. Compared to the weeding or picking task, the pesticide application task was associated with higher urinary 3-PBA and CFMP concentrations. In sum, coexposure to agricultural pesticides in the strawberry fields did not increase pyrethroid biomarker concentrations at the exposure levels observed in the studied workers. The study also confirmed previous data suggesting that applicators were more exposed than workers assigned to field tasks such as weeding and picking.
Collapse
Affiliation(s)
- Yélian Marc Bossou
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Jonathan Côté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Éloïse Morin
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Étienne Dumais
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Clara Bianchi
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
6
|
Arcury TA, Chen H, Quandt SA, Talton JW, Anderson KA, Scott RP, Summers P, Laurienti PJ. Pesticide Exposure among Latinx Children in Rural Farmworker and Urban Non-Farmworker Communities: Associations with Locality and Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5647. [PMID: 37174167 PMCID: PMC10178580 DOI: 10.3390/ijerph20095647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
This study uses repeated measures to document the pesticide exposure of rural and urban Latinx children (age eight at baseline), and to compare these children in terms of the frequency and concentration of their exposure to a large set of pesticides, accounting for season. We used silicone wristbands worn for one week up to ten times at quarterly intervals from 2018 to 2022 to assess pesticide exposure in children from rural farmworker (n = 75) and urban non-farmworker (n = 61) families. We determined the detection and concentrations (ng/g) of 72 pesticides and pesticide degradation products in the wristbands using gas chromatography electron capture detection and gas chromatography mass spectrometry. The most frequently detected pesticide classes were organochlorines, pyrethroids, and organophosphates. Controlling for season, organochlorine or phenylpyrazole detections were less likely for rural children than for urban children. Detections of organochlorines, pyrethroids, or organophosphates were lower in spring and summer versus winter. Controlling for season, urban children had greater concentrations of organochlorines, while rural children had greater concentrations of pyrethroids and Chlorpyrifos. Pesticide concentrations were lower in winter and spring compared with summer and fall. These results further document that pesticides are ubiquitous in the living environment for children in vulnerable, immigrant communities.
Collapse
Affiliation(s)
- Thomas A. Arcury
- Department of Family and Community Medicine, and Center for Worker Health, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Haiying Chen
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Division of Public Health Sciences, and Center for Worker Health, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jennifer W. Talton
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Richard P. Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Phillip Summers
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Paul J. Laurienti
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
7
|
Lehmler HJ, Simonsen D, Garcia AQ, Irfan NM, Dean L, Wang H, von Elsterman M, Li X. A systematic review of human biomonitoring studies of 3-phenoxybenzoic acid, a urinary biomarker pyrethroid insecticide exposure, 1997 to 2019. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 4:100018. [PMID: 36644572 PMCID: PMC9838198 DOI: 10.1016/j.heha.2022.100018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pyrethroid insecticides are used, for example, in agriculture, indoor environments, and mosquito control programs, resulting in human exposure. Urinary 3-phenoxybenzoic acid (3-PBA) is a nonspecific biomarker for exposure to many pyrethroids. This systematic review identified human biomonitoring studies with 3-PBA that characterize environmental pyrethroid exposures in children and adolescents, pregnant women, and adults or occupational pyrethroid exposures relative to the National Health and Nutrition Examination Survey (NHANES) populations in the United States (US). PubMed, Embase, and SciFinder were searched for "3-phenoxybenzoic acid ", CAS No. 3739-38-6, and urine or urinary or urine level. Duplicate studies and studies meeting the exclusion criteria were removed from the search results based on predetermined exclusion criteria. This screening process identified 57 papers. Twenty-one, thirteen, twenty-two, and eleven manuscripts reported urinary 3-PBA levels in children, pregnant women, environmentally exposed adults, and occupationally exposed adults, respectively. Median 3-PBA levels ranged from 0.2 to 4.7 μg/g creatinine in children (1999-2016), 0.23-1.55 μg/g creatinine in pregnant women (1997-2014), and 0.11-3.34 μg/g creatinine in environmentally exposed adults (1999-2017). 3-PBA levels in occupationally exposed adults were significantly higher than in environmentally exposed populations, ranging from 0.43 to 14 μg/g creatinine (2004-2017). 3-PBA levels in children and adults from the general North American population increased significantly with the sampling year. A decrease in 3-PBA levels was noted in the adult cohorts from PR China and Japan. 3-PBA levels in most studies appeared to be comparable to levels in the NHANES populations; however, some smaller studies had high pyrethroid exposures. Factors contributing to higher 3-PBA levels in the general population included primarily dietary exposures and residential and agricultural pyrethroid applications. These findings demonstrate that pyrethroid exposures are near-ubiquitous worldwide and, in some regions, appear to increase over time. Thus, exposures to pyrethroid insecticides represent a continuing public health concern.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA,Interdisciplinary Graduate Program in Human Toxicology, Graduate College, University of Iowa, Iowa City, IA 52242, USA,Corresponding author: The University of Iowa, Department of Occupational and Environmental Health, University of Iowa Research Park, #221 IREH, Iowa City, IA 52242-5000, USA, (H.-J. Lehmler)
| | - Derek Simonsen
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA,Interdisciplinary Graduate Program in Human Toxicology, Graduate College, University of Iowa, Iowa City, IA 52242, USA
| | - Alana Quintero Garcia
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Nafis Md Irfan
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, University of Iowa, Iowa City, IA 52242, USA,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Laura Dean
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | | | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Harwell EL, LePrevost CE, Cofie LE, Lee JGL. Community Health Workers' Role in Addressing Farmworker Health Disparities. J Agromedicine 2022; 27:391-401. [PMID: 35168470 PMCID: PMC9395548 DOI: 10.1080/1059924x.2022.2040069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Community health workers (CHWs) are uniquely positioned to connect migrant and seasonal farmworkers to health promotion and clinical services. However, research on CHWs' experiences, particularly related to their provision of health education to farmworkers, is limited. To explore CHWs' practices and challenges in conducting health education outreach, we conducted three focus group discussions with farmworker health CHWs (N = 28) in North Carolina in the spring of 2020. We analyzed the focus group transcripts, and we compared the code outputs, thematic code summaries, and memos maintained throughout the analytic process to examine the experiences of CHWs in acquiring and disseminating health information and resources, including use of technology. We identified three themes related to CHWs' experiences providing health information to farmworkers. First, CHWs described short-term preparation, immediately before providing health outreach, and long-term activities, devoted to maintaining and improving their capacity to provide relevant health information to farmworkers. Second, they described their use of health education delivery methods, including open-ended questions, participatory and interactive approaches, and non-verbal aids. Third, participants described their current use of technology and related challenges, as well as the technology needed to enhance health outreach, including internet access. Findings reveal opportunities to improve farmworker health education through professional development for CHWs, identification of preferred methods of health education delivery to farmworkers, and provision of technology to farmworker-serving organizations. Establishing rural internet access and equipping outreach organizations with technology would position CHWs to be maximally effective as they strive to reduce farmworkers' health inequities.Abbreviations: CHW: Community health worker; FGD: focus group discussion; NC: North Carolina.
Collapse
Affiliation(s)
- Emery L Harwell
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Catherine E LePrevost
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Leslie E Cofie
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA
| | - Joseph G L Lee
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
9
|
Arcury TA, Smith SA, Talton JW, Quandt SA. The Abysmal Organization of Work and Work Safety Culture Experienced by North Carolina Latinx Women in Farmworker Families. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4516. [PMID: 35457383 PMCID: PMC9029169 DOI: 10.3390/ijerph19084516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
The occupational health of immigrant workers in the United States is a major concern. This analysis describes two domains, organization of work and work safety culture, important to the occupational health of Latinx women in farmworker families. Sixty-seven Latinx women in North Carolina farmworker families completed a baseline and five follow-up questionnaires in 2019 through 2021. Fifty-nine of the women were employed in the year prior to the Follow-Up 5 Questionnaire. These women experienced an abysmal organization of work and work safety culture. They experienced significant job churn, with most changing employment several times during the 18-month period. Most of their jobs were seasonal, paid less than $10.00 per hour, piece-rate, and almost all without benefits. The women's jobs had little skill variety (mean 1.5) or decision latitude (mean 1.1), but had high psychological demands (mean 2.0). Work safety climate was very low (mean 13.7), with 76.3% of women noting that their supervisors were "only interested in doing the job fast and cheaply" rather than safely. Women employed as farmworkers versus those in other jobs had few differences. Further research and intervention are needed on the organization of work and work safety culture of Latinx women manual workers.
Collapse
Affiliation(s)
- Thomas A. Arcury
- Department of Family and Community Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sydney A. Smith
- Department of Biostatistics and Data Science, Division of Public Health Science, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (S.A.S.); (J.W.T.)
| | - Jennifer W. Talton
- Department of Biostatistics and Data Science, Division of Public Health Science, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (S.A.S.); (J.W.T.)
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| |
Collapse
|
10
|
Stadler K, Li X, Liu B, Bao W, Wang K, Lehmler HJ. Systematic review of human biomonitoring studies of ethylenethiourea, a urinary biomarker for exposure to dithiocarbamate fungicides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118419. [PMID: 34751155 PMCID: PMC8627121 DOI: 10.1016/j.envpol.2021.118419] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 05/07/2023]
Abstract
Toxicological and epidemiological studies implicate exposure to dithiocarbamate (DTC) fungicides in adverse health outcomes. However, there is limited information about human exposure to these chemicals. This systematic review determined to which extent human populations worldwide, including children, pregnant women, and adults, are exposed environmentally or occupationally to DTC pesticides and how these exposures compare to the NHANES 2003-2008 population, using urinary ETU data as an outcome measure. PubMed, Embase, and SciFinder were searched using the keywords "ethylenethiourea" or CAS No.: 96-45-7, and urine or urinary. Duplicates and irrelevant studies were removed from the search results based on predetermined exclusion criteria. This screening process identified 17 relevant papers. One additional paper was found independent of this search. Data from studies were extracted using a pre-established data collection form. Ten, two, and five manuscripts reported urinary levels in environmentally exposed adults, children, and pregnant women, respectively. Median ETU levels ranged from 0.15 to 4.7 μg/g creatinine in adults (1994-2017), 0.24-0.83 μg/g creatinine in children (2011), and 2.6-5.24 ng/ml in pregnant women (2011). Eight studies reported urinary ETU levels in mostly agriculturally exposed populations, with median ETU levels ranging from 0.42 to 49.6 μg/g creatinine (1999-2011). With one exception, all studies were conducted between 1994 and 2011. ETU levels in the NHANES 2003-2008 population appeared to be generally lower than most studies identified in this review. This finding suggests that, historically, DTC fungicide exposures in the general population of high-income countries, such as the US, were low, whereas agricultural populations may have experienced higher exposure. Unfortunately, more recent exposure data are missing, especially in countries where DTC pesticides are not being phased out.
Collapse
Affiliation(s)
- Katrina Stadler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
11
|
Regrain C, Zeman FA, Guedda M, Chardon K, Bach V, Brochot C, Bonnard R, Tognet F, Malherbe L, Létinois L, Boulvert E, Marlière F, Lestremau F, Caudeville J. Spatio-temporal assessment of pregnant women exposure to chlorpyrifos at a regional scale. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:156-168. [PMID: 33824416 DOI: 10.1038/s41370-021-00315-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The aim of this study was to use an integrated exposure assessment approach, combining spatiotemporal modeling of environmental exposure and fate of the chemical to assess the exposure of vulnerable populations. In this study, chlorpyrifos exposure of pregnant women in Picardy was evaluated at a regional scale during 1 year. This approach provided a mapping of exposure indicators of pregnant women to chlorpyrifos over fine spatial and temporal resolutions using a GIS environment. METHODS Fate and transport models (emission, atmospheric dispersion, multimedia exposure, PBPK) were combined with environmental databases in a GIS environment. Quantities spread over agricultural fields were simulated and integrated into a modeling chain coupling models. The fate and transport of chlorpyrifos was characterized by an atmospheric dispersion statistical metamodel and the dynamiCROP model. Then, the multimedia model Modul'ERS was used to predict chlorpyrifos daily exposure doses which were integrated in a PBPK model to compute biomarker of exposure (TCPy urinary concentrations). For the concentration predictions, two scenarios (lower bound and upper bound) were built. RESULTS At fine spatio-temporal resolutions, the cartography of biomarkers in the lower bound scenario clearly highlights agricultural areas. In these maps, some specific areas and hotspots appear as potentially more exposed specifically during application period. Overall, predictions were close to biomonitoring data and ingestion route was the main contributor to chlorpyrifos exposure. CONCLUSIONS This study demonstrated the feasibility of an integrated approach for the evaluation of chlorpyrifos exposure which allows the comparison between modeled predictions and biomonitoring data.
Collapse
Affiliation(s)
- Corentin Regrain
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Impact Sanitaire et Exposition (ISAE), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
- LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
- PériTox (UMR_I 01), INERIS/UPJV, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Florence Anna Zeman
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Toxicologie Expérimentale et Modélisation (TEAM), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Mohammed Guedda
- LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
| | - Karen Chardon
- PériTox (UMR_I 01), UPJV/INERIS, UPJV, Amiens, France
| | | | - Céline Brochot
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Toxicologie Expérimentale et Modélisation (TEAM), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Roseline Bonnard
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Impact Sanitaire et Exposition (ISAE), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Frédéric Tognet
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Modélisation Atmosphérique et Cartographie Environnementale (MOCA), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Laure Malherbe
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Instrumentation et Exploitation de la Donnée (INDO), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Laurent Létinois
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Instrumentation et Exploitation de la Donnée (INDO), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Emmanuelle Boulvert
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Impact Sanitaire et Exposition (ISAE), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Fabrice Marlière
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Accompagnement à la surveillance de la qualité de l'air et des eaux de surfaces (ASUR), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - François Lestremau
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Méthodes & Développements en Analyses pour l'Environnement (ANAE), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Julien Caudeville
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Impact Sanitaire et Exposition (ISAE), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France.
- PériTox (UMR_I 01), INERIS/UPJV, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France.
| |
Collapse
|
12
|
Arcury TA, Chen H, Arnold TJ, Quandt SA, Anderson KA, Scott RP, Talton JW, Daniel SS. Pesticide exposure among Latinx child farmworkers in North Carolina. Am J Ind Med 2021; 64:602-619. [PMID: 34036619 DOI: 10.1002/ajim.23258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Although pesticides have adverse effects on child health and development, little research has examined pesticide exposure among child farmworkers. This analysis addresses two specific aims: (1) describes pesticide exposure among Latinx child farmworkers in North Carolina, and (2) delineates factors associated with this pesticide exposure. METHODS In 2018 (n = 173) and 2019 (n = 156) Latinx child farmworkers completed interviews and wore silicone wristbands for a single day to measure pesticide exposure. Wristbands were analyzed for 70 pesticides. RESULTS Most Latinx child farmworkers were exposed to multiple pesticides; the most frequent were pyrethroids (69.9% in 2018, 67.9% in 2019), organochlorines (51.4% in 2018, 55.1% in 2019), and organophosphates (51.4% in 2018, 34.0% in 2019). Children were exposed to a mean of 2.15 pesticide classes in 2018 and 1.91 in 2019, and to a mean of 4.06 pesticides in 2018 and 3.34 in 2019. Younger children (≤15 years) had more detections than older children; children not currently engaged in farm work had more detections than children currently engaged in farm work. Migrant child farmworkers had more detections than nonmigrants. For specific pesticides with at least 20 detections, detections and concentrations were generally greater among children not currently engaged in farm work than children currently engaged. CONCLUSIONS Children who live in farmworker communities are exposed to a plethora of pesticides. Although further research is needed to document the extent of pesticide exposure and its health consequences, sufficient information is available to inform the policy needed to eliminate this pesticide exposure in agricultural communities.
Collapse
Affiliation(s)
- Thomas A. Arcury
- Department of Family and Community Medicine Wake Forest School of Medicine Winston‐Salem North Carolina USA
- Center for Worker Health Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Haiying Chen
- Center for Worker Health Wake Forest School of Medicine Winston‐Salem North Carolina USA
- Department of Biostatistics and Data Science, Division of Public Health Sciences Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Taylor J. Arnold
- Department of Family and Community Medicine Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Sara A. Quandt
- Center for Worker Health Wake Forest School of Medicine Winston‐Salem North Carolina USA
- Department of Epidemiology and Prevention, Division of Public Health Sciences Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology Oregon State University Corvallis Oregon USA
| | - Richard P. Scott
- Department of Environmental and Molecular Toxicology Oregon State University Corvallis Oregon USA
| | - Jennifer W. Talton
- Department of Biostatistics and Data Science, Division of Public Health Sciences Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Stephanie S. Daniel
- Department of Family and Community Medicine Wake Forest School of Medicine Winston‐Salem North Carolina USA
| |
Collapse
|
13
|
Arcury TA, Chen H, Quandt SA, Talton JW, Anderson KA, Scott RP, Jensen A, Laurienti PJ. Pesticide exposure among Latinx children: Comparison of children in rural, farmworker and urban, non-farmworker communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144233. [PMID: 33385842 PMCID: PMC7855950 DOI: 10.1016/j.scitotenv.2020.144233] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 05/05/2023]
Abstract
Personal pesticide exposure is not well characterized among children in vulnerable, immigrant communities. We used silicone wristbands in 2018-2019 to assess pesticide exposure in 8 year old Latinx boys and girls in rural, farmworker families (n = 73) and urban, non-farmworker families (n = 60) living in North Carolina who were enrolled in the PACE5 Study, a community-based participatory research study. We determined the detection and concentrations (ng/g) of 75 pesticides and pesticide degradation products in the silicone wristbands worn for one week using gas chromatography electron capture detection and employed gas chromatography mass spectrometry. Differences by personal and family characteristics were tested using analysis of variance or Wilcoxon Rank Sum tests when necessary. Pesticide concentrations above the limit of detection were analyzed, and reported as geometric means and 95% confidence intervals (CI). The most frequently detected pesticide classes were organochlorines (85.7%), pyrethroids (65.4%), and organophosphates (59.4%), with the most frequently detected specific pesticides being alpha-chlordane (69.2%), trans-nonachlor (67.7%), gamma-chlordane (66.2%), chlorpyrifos (54.9%), cypermethrin (49.6%), and trans-permethrin (39.1%). More of those children in urban, non-farmworker families had detections of organochlorines (93.3% vs. 79.5, p = 0.0228) and pyrethroids (75.0% vs. 57.5%, p = 0.0351) than did those in rural, farmworker families; more children in rural, farmworker families had detections for organophosphates (71.2% vs. 45.0%, p= 0.0022). Children in urban, non-farmworker families had greater concentrations of alpha-chlordane (geometric mean (GM) 18.98, 95% CI 14.14, 25.47 vs. 10.25, 95% CI 7.49, 14.03; p= 0.0055) and dieldrin (GM 17.38, 95% CI 12.78 23.62 vs. 8.10, 95% CI 5.47, 12.00; p= 0.0034) than did children in rural, farmworker families. These results support the position that pesticides are ubiquitous in the living environment for children in vulnerable, immigrant communities, and argue for greater effort in documenting the widespread nature of pesticide exposure among children, with greater effort to reduce pesticide exposure.
Collapse
Affiliation(s)
- Thomas A Arcury
- Department of Family and Community Medicine, Center for Worker Health, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Haiying Chen
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Sara A Quandt
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Center for Worker Health, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Jennifer W Talton
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA.
| | - Richard P Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA.
| | - Anna Jensen
- North Carolina Farmworkers Project, 1238 NC Highway 50 S, Benson, NC 27504, USA.
| | - Paul J Laurienti
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
14
|
Curl CL, Meierotto L, Som Castellano RL. Understanding Challenges to Well-Being among Latina FarmWorkers in Rural Idaho Using in an Interdisciplinary, Mixed-Methods Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010169. [PMID: 33383789 PMCID: PMC7795812 DOI: 10.3390/ijerph18010169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/02/2022]
Abstract
The aim of this study was to identify social, cultural and workplace-related risk factors affecting well-being among Latina farmworkers in rural Idaho. We recruited 70 Latina farmworkers from southwestern Idaho in 2019. We employed an inter-disciplinary, mixed-methods approach—including surveys, focus groups, interviews, and pesticide biomonitoring—to characterize multiple domains that influence well-being, including food security and access, housing conditions, social supports, access to medical care, and workplace safety. Six major themes emerged as primary challenges to Latina farmworkers’ well-being. In the public sphere, study participants identified these challenges as long working hours, concerns regarding pesticide exposure, and lack of enforcement of regulatory protections. Participants’ concerns regarding pesticide exposure were underscored by biological sampling results; multiple biomarkers of pesticide exposure were detected in all samples, with the highest concentrations measured in samples collected from women who reported mixing, loading or applying pesticides. Within the private sphere, food security and provisioning, childcare responsibilities, and social isolation were identified as significant challenges to well-being. Gender, ethnicity, and geography emerged as important, intersecting statuses that shaped the life experiences of these agricultural workers. Our findings suggest that gender may play a particularly critical role in the unique challenges facing Latina farmworkers. As a result, the services and regulations needed to support well-being in this population may be highly specific, and almost certainly include attention to work–family dynamics, pesticide exposure, and social connections.
Collapse
Affiliation(s)
- Cynthia L. Curl
- Department of Community and Environmental Health, College of Health Sciences, Boise State University, Boise, ID 83725, USA
- Correspondence:
| | - Lisa Meierotto
- School of Public Service, Boise State University, Boise, ID 83725, USA;
| | - Rebecca L. Som Castellano
- Department of Sociology, College of Arts and Sciences, Boise State University, Boise, ID 83725, USA;
| |
Collapse
|
15
|
Maule AL, Heaton KJ, Cadarette B, Taylor KM, Guerriere KI, Haven CC, Scarpaci MM, Kenefick RW, Ospina M, Calafat AM, Proctor SP. Effect of Environmental Temperature and Humidity on Permethrin Biomarkers of Exposure in U.S. Soldiers Wearing Permethrin-Treated Uniforms. Am J Trop Med Hyg 2020; 102:1455-1462. [PMID: 32228790 DOI: 10.4269/ajtmh.19-0543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Environmental factors, including high temperature and humidity, can influence dermal absorption of chemicals. Soldiers can be dermally exposed to permethrin while wearing permethrin-treated uniforms. This study aimed at examining the effects of high temperature and a combined high temperature and humid environment on permethrin absorption compared with ambient conditions when wearing a permethrin-treated uniform. Twenty-seven male enlisted soldiers wore study-issued permethrin-treated army uniforms for 33 consecutive hours in three different environments: 1) simulated high temperature (35°C, 40% relative humidity [rh]) (n = 10), 2) simulated high temperature and humidity (30°C, 70% rh) (n = 10), and 3) ambient conditions (13°C, 60% rh) (n = 7). Spot urine samples, collected at 21 scheduled time points before, during, and after wearing the study uniforms, were analyzed for permethrin exposure biomarkers (3-phenoxybenzoic acid, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid) and creatinine. Biomarker concentrations were 60-90% higher in the heat and combined heat/humidity groups (P < 0.001-0.022) than the ambient group. Also, the average daily permethrin dose, calculated 12 hours after removing the treated uniforms, was significantly higher in the heat (P = 0.01) and the heat/humidity (P = 0.03) groups than the ambient group. There were no significant differences in biomarker concentrations or computed average daily dose between the heat and the heat/humidity groups. Both hot and combined hot and humid environmental conditions significantly increased permethrin absorption in soldiers wearing permethrin-treated uniforms.
Collapse
Affiliation(s)
- Alexis L Maule
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland.,United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts
| | - Kristin J Heaton
- Boston University School of Public Health, Department of Environmental Health, Boston, Massachusetts.,United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts
| | - Bruce Cadarette
- United States Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, Massachusetts
| | - Kathryn M Taylor
- United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts
| | - Katelyn I Guerriere
- United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts
| | - Caitlin C Haven
- United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts
| | - Matthew M Scarpaci
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland.,United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts
| | - Robert W Kenefick
- United States Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, Massachusetts
| | - Maria Ospina
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia
| | - Susan P Proctor
- United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland.,VA Boston Healthcare System, Research Service, Boston, Massachusetts
| |
Collapse
|
16
|
Using Life History Calendars to Estimate in Utero and Early Life Pesticide Exposure of Latinx Children in Farmworker Families. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103478. [PMID: 32429422 PMCID: PMC7277918 DOI: 10.3390/ijerph17103478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
(1) Background: Early life exposure to neurotoxic chemicals can have later impacts on child health. Most research designs must assume that current exposure is similar to past. Life history calendar methods can help to provide data on early life exposure. (2) Methods: Life history calendars were completed by mothers of 8-year-old children from Latinx farmworker and non-farmworker families (n = 73 and 65, respectively). Measures were created of months exposure through living adjacent to farm fields and having household members who worked in jobs exposing them to toxic chemicals. Data were divided into time periods of in utero, early childhood (birth-35 months) and later childhood (36-96 months). Cluster analysis compared the measures for children from farmworker and non-farmworker parents. (3) Results: Although, as a group, children from farmworker families have greater lifetime months of probable exposure to pesticides than children in non-farmworker families, cluster analysis reveals groups of children who do not follow that pattern. (4) Conclusions: The life history calendar is a technique for obtaining data on early life toxic chemical exposure that may help assign children to proper exposure groups. Conducting secondary analyses using such information can help to clarify the association of exposures to health outcomes.
Collapse
|