1
|
Trembley JH, So SW, Nixon JP, Bowdridge EC, Garner KL, Griffith J, Engles KJ, Batchelor TP, Goldsmith WT, Tomáška JM, Hussain S, Nurkiewicz TR, Butterick TA. Whole-body inhalation of nano-sized carbon black: a surrogate model of military burn pit exposure. BMC Res Notes 2022; 15:275. [PMID: 35953874 PMCID: PMC9373276 DOI: 10.1186/s13104-022-06165-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Chronic multisymptom illness (CMI) is an idiopathic disease affecting thousands of U.S. Veterans exposed to open-air burn pits emitting aerosolized particulate matter (PM) while serving in Central and Southwest Asia and Africa. Exposure to burn pit PM can result in profound biologic consequences including chronic fatigue, impaired cognition, and respiratory diseases. Dysregulated or unresolved inflammation is a possible underlying mechanism for CMI onset. We describe a rat model of whole-body inhalation exposure using carbon black nanoparticles (CB) as a surrogate for military burn pit-related exposure. Using this model, we measured biomarkers of inflammation in multiple tissues. RESULTS Male Sprague Dawley rats were exposed to CB aerosols by whole body inhalation (6 ± 0.83 mg/m3). Proinflammatory biomarkers were measured in multiple tissues including arteries, brain, lung, and plasma. Biomarkers of cardiovascular injury were also assayed in plasma. CB inhalation exposure increased CMI-related proinflammatory biomarkers such as IFN-γ and TNFα in multiple tissue samples. CB exposure also induced cardiovascular injury markers (adiponectin, MCP1, sE-Selectin, sICam-1 and TIMP1) in plasma. These findings support the validity of our animal exposure model for studies of burn pit-induced CMI. Future studies will model more complex toxicant mixtures as documented at multiple burn pit sites.
Collapse
Affiliation(s)
- Janeen H Trembley
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Simon W So
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Joshua P Nixon
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Burn Pits 360 Veterans Organization, Robstown, TX, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Krista L Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Julie Griffith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kevin J Engles
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Salik Hussain
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Tammy A Butterick
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Center for Veterans Research and Education, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Shackleton GL. Towards a biochemical approach to occupational stress management. Heliyon 2021; 7:e07175. [PMID: 34141933 PMCID: PMC8187824 DOI: 10.1016/j.heliyon.2021.e07175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/04/2020] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Given the immense and growing cost of occupational stress to society through lost productivity and the burden to healthcare systems, current best practices for detecting, managing and reducing stress in the workplace are clearly sub-optimal and substantially better methods are required. Subjective, self-reported psychology and psychiatry-based instruments are prone to biases whereas current objective, biology-based measures produce conflicting results and are far from reliable. A multivariate approach to occupational stress research is required that reflects the broad, coordinated, physiological response to demands placed on the body by exposure to diverse occupational stressors. A literature review was conducted to determine the extent of application of the emerging multivariate technology of metabolomics to occupational stress research. Of 170 articles meeting the search criteria, three were identified that specifically studied occupational stressors using metabolomics. A further ten studies were not specifically occupational or were of indirect or peripheral relevance. The occupational studies, although limited in number highlight the technological challenges associated with the application of metabolomics to investigate occupational stress. They also demonstrate the utility to evaluate stress more comprehensively than univariate biomarker studies. The potential of this multivariate approach to enhance our understanding of occupational stress has yet to be established. This will require more studies with broader analytical coverage of the metabolome, longitudinal sampling, combination with experience sampling methods and comparison with psychometric models of occupational stress. Progress will likely involve combining multi-omic data into a holistic, systems biology approach to detecting, managing and reducing occupational stress and optimizing workplace performance.
Collapse
|
3
|
Smith MR, Jarrell ZR, Orr M, Liu KH, Go YM, Jones DP. Metabolome-wide association study of flavorant vanillin exposure in bronchial epithelial cells reveals disease-related perturbations in metabolism. ENVIRONMENT INTERNATIONAL 2021; 147:106323. [PMID: 33360165 PMCID: PMC7856097 DOI: 10.1016/j.envint.2020.106323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Electronic cigarettes (e-cig) are an increasingly popular alternative to traditional smoking but have been in use for too short of a period of time to fully understand health risks. Furthermore, associated health risks are difficult to evaluate because of a large range of flavoring agents and their combinations for use with e-cig. Many flavoring agents are generally regarded as safe but have limited studies for effects on lung. Vanillin, an aromatic aldehyde, is one of the most commonly used flavoring agents in e-cig. Vanillin is electrophilic and can be redox active, with chemical properties expected to interact within biologic systems. Because accumulating lung metabolomics studies have identified metabolic disruptions associated with idiopathic pulmonary fibrosis, asthma and acute respiratory distress syndrome, we used human bronchial epithelial cells (BEAS-2B) with high-resolution metabolomics analysis to determine whether these disease-associated pathways are impacted by vanillin over the range used in e-cig. A metabolome-wide association study showed that vanillin perturbed specific energy, amino acid, antioxidant and sphingolipid pathways previously associated with human disease. Analysis of a small publicly available human dataset showed associations with several of the same pathways. Because vanillin is a common and high-abundance flavorant in e-cig, these results show that vanillin has potential to be mechanistically important in lung diseases and warrants in vivo toxicity testing in the context of e-cig use.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
4
|
Advances in Comprehensive Exposure Assessment: Opportunities for the US Military. J Occup Environ Med 2020; 61 Suppl 12:S5-S14. [PMID: 31800446 DOI: 10.1097/jom.0000000000001677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Review advances in exposure assessment offered by the exposome concept and new -omics and sensor technologies. METHODS Narrative review of advances, including current efforts and potential future applications by the US military. RESULTS Exposure assessment methods from both bottom-up and top-down exposomics approaches are advancing at a rapid pace, and the US military is engaged in developing both approaches. Top-down approaches employ various -omics technologies to identify biomarkers of internal exposure and biological effect. Bottom-up approaches use new sensor technology to better measure external dose. Key challenges of both approaches are largely centered around how to integrate, analyze, and interpret large datasets that are multidimensional and disparate. CONCLUSIONS Advances in -omics and sensor technologies may dramatically enhance exposure assessment and improve our ability to characterize health risks related to occupational and environmental exposures, including for the US military.
Collapse
|
5
|
Use of Biomarkers to Assess Environmental Exposures and Health Outcomes in Deployed Troops. J Occup Environ Med 2020; 61 Suppl 12:S1-S4. [PMID: 31800445 DOI: 10.1097/jom.0000000000001752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This paper provides an overview of our Military Biomarkers Research Study (MBRS) designed to assess whether biomarkers can be used to retrospectively assess deployment exposures and health impacts related to deployment environmental exposures. METHODS The MBRS consists of four phases. Phase I was a feasibility study of stored sera. Phase II looks at associations between exposures and biomarkers. Phase III examines relationships of biomarkers and health outcomes, and Phase IV investigates in vitro biomarker changes associated with exposures to chemicals of interest. This paper briefly summarizes work already published and introduces the new reports contained in this supplement. RESULTS Novel biomarkers were identified. These were associated with deployment exposures. CONCLUSIONS Significant associations were noted between deployment exposures, microRNA biomarkers and metabolomic biomarkers, and deployment health outcomes.
Collapse
|
6
|
Smith MR, Woeller CF, Uppal K, Thatcher TH, Walker DI, Hopke PK, Rohrbeck P, Mallon TM, Krahl PL, Utell MJ, Go YM, Jones DP. Associations of Benzo(ghi)perylene and Heptachlorodibenzo-p-dioxin in Serum of Service Personnel Deployed to Balad, Iraq, and Bagram, Afghanistan Correlates With Perturbed Amino Acid Metabolism in Human Lung Fibroblasts. J Occup Environ Med 2019; 61 Suppl 12:S35-S44. [PMID: 31800449 PMCID: PMC7861127 DOI: 10.1097/jom.0000000000001669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE A study was conducted to identify metabolic-related effects of benzo(ghi)perylene (BghiP) and 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD), on primary human fibroblasts to verify biological associations previously found in occupational health research. METHODS Human lung fibroblasts were exposed to BghiP or HpCDD and extracts were analyzed with a metabolome-wide association study to test for pathways and metabolites altered relative to controls. Gene expression was measured by quantitative-real time polymerase chain reaction. RESULTS Metabolic perturbations in amino-acid, oxidative stress, and fatty-acid pathways were observed for BghiP and HpCDD. HpCDD but not BghiP exposure increased gene expression of the amino acid transporters SLC7A5 and SLC7A11. CONCLUSIONS Exposure to polycyclic aromatic hydrocarbons (PAH) or dioxins perturbs amino acid pathways at physiologically relevant concentrations with different mechanisms. These findings imply an effect on central homeostatic systems by environmental exposures which could have implications on disease susceptibility.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Collynn F. Woeller
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Thomas H. Thatcher
- Department of Medicine, Pulmonary Division, University of Rochester Medical Center, Rochester, NY
| | - Douglas I. Walker
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA
- Current address: Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Philip K. Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY
| | | | - Timothy M. Mallon
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, MD
| | - Pamela L. Krahl
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, MD
| | - Mark J. Utell
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY
- Department of Medicine, Pulmonary Division, University of Rochester Medical Center, Rochester, NY
| | - Young-Mi Go
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA
| |
Collapse
|