1
|
Aldeli N, Hanano A. Unveiling the transcriptional pattern of epithelial ovarian carcinoma-related microRNAs-mRNAs network after mouse exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Reprod Toxicol 2025; 132:108863. [PMID: 39978740 DOI: 10.1016/j.reprotox.2025.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the most potent organic environmental contaminant known to date, is recognized as a human carcinogen. Despite the documented link between TCDD exposure and epithelial ovarian cancer (EOC) in mammalian females, the molecular mechanisms underlying cancer initiation remain elusive. Emerging evidence suggests aberrant miRNA expression in various human malignancies, including OC. This work was performed to examine whether TCDD exposure in female mice disrupts the expression of miRNAs, particularly those known as OC-modulators. We conducted an extensive search in the PubMed database to identify miRNAs experimentally implicated in OC. Fifty-two miRNAs were identified as potential OC modulators and classified into two groups based on their abundance in OC. Group I comprised 24 miRNAs upregulated in OC, while Group II included 28 miRNAs downregulated in OC. Subsequently, we analyzed the expression of both groups in BALB/c mice ovaries following a single TCDD dose. Our findings revealed significant upregulation of 10 miRNAs from Group I (miR-21, miR-27a, miR-30a, miR-99a, miR-141, miR-182, miR-183, miR-200a, miR-200b, and miR-429) and significant downregulation of 12 miRNAs from Group II (let-7d, miR-15a, miR-19a, miR-23b, miR-34a, miR-34c, miR-125b-1, miR-133, miR-140, miR-199a, miR-210, and miR-383) in TCDD-exposed mouse ovaries. Furthermore, we identified OC-related genes targeted by miRNAs from both groups through an extensive search in PubMed databases. Using TR-qPCR, we evaluated the downstream impact of TCDD-dysregulated miRNAs on their target genes. Our results indicate that TCDD-induced upregulation of oncogenic miRNAs negatively regulates target genes associated with EOC, while downregulation of cancer-suppressor miRNAs positively regulates genes linked to EOC.
Collapse
Affiliation(s)
- Nour Aldeli
- Department of Animal Biology, Faculty of science, Al Furat University, Deir-ez-Zor, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| |
Collapse
|
2
|
Khodasevich D, Gladish N, Daredia S, Bozack AK, Shen H, Nwanaji-Enwerem JC, Needham BL, Rehkopf DH, Cardenas A. Exposome-wide association study of environmental chemical exposures and epigenetic aging in the national health and nutrition examination survey. Aging (Albany NY) 2025; 17:408-430. [PMID: 39938123 PMCID: PMC11892924 DOI: 10.18632/aging.206201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Epigenetic clocks can serve as pivotal biomarkers linking environmental exposures with biological aging. However, research on the influence of environmental exposures on epigenetic aging has largely been limited to a small number of chemicals and specific populations. We harnessed data from the National Health and Nutrition Examination Survey 1999-2000 and 2001-2002 cycles to examine exposome-wide associations between environmental exposures and epigenetic aging. A total of 8 epigenetic aging biomarkers were obtained from whole blood in 2,346 participants ranging from 50-84 years of age. A total of 64 environmental exposures including phthalates, metals, pesticides, dioxins, and polychlorinated biphenyls (PCBs) were measured in blood and urine. Associations between log2-transformed/standardized exposure measures and epigenetic age acceleration (EAA) were assessed using survey-weighted generalized linear regression. A 1 standard deviation (SD) increase in log2 serum cadmium levels was associated with higher GrimAge acceleration (beta = 1.23 years, p = 3.63e-06), higher GrimAge2 acceleration (beta = 1.27 years, p = 1.62e-05), and higher DunedinPoAm (beta = 0.02, p = 2.34e-05). A 1 SD increase in log2 serum cotinine levels was associated with higher GrimAge2 acceleration (beta = 1.40 years, p = 6.53e-04) and higher DunedinPoAm (beta = 0.03, p = 6.31e-04). Associations between cadmium and EAA across several clocks persisted in sensitivity models adjusted for serum cotinine levels, and other associations involving lead, dioxins, and PCBs were identified. Several environmental exposures are associated with epigenetic aging in a nationally representative US adult population, with particularly strong associations related to cadmium and cotinine across several epigenetic clocks.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
| | - Nicole Gladish
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
| | - Saher Daredia
- Division of Epidemiology, Berkeley Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anne K. Bozack
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
| | - Hanyang Shen
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
| | - Jamaji C. Nwanaji-Enwerem
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Belinda L. Needham
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David H. Rehkopf
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
- Department of Health Policy, Stanford University, Palo Alto, CA 94305, USA
- Department of Medicine (Primary Care and Population Health), Stanford University, Palo Alto, CA 94305, USA
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA
- Department of Sociology, Stanford University, Palo Alto, CA 94305, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
3
|
Mitra T, Gulati R, Ramachandran K, Rajiv R, Enninga EAL, Pierret CK, Kumari R S, Janardhanan R. Endocrine disrupting chemicals: gestational diabetes and beyond. Diabetol Metab Syndr 2024; 16:95. [PMID: 38664841 PMCID: PMC11046910 DOI: 10.1186/s13098-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational Diabetes Mellitus (GDM) has been on the rise for the last two decades along with the growing incidence of obesity. The ubiquitous use of Endocrine-Disrupting Chemicals (EDCs) worldwide has been associated with this increase in GDM incidence. Epigenetic modifications such as DNA methylation, histone acetylation, and methylation have been associated with prenatal exposure to EDCs. EDC exposure can also drive a sustained disruption of the hypothalamus-pituitary-thyroid axis and various other signaling pathways such as thyroid signaling, PPARγ signaling, PI3K-AKT signaling. This disruption leads to impaired glucose metabolism, insulin resistance as well as β-cell dysfunction, which culminate into GDM. Persistent EDC exposure in pregnant women also increases adipogenesis, which results in gestational weight gain. Importantly, pregnant mothers transfer these EDCs to the fetus via the placenta, thus leading to other pregnancy-associated complications such as intrauterine growth restriction (IUGR), and large for gestational age neonates. Furthermore, this early EDC exposure of the fetus increases the susceptibility of the infant to metabolic diseases in early life. The transgenerational impact of EDCs is also associated with higher vascular tone, cognitive aberrations, and enhanced susceptibility to lifestyle disorders including reproductive health anomalies. The review focuses on the impact of environmental toxins in inducing epigenetic alterations and increasing the susceptibility to metabolic diseases during pregnancy needs to be extensively studied such that interventions can be developed to break this vicious cycle. Furthermore, the use of EDC-associated ExomiRs from the serum of patients can help in the early diagnosis of GDM, thereby leading to triaging of patients based on increasing risk factor of the clinicopathological condition.
Collapse
Affiliation(s)
- Tridip Mitra
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Richa Gulati
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Krithika Ramachandran
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Rohan Rajiv
- Dietrich School of Arts and Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | | | - Chris K Pierret
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sajeetha Kumari R
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Rajiv Janardhanan
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
4
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Female-to-male differential transcription patterns of miRNA-mRNA networks in the livers of dioxin-exposed mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2310-2331. [PMID: 37318321 DOI: 10.1002/tox.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/14/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Non-coding microRNAs (miRNAs) have important roles in regulating the expression of liver mRNAs in response to xenobiotic-exposure, but their roles concerning dioxins such as TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) are less clear. This report concerns the potential implication of liver (class I) and circulating (class II) miRNAs in hepatotoxicity of female and male mice after acute exposure to TCDD. The data show that, of a total of 38 types of miRNAs, the expression of eight miRNAs were upregulated in both female and male mice exposed to TCDD. Inversely, the expression of nine miRNAs were significantly downregulated in both animal genders. Moreover, certain miRNAs were preferentially induced in either females or males. The potential downstream regulatory effects of miRNAs on their target genes was evaluated by determining the expression of three group of genes that are potentially involved in cancer biogenesis, other diseases and in hepatotoxicity. It was found that certain cancer-related genes were more highly expressed females rather than males after exposure to TCDD. Furthermore, a paradoxical female-to-male transcriptional pattern was found for several disease-related and hepatotoxicity-related genes. These results suggest the possibility of developing of new miRNA-specific interfering molecules to address their dysfunctions as caused by TCDD.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, UK
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
5
|
Faiad W, Soukkarieh C, Hanano A. 2,3,7,8-tetrachlorodibenzo-p-dioxin induces multigenerational testicular toxicity and biosynthetic disorder of testosterone in BALB/C mice: Transcriptional, histopathological and hormonal determinants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115233. [PMID: 37421896 DOI: 10.1016/j.ecoenv.2023.115233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent environmental contaminant, is an endocrine disrupter with a proven reproductive toxicity in mammals. However, its effects on male fertility across generations are still elusive. The current work evaluates the toxicity of dioxin on male reproductive system in two separate groups of BALB/C mice; a group of pubertal males directly exposed to TCDD (referred to as DEmG), and a group of indirectly exposed males (referred to as IDEmG) comprises of F1, F2 and F3 males born from TCDD-exposed pregnant females. Both groups were exposed to 25 μg TCDD/kg body weight for a week. Our data show that males of TCDD-DEmG exhibited significant alterations in the expression of certain genes involved in the detoxification of TCDD and the biosynthesis of testosterone. This was accompanied with testicular pathological symptoms, including a sloughing in the germinal epithelium and a congestion of blood vessels in interstitial tissue with the presence of multinuclear cells into seminiferous tubule, with a 4-fold decline in the level of serum testosterone and reduced sperm count. Otherwise, the male reproductive toxicity across F1, F2 and F3 generations from TCDD-IDEmG was mainly characterized by: i) a reduce in body and testis weight. ii) a decrease in gene expression of steriodogenesis enzyme, e.g., AhR, CYP1A1, CYP11A1, COX1, COX2, LOX5 and LOX12. iii) a remarked and similar testicular histopathology that found for DEmG, iv) a serious decline in serum testosterone. v) a decreased male-to-female ratio. vi) a low sperm count with increasing abnormalities. Thus, pubertal or maternal exposure to TCDD provokes multigenerational male reproductive toxicity in mice, ultimately affecting the spermatogenesis and suggesting that the hormonal alternation and sperm abnormality are the most marked effects of the indirect exposure of mammalian male to TCDD.
Collapse
Affiliation(s)
- Walaa Faiad
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| |
Collapse
|
6
|
Aldeli N, Soukkarie C, Hanano A. Transcriptional, hormonal and histological alterations in the ovaries of BALB/c mice exposed to TCDD in connection with multigenerational female infertility. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114990. [PMID: 37156038 DOI: 10.1016/j.ecoenv.2023.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener of dioxins, has a proven reproductive toxicity. Due to the lack of evidence on the multigenerational female reproductive toxicity of TCDD through the maternal exposure, the current study aims to evaluate, on the one hand, the acute reproductive toxicity of TCDD on adult female pre-gestational exposed to a critical single dose of TCDD (25 μg/kg) for a week (group referred to as AFnG; adult female/non-gestation). On the other hand, the transcription, hormonal and histological effects of TCDD on the females of two generations F1 and F2, were also investigated after the exposure of pregnant females to TCDD on gestational day 13 (GD13) (group referred to as AFG; adult female/gestation). First, our data showed alternations in the ovarian expressional pattern of certain key genes involved in the detoxification of TCDD as well as in the biosynthesis of steroidal hormones. The expression of Cyp1a1 was highly induced in TCDD-AFnG group, but reduced in both F1 and F2. While the transcripts levels of Cyp11a1 and 3βhsd2 were decreased, Cyp19a1 transcripts were increased as a function of TCDD exposure. This was synchronized with a dramatic increase in the level of estradiol hormone in the females of both experimental groups. Beside a significant reduce in their size and weight, ovaries of TCDD-exposed females showed serious histological alterations marked by atrophy of the ovary, congestion in the blood vessels, necrosis in the layer of granular cells, dissolution of the oocyte and nucleus of ovarian follicles. Finally, the female fertility was dramatically affected across generations with a reduced male\female ratio. Our data indicate that the exposure of pregnant female to TCDD has serious negative effects in the female productive system across generations and suggest the use of hormonal alternation as biomarker to monitor and assess the indirect exposure of these generations to TCDD.
Collapse
Affiliation(s)
- Nour Aldeli
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarie
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| |
Collapse
|
7
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
8
|
Disner GR, Lopes-Ferreira M, Lima C. Where the Aryl Hydrocarbon Receptor Meets the microRNAs: Literature Review of the Last 10 Years. Front Mol Biosci 2021; 8:725044. [PMID: 34746229 PMCID: PMC8566438 DOI: 10.3389/fmolb.2021.725044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an environmentally responsive ligand-activated transcription factor, identified in the ‘70s for its toxic responses to halogenated polycyclic aromatic hydrocarbons, such as dioxin. Recently, AhR has been recognized as engaged in multiple physiological processes in health and diseases, particularly in the immune system, inflammatory response, tumorigenesis, and cellular differentiation by epigenetic mechanisms involving miRNAs. However, there is still scarce information about AhR-dependent miRNA regulation and miRNA-mediated epigenetic control in pathologies and therapies. In this review, we explore the mutual regulation of AhR and miRNA over the last decade of studies since many miRNAs have dioxin response elements (DRE) in their 3’ UTR, as well as AhR might contain binding sites of miRNAs. TCDD is the most used ligand to investigate the impact of AhR activation, and the immune system is one of the most sensitive of its targets. An association between TCDD-activated AhR and epigenetic mechanisms like post-transcriptional regulation by miRNAs, DNA methylation, or histone modification has already been confirmed. Besides, several studies have shown that AhR-induced miR-212/132 cluster suppresses cancers, attenuates autoimmune diseases, and has an anti-inflammatory role in different immune responses by regulating cytokine levels and immune cells. Together the ever-expanding new AhR roles and the miRNA therapeutics are a prominent segment among biopharmaceuticals. Additionally, AhR-activated miRNAs can serve as valuable biomarkers of diseases, notably cancer progression or suppression and chemical exposure. Once AhR-dependent gene expression may hinge on the ligand, cell type, and context singularity, the reviewed outcomes might help contextualize state of the art and support new trends and emerging opportunities in the field.
Collapse
Affiliation(s)
- Geonildo Rodrigo Disner
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo, Brazil
| |
Collapse
|
9
|
Mahfouz S, Mansour G, Murphy DJ, Hanano A. Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00347-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractDioxins are the most toxic known environmental pollutants and are mainly formed by human activities. Due to their structural stability, dioxins persist for extended periods and can be transported over long distances from their emission sources. Thus, dioxins can be accumulated to considerable levels in both human and animal food chains. Along with sediments, soils are considered the most important reservoirs of dioxins. Soil microorganisms are therefore highly exposed to dioxins, leading to a range of biological responses that can impact the diversity, genetics and functional of such microbial communities. Dioxins are very hydrophobic with a high affinity to lipidic macromolecules in exposed organisms, including microbes. This review summarizes the genetic, molecular and biochemical impacts of dioxins on the lipid metabolism of soil microbial communities and especially examines modifications in the composition and architecture of cell membranes. This will provide a useful scientific benchmark for future attempts at soil ecological risk assessment, as well as in identifying potential dioxin-specific-responsive lipid biomarkers. Finally, potential uses of lipid-sequestering microorganisms as a part of biotechnological approaches to the bio-management of environmental contamination with dioxins are discussed.
Collapse
|
10
|
Advances in Comprehensive Exposure Assessment: Opportunities for the US Military. J Occup Environ Med 2020; 61 Suppl 12:S5-S14. [PMID: 31800446 DOI: 10.1097/jom.0000000000001677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Review advances in exposure assessment offered by the exposome concept and new -omics and sensor technologies. METHODS Narrative review of advances, including current efforts and potential future applications by the US military. RESULTS Exposure assessment methods from both bottom-up and top-down exposomics approaches are advancing at a rapid pace, and the US military is engaged in developing both approaches. Top-down approaches employ various -omics technologies to identify biomarkers of internal exposure and biological effect. Bottom-up approaches use new sensor technology to better measure external dose. Key challenges of both approaches are largely centered around how to integrate, analyze, and interpret large datasets that are multidimensional and disparate. CONCLUSIONS Advances in -omics and sensor technologies may dramatically enhance exposure assessment and improve our ability to characterize health risks related to occupational and environmental exposures, including for the US military.
Collapse
|
11
|
Use of Biomarkers to Assess Environmental Exposures and Health Outcomes in Deployed Troops. J Occup Environ Med 2020; 61 Suppl 12:S1-S4. [PMID: 31800445 DOI: 10.1097/jom.0000000000001752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This paper provides an overview of our Military Biomarkers Research Study (MBRS) designed to assess whether biomarkers can be used to retrospectively assess deployment exposures and health impacts related to deployment environmental exposures. METHODS The MBRS consists of four phases. Phase I was a feasibility study of stored sera. Phase II looks at associations between exposures and biomarkers. Phase III examines relationships of biomarkers and health outcomes, and Phase IV investigates in vitro biomarker changes associated with exposures to chemicals of interest. This paper briefly summarizes work already published and introduces the new reports contained in this supplement. RESULTS Novel biomarkers were identified. These were associated with deployment exposures. CONCLUSIONS Significant associations were noted between deployment exposures, microRNA biomarkers and metabolomic biomarkers, and deployment health outcomes.
Collapse
|
12
|
Smith MR, Woeller CF, Uppal K, Thatcher TH, Walker DI, Hopke PK, Rohrbeck P, Mallon TM, Krahl PL, Utell MJ, Go YM, Jones DP. Associations of Benzo(ghi)perylene and Heptachlorodibenzo-p-dioxin in Serum of Service Personnel Deployed to Balad, Iraq, and Bagram, Afghanistan Correlates With Perturbed Amino Acid Metabolism in Human Lung Fibroblasts. J Occup Environ Med 2019; 61 Suppl 12:S35-S44. [PMID: 31800449 PMCID: PMC7861127 DOI: 10.1097/jom.0000000000001669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE A study was conducted to identify metabolic-related effects of benzo(ghi)perylene (BghiP) and 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD), on primary human fibroblasts to verify biological associations previously found in occupational health research. METHODS Human lung fibroblasts were exposed to BghiP or HpCDD and extracts were analyzed with a metabolome-wide association study to test for pathways and metabolites altered relative to controls. Gene expression was measured by quantitative-real time polymerase chain reaction. RESULTS Metabolic perturbations in amino-acid, oxidative stress, and fatty-acid pathways were observed for BghiP and HpCDD. HpCDD but not BghiP exposure increased gene expression of the amino acid transporters SLC7A5 and SLC7A11. CONCLUSIONS Exposure to polycyclic aromatic hydrocarbons (PAH) or dioxins perturbs amino acid pathways at physiologically relevant concentrations with different mechanisms. These findings imply an effect on central homeostatic systems by environmental exposures which could have implications on disease susceptibility.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Collynn F. Woeller
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Thomas H. Thatcher
- Department of Medicine, Pulmonary Division, University of Rochester Medical Center, Rochester, NY
| | - Douglas I. Walker
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA
- Current address: Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Philip K. Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY
| | | | - Timothy M. Mallon
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, MD
| | - Pamela L. Krahl
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics, Bethesda, MD
| | - Mark J. Utell
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY
- Department of Medicine, Pulmonary Division, University of Rochester Medical Center, Rochester, NY
| | - Young-Mi Go
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA
| |
Collapse
|