1
|
Feng S, Yang L, Dou S, Li X, Wen S, Yan L, Huang W, Zhang Y, Ma B, Yuan L, Li S, Lu P, Guo Y. Associations between long-term ozone exposure and small airways function in Chinese young adults: a longitudinal cohort study. Respir Res 2024; 25:105. [PMID: 38419020 PMCID: PMC10902944 DOI: 10.1186/s12931-024-02679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Increasing evidence is appearing that ozone has adverse effects on health. However, the association between long-term ozone exposure and lung function is still inconclusive. OBJECTIVES To investigate the associations between long-term exposure to ozone and lung function in Chinese young adults. METHODS We conducted a prospective cohort study among 1594 college students with a mean age of 19.2 years at baseline in Shandong, China from September 2020 to September 2021. Lung function indicators were measured in September 2020 and September 2021, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), forced expiratory flow at the 25th, 50th, and 75th percentile of the FVC (FEF25, FEF50, and FEF75) and mean flow rate between 25% and 75% of the FVC (FEF25-75) were measured. Daily 10 km×10 km ozone concentrations come from a well-validated data-fusion approach. The time-weighted average concentrations in 12 months before the lung function test were defined as the long-term ozone exposure. The associations between long-term ozone exposure and lung function indicators in Chinese young adults were investigated using a linear mixed effects model, followed by stratified analyses regarding sex, BMI and history of respiratory diseases. RESULTS Each interquartile range (IQR) (8.9 µg/m3) increase in long-term ozone exposure were associated with a -204.3 (95% confidence interval (CI): -361.6, -47.0) ml/s, -146.3 (95% CI: -264.1, -28.4) ml/s, and - 132.8 (95% CI: -239.2, -26.4) ml/s change in FEF25, FEF50, and FEF25-75, respectively. Stronger adverse associations were found in female participants or those with BMI ≥ 24 kg/m2 and history of respiratory diseases. CONCLUSION Long-term exposure to ambient ozone is associated with impaired small airway indicators in Chinese young adults. Females, participants with BMI ≥ 24 kg/m2 and a history of respiratory disease have stronger associations.
Collapse
Affiliation(s)
- Shurong Feng
- School of Public Health, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Liu Yang
- School of Public Health, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Siqi Dou
- School of Public Health, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Xinyuan Li
- School of Public Health, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Shuo Wen
- School of Public Health, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Wenzhong Huang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Yiwen Zhang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Bin Ma
- School of Public Health, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Linghong Yuan
- School of Public Health, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Peng Lu
- School of Public Health, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China.
| | - Yuming Guo
- School of Public Health, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China.
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
2
|
Nguyen J, Deering-Rice CE, Armstrong BS, Massa C, Reilly CA, Venosa A. Parenchymal and Inflammatory Cell Responses to Single and Repeated Ozone Exposure in Healthy and Surfactant Protein-C Mutant Lung. Toxicol Sci 2022; 189:107-123. [PMID: 35866636 DOI: 10.1093/toxsci/kfac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the alveolar epithelial-specific gene encoding for surfactant protein C (SP-C) are linked to pulmonary disease. Ozone (O3) is a ubiquitous pollutant known to exacerbate stress through oxidative injury and inflammation. To comprehend the structural, functional, and immunological impact of single and repeated O3 exposure, SP-CWT and SP-CI73T mice were exposed to air or O3 (0.8 ppm, 3 h, up to x4 consecutive days). O3 was associated with mitochondrial and autophagic activation (PINK1, LC3B, and p62), focal remodeling, and inflammation localized at the terminal bronchiole-to-alveolar junctions. Histological damage was exacerbated by repeated exposure. Single O3 challenge resulted in transient elastin fiber loss, while repeated exposure resulted in marked increases in elastance in SP-CI73T mice. Flow cytometric analysis revealed increases in classical monocyte and monocyte-derived macrophages recruitment in conditions of repeated exposure, which peaked earlier (24 h) in SP-CI73T mice. Immunohistochemical analysis also showed clustering of Arg-1+ and CD206+ activated cells within regions of remodeled lung. Lymphoid cell analysis identified CX3CR1-B220+ B cells accumulating after single (24/72 h). Repeated exposure produces a switch in the phenotype of these B cells CX3CR1+ (72 h) only in SP-CWT mice. SP-CI73T mutants also displayed depletion in NK1.1+NKp46+ NK cells in lung, as well as bone marrow, blood, and spleen. These results illustrate the cumulative impact of O3 on lung structure and function in healthy lung, and aberrant myeloid and lymphoid recruitment in SP-C mutants responding to challenge. Together, this work highlights the significance of modeling environmental exposure across the spectrum of genetic susceptibility, consistent with human disease.
Collapse
Affiliation(s)
- Jacklyn Nguyen
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Brittnie S Armstrong
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Christopher Massa
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| |
Collapse
|
3
|
Arjomandi M, Balmes JR, Frampton MW, Bromberg P, Rich DQ, Stark P, Alexis NE, Costantini M, Hollenbeck-Pringle D, Dagincourt N, Hazucha MJ. Respiratory Responses to Ozone Exposure. MOSES (The Multicenter Ozone Study in Older Subjects). Am J Respir Crit Care Med 2019; 197:1319-1327. [PMID: 29232153 DOI: 10.1164/rccm.201708-1613oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Acute respiratory effects of low-level ozone exposure are not well defined in older adults. OBJECTIVES MOSES (The Multicenter Ozone Study in Older Subjects), although primarily focused on acute cardiovascular effects, provided an opportunity to assess respiratory responses to low concentrations of ozone in older healthy adults. METHODS We performed a randomized crossover, controlled exposure study of 87 healthy adults (59.9 ± 4.5 yr old; 60% female) to 0, 70, and 120 ppb ozone for 3 hours with intermittent exercise. Outcome measures included spirometry, sputum markers of airway inflammation, and plasma club cell protein-16 (CC16), a marker of airway epithelial injury. The effects of ozone exposure on these outcomes were evaluated with mixed-effect linear models. A P value less than 0.01 was chosen a priori to define statistical significance. MEASUREMENTS AND MAIN RESULTS The mean (95% confidence interval) FEV1 and FVC increased from preexposure values by 2.7% (2.0-3.4) and 2.1% (1.3-2.9), respectively, 15 minutes after exposure to filtered air (0 ppb). Exposure to ozone reduced these increases in a concentration-dependent manner. After 120-ppb exposure, FEV1 and FVC decreased by 1.7% (1.1-2.3) and 0.8% (0.3-1.3), respectively. A similar concentration-dependent pattern was still discernible 22 hours after exposure. At 4 hours after exposure, plasma CC16 increased from preexposure levels in an ozone concentration-dependent manner. Sputum neutrophils obtained 22 hours after exposure showed a marginally significant increase in a concentration-dependent manner (P = 0.012), but proinflammatory cytokines (IL-6, IL-8, and tumor necrosis factor-α) were not significantly affected. CONCLUSIONS Exposure to ozone at near ambient levels induced lung function effects, airway injury, and airway inflammation in older healthy adults. Clinical trial registered with www.clinicaltrials.gov (NCT01487005).
Collapse
Affiliation(s)
- Mehrdad Arjomandi
- 1 San Francisco Veterans Affairs Medical Center, San Francisco, California.,2 Department of Medicine, University of California at San Francisco, San Francisco, California
| | - John R Balmes
- 2 Department of Medicine, University of California at San Francisco, San Francisco, California.,3 Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
| | - Mark W Frampton
- 4 Department of Medicine.,5 Department of Environmental Medicine, and
| | - Philip Bromberg
- 6 Department of Medicine and.,7 Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina
| | - David Q Rich
- 4 Department of Medicine.,5 Department of Environmental Medicine, and.,8 Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York
| | - Paul Stark
- 9 New England Research Institute, Watertown, Massachusetts; and
| | - Neil E Alexis
- 10 Department of Pediatrics, School of Medicine, and.,7 Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina
| | | | | | | | - Milan J Hazucha
- 6 Department of Medicine and.,7 Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
4
|
St.Helen G, Holland NT, Balmes JR, Hall DB, Bernert JT, Vena JE, Wang JS, Naeher LP. Utility of urinary Clara cell protein (CC16) to demonstrate increased lung epithelial permeability in non-smokers exposed to outdoor secondhand smoke. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2013; 23:183-189. [PMID: 22805990 PMCID: PMC3507333 DOI: 10.1038/jes.2012.68] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 04/19/2012] [Indexed: 05/30/2023]
Abstract
The objective of this study was to assess the utility of urinary Clara cell protein (CC16) as a biomarker of increased lung epithelial permeability in non-smokers exposed to outdoor secondhand smoke. Twenty-eight healthy non-smoking adults visited outdoor patios of a restaurant and a bar where non-participants smoked and an open-air control with no smokers on three weekend days in a crossover study; subjects visited each site once for 3 h. Urine samples were collected at baseline, immediately post exposure and next morning, and analyzed for CC16. Changes in CC16 across location types or with cigarette count were analyzed using mixed-effect models, which included all subjects and stratified by gender. Urinary CC16 was higher in males (n=9) compared with females (n=18) at all measurement occasions (P<0.002), possibly reflecting prostatic contamination. Urinary CC16 from pre-exposure to post-exposure was higher following visits to restaurant and bar sites compared with the control among females but this increase did not reach statistical significance. Post-exposure to pre-exposure urinary CC16 ratios among females increased with cigarette count (P=0.048). Exposure-related increases in urinary CC16 were not seen among males. In conclusion, urinary CC16 may be a useful biomarker of increased lung epithelial permeability among female non-smokers; further work will be required to evaluate its applicability to males.
Collapse
Affiliation(s)
- Gideon St.Helen
- The University of Georgia, College of Public Health, Department of Environmental Health Science, Athens, GA, USA
| | - Nina T. Holland
- The University of California, Berkeley, Division of Environmental Health Sciences, School of Public Health, Berkeley, CA, USA
| | - John R. Balmes
- The University of California, Berkeley, Division of Environmental Health Sciences, School of Public Health, Berkeley, CA, USA
- University of California, Department of Medicine, Division of Occupational and Environmental Medicine, San Francisco, CA, USA
| | - Daniel B. Hall
- The University of Georgia, Department of Statistics, Athens, GA, USA
| | - J. Thomas Bernert
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John E. Vena
- The University of Georgia, College of Public Health, Department of Epidemiology and Biostatistics, Athens, GA, USA
| | - Jia-Sheng Wang
- The University of Georgia, College of Public Health, Department of Environmental Health Science, Athens, GA, USA
| | - Luke P. Naeher
- The University of Georgia, College of Public Health, Department of Environmental Health Science, Athens, GA, USA
| |
Collapse
|
5
|
Haddam N, Samira S, Dumont X, Taleb A, Haufroid V, Lison D, Bernard A. Lung epithelium injury biomarkers in workers exposed to sulphur dioxide in a non-ferrous smelter. Biomarkers 2009; 14:292-8. [DOI: 10.1080/13547500902989088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|