1
|
Mondal I, Groves M, Driver EM, Vittori W, Halden RU. Carcinogenic formaldehyde in U.S. residential buildings: Mass inventories, human health impacts, and associated healthcare costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173640. [PMID: 38825200 DOI: 10.1016/j.scitotenv.2024.173640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Formaldehyde, a human carcinogen, is formulated into building materials in the U.S. and worldwide. We used literature information and mass balances to obtain order-of-magnitude estimates of formaldehyde inventories in U.S. residential buildings as well as associated exposures, excess morbidity, and healthcare costs along with other economic ramifications. Use of formaldehyde in building materials dates to the 1940s and continues today unabated, despite its international classification in 2004 as a human carcinogen. Global production of formaldehyde was about 32 million metric tons (MMT) in 2006. In the U.S., 5.7 ± 0.05 to 7.4 ± 0.125 MMT of formaldehyde were produced annually from 2006 to 2022, with 65 ± 5 % of this mass (3.7 ± 0.03 to 4.8 ± 0.08 MMT) entering building materials. For a typical U.S. residential building constructed in 2022, we determined an average total mass of formaldehyde containing chemicals of 48.2 ± 10.1 kg, equivalent to 207 ± 40 g of neat formaldehyde per housing unit. When extrapolated to the entire U.S. housing stock, this equates to 29,800 ± 5760 metric tons of neat formaldehyde. If the health threshold in indoor air of 0.1 mg/m3 is never surpassed in a residential building, safe venting of embedded formaldehyde would take years. Using reported indoor air exceedances, up to 645 ± 33 excess cancer cases may occur U.S. nationwide annually generating up to US$65 M in cancer treatment costs alone, not counting ~16,000 ± 1000 disability adjusted life-years. Other documents showed health effects of formaldehyde exist, but could not be quantified reliably, including sick building syndrome outcomes such as headache, asthma, and various respiratory illnesses. Opportunities to improve indoor air exposure assessments are discussed with special emphasis on monitoring of building wastewater. Safer alternatives to formaldehyde in building products exist and are recommended for future use.
Collapse
Affiliation(s)
- Indrayudh Mondal
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America; School of Sustainable Engineering and the Built Environment, 660 S College Ave, Tempe, AZ 85281, United States of America
| | - Megan Groves
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America
| | - Wendy Vittori
- Health Product Declaration Collaborative, 401 Edgewater Place, Suite 600, Wakefield, MA 01880, United States of America
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America.
| |
Collapse
|
2
|
Lauer DJ, Russell AJ, Lynch HN, Thompson WJ, Mundt KA, Checkoway H. Triangulation of epidemiological evidence and risk of bias evaluation: A proposed framework and applied example using formaldehyde exposure and risk of myeloid leukemias. GLOBAL EPIDEMIOLOGY 2024; 7:100143. [PMID: 38659700 PMCID: PMC11039339 DOI: 10.1016/j.gloepi.2024.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Evidence triangulation may help identify the impact of study design elements on study findings and to tease out biased results when evaluating potential causal relationships; however, methods for triangulating epidemiologic evidence are evolving and have not been standardized. Building upon key principles of epidemiologic evidence triangulation and risk of bias assessment, and responding to the National Academies of Sciences, Engineering, and Medicine (NASEM) call for applied triangulation examples, the objective of this manuscript is to propose a triangulation framework and to apply it as an illustrative example to epidemiologic studies examining the possible relationship between occupational formaldehyde exposure and risk of myeloid leukemias (ML) including acute (AML) and chronic (CML) types. A nine-component triangulation framework for epidemiological evidence was developed incorporating study quality and ROB guidance from various federal health agencies (i.e., US EPA TSCA and NTP OHAT). Several components of the triangulation framework also drew from widely used epidemiological analytic tools such as stratified meta-analysis and sensitivity analysis. Regarding the applied example, fourteen studies were identified and assessed using the following primary study quality domains to explore potential key sources of bias: 1) study design and analysis; 2) study participation; 3) exposure assessment; 4) outcome assessment; and 5) potential confounding. Across studies, methodological limitations possibly contributing to biased results were observed within most domains. Interestingly, results from one study - often providing the largest and least-precise relative risk estimates, likely reflecting study biases, deviated from most primary study findings indicating no such associations. Triangulation of epidemiological evidence appears to be helpful in exploring inconsistent results for the identification of study results possibly reflecting various biases. Nonetheless, triangulation methodologies require additional development and application to real-world examples to enhance objectivity and reproducibility.
Collapse
Affiliation(s)
| | | | | | | | - Kenneth A. Mundt
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Harvey Checkoway
- Herbert Wertheim School of Public Health, University of California, San Diego, United States of America
| |
Collapse
|
3
|
Vincent MJ, Fitch S, Bylsma L, Thompson C, Rogers S, Britt J, Wikoff D. Assessment of associations between inhaled formaldehyde and lymphohematopoietic cancer through the integration of epidemiological and toxicological evidence with biological plausibility. Toxicol Sci 2024; 199:172-193. [PMID: 38547404 PMCID: PMC11131035 DOI: 10.1093/toxsci/kfae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Formaldehyde is recognized as carcinogenic for the portal of entry sites, though conclusions are mixed regarding lymphohematopoietic (LHP) cancers. This systematic review assesses the likelihood of a causal relationship between formaldehyde and LHP cancers by integrating components recommended by NASEM. Four experimental rodent bioassays and 16 observational studies in humans were included following the implementation of the a priori protocol. All studies were assessed for risk of bias (RoB), and meta-analyses were conducted on epidemiological studies, followed by a structured assessment of causation based on GRADE and Bradford Hill. RoB analysis identified systemic limitations precluding confidence in the epidemiological evidence due to inadequate characterization of formaldehyde exposure and a failure to adequately adjust for confounders or effect modifiers, thus suggesting that effect estimates are likely to be impacted by systemic bias. Mixed findings were reported in individual studies; meta-analyses did not identify significant associations between formaldehyde inhalation (when measured as ever/never exposure) and LHP outcomes, with meta-SMRs ranging from 0.50 to 1.51, depending on LHP subtype. No associations with LHP-related lesions were reported in reliable animal bioassays. No biologically plausible explanation linking the inhalation of FA and LHP was identified, supported primarily by the lack of systemic distribution and in vivo genotoxicity. In conclusion, the inconsistent associations reported in a subset of the evidence were not considered causal when integrated with the totality of the epidemiological evidence, toxicological data, and considerations of biological plausibility. The impact of systemic biases identified herein could be quantitatively assessed to better inform causality and use in risk assessment.
Collapse
Affiliation(s)
| | - Seneca Fitch
- ToxStrategies, LLC, Asheville, North Carolina 28801, United States
| | - Lauren Bylsma
- EpidStrategies, a Division of ToxStrategies, LLC, Katy, Texas 77494, United States
| | - Chad Thompson
- ToxStrategies, LLC, Katy, Texas 77494, United States
| | - Sarah Rogers
- ToxStrategies, LLC, Asheville, North Carolina 28801, United States
| | - Janice Britt
- ToxStrategies, LLC, Asheville, North Carolina 28801, United States
| | - Daniele Wikoff
- ToxStrategies, LLC, Asheville, North Carolina 28801, United States
| |
Collapse
|
4
|
Kowalczyk A, Zarychta J, Lejman M, Zawitkowska J. Electrochemical and Optical Sensors for the Detection of Chemical Carcinogens Causing Leukemia. SENSORS (BASEL, SWITZERLAND) 2023; 23:3369. [PMID: 37050429 PMCID: PMC10098728 DOI: 10.3390/s23073369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The incidence and mortality due to neoplastic diseases have shown an increasing tendency over the years. Based on GLOBOCAN 2020 published by the International Agency for Research on Cancer (IARC), leukemias are the thirteenth most commonly diagnosed cancer in the world, with 78.6% of leukemia cases diagnosed in countries with a very high or high Human Development Index (HDI). Carcinogenesis is a complex process initiated by a mutation in DNA that may be caused by chemical carcinogens present in polluted environments and human diet. The IARC has identified 122 human carcinogens, e.g., benzene, formaldehyde, pentachlorophenol, and 93 probable human carcinogens, e.g., styrene, diazinone. The aim of the following review is to present the chemical carcinogens involved or likely to be involved in the pathogenesis of leukemia and to summarize the latest reports on the possibility of detecting these compounds in the environment or food with the use of electrochemical sensors.
Collapse
Affiliation(s)
- Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Liu N, Zhang X, Wang L, Liang K, Zhang Y, Cao J. Early-Stage Emissions of Formaldehyde and Volatile Organic Compounds from Building Materials: Model Development, Evaluation, and Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14680-14689. [PMID: 36112514 DOI: 10.1021/acs.est.2c04572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Emissions of formaldehyde and volatile organic compounds (VOCs) from building materials may result in poor indoor air quality. The emission process can be divided into three stages over time: early, transition, and equilibrium stages. In existing studies, mass transfer models without distinguishing the early and transition stages have been widely used for characterizing the formaldehyde/VOC emissions, with three key parameters involved in these models. Many methods have been proposed for determining these parameters by fitting the corresponding models to experimental data. However, multiple groups of best-fit parameters might coexist if experimental data are obtained at the early stage (to shorten the experimental time). Therefore, we developed a novel mass transfer model to describe the early-stage emissions by assuming the building material as semi-infinite medium. The novel model indicated that the early-stage emission was governed by only two parameters, instead of three parameters, which explained the reason for the multi-solution problem of existing methods. Subsequently, the application condition of the early-stage model was clarified, showing that the early stage was very common in the emissions of formaldehyde/VOCs. Finally, a novel approach for characterizing the emissions of formaldehyde/VOCs from building materials was proposed to eliminate the negative effects of the multi-solution problem.
Collapse
Affiliation(s)
- Ningrui Liu
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Xu Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Luyang Wang
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Kai Liang
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Jianping Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Adamović D, Čepić Z, Adamović S, Stošić M, Obrovski B, Morača S, Vojinović Miloradov M. Occupational Exposure to Formaldehyde and Cancer Risk Assessment in an Anatomy Laboratory. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111198. [PMID: 34769715 PMCID: PMC8583012 DOI: 10.3390/ijerph182111198] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022]
Abstract
Dissecting a human cadaver is an irreplaceable practice in general training of medical students. Cadavers in anatomy laboratories are usually preserved in formalin, an embalming fluid whose basic component is formaldehyde (FA). The aim of this study is to assess the cancer risk of employees and students that are exposed to FA based on the results of three monitoring campaigns, as well as to suggest permanent solutions to the problem of FA exposure based on the results obtained. Three sampling campaigns of formaldehyde concentration in indoor environments were conducted at five different locations at the Anatomy Department of the Faculty of Medicine with the purpose of assessing permanent employees’ and medical faculty first year students’ exposure to FA. Indoor air was continuously sampled during 8 h of laboratory work and analyzed in accordance with the NIOSH Method 3500. Exceeding of the 8 h time-weighted average (8 h TWA) values recommended by Occupational Safety and Health Administration (OSHA) of 0.75 ppm was recorded in 37% of the samples during the three-month monitoring campaign. Cancer risk assessment levels for permanent employees were in the range from 6.43 × 10−3 to 8.77 × 10−4, while the cancer risk assessment levels for students ranged from 8.94 × 10−7 to 1.83 × 10−6. The results of the research show that cancer risk assessment for employees is several thousand times higher than the limit recommended by the EPA (10−6) and point to the importance of reducing exposure to formaldehyde through the reconstruction of the existing ventilation system, continual monitoring, the use of formaldehyde-free products, and plastination of anatomical specimens.
Collapse
Affiliation(s)
- Dragan Adamović
- Department of Environmental Engineering and Occupational Safety and Health, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (D.A.); (M.S.); (B.O.); (M.V.M.)
| | - Zoran Čepić
- Department of Environmental Engineering and Occupational Safety and Health, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (D.A.); (M.S.); (B.O.); (M.V.M.)
- Correspondence: ; Tel.: +381-64-200-4875
| | - Savka Adamović
- Department of Graphic Engineering and Design, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Milena Stošić
- Department of Environmental Engineering and Occupational Safety and Health, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (D.A.); (M.S.); (B.O.); (M.V.M.)
| | - Boris Obrovski
- Department of Environmental Engineering and Occupational Safety and Health, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (D.A.); (M.S.); (B.O.); (M.V.M.)
| | - Slobodan Morača
- Department of Industrial Engineering and Engineering Management, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Mirjana Vojinović Miloradov
- Department of Environmental Engineering and Occupational Safety and Health, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (D.A.); (M.S.); (B.O.); (M.V.M.)
| |
Collapse
|
7
|
Grondin CJ, Davis AP, Wiegers JA, Wiegers TC, Sciaky D, Johnson RJ, Mattingly CJ. Predicting molecular mechanisms, pathways, and health outcomes induced by Juul e-cigarette aerosol chemicals using the Comparative Toxicogenomics Database. Curr Res Toxicol 2021; 2:272-281. [PMID: 34458863 PMCID: PMC8379377 DOI: 10.1016/j.crtox.2021.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/16/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
There is a critical need to understand the health risks associated with vaping e-cigarettes, which has reached epidemic levels among teens. Juul is currently the most popular type of e-cigarette on the market. Using the Comparative Toxicogenomics Database (CTD; http://ctdbase.org), a public resource that integrates chemical, gene, phenotype and disease data, we aimed to analyze the potential molecular mechanisms of eight chemicals detected in the aerosols generated by heating Juul e-cigarette pods: nicotine, acetaldehyde, formaldehyde, free radicals, crotonaldehyde, acetone, pyruvaldehyde, and particulate matter. Curated content in CTD, including chemical-gene, chemical-phenotype, and chemical-disease interactions, as well as associated phenotypes and pathway enrichment, were analyzed to help identify potential molecular mechanisms and diseases associated with vaping. Nicotine shows the most direct disease associations of these chemicals, followed by particulate matter and formaldehyde. Together, these chemicals show a direct marker or mechanistic relationship with 400 unique diseases in CTD, particularly in the categories of cardiovascular diseases, nervous system diseases, respiratory tract diseases, cancers, and mental disorders. We chose three respiratory tract diseases to investigate further, and found that in addition to cellular processes of apoptosis and cell proliferation, prioritized phenotypes underlying Juul-associated respiratory tract disease outcomes include response to oxidative stress, inflammatory response, and several cell signaling pathways (p38MAPK, NIK/NFkappaB, calcium-mediated).
Collapse
Key Words
- A, acetaldehyde
- AC, acetone
- C, crotonaldehyde
- CGPD, chemical-gene-phenotype-disease
- COPD, chronic obstructive pulmonary disease
- CTD, Comparative Toxicogenomics Database
- Cr, chromium
- Database
- E-cigarettes
- Environmental exposure
- F, formaldehyde
- FR, free radicals
- Juul
- M, marker/mechanism relationship
- MIE, molecular initiating event
- MOA, mode-of-action
- Mn, manganese
- N, nicotine
- NAFFCAPP, nicotine, acetaldehyde, formaldehyde, free radicals, crotonaldehyde, acetone, pyruvaldehyde, and particulate matter chemical mixture
- NAFP, nicotine, acetaldehyde, formaldehyde, particulate matter chemical mixture
- Ni, nickel
- P, pyruvaldehyde
- PM, particulate matter
- Pb, lead
- ROS, reactive oxygen species
- Respiratory disease
- Vaping
- Zn, zinc
- nAChR, nicotinic acetylcholine receptor
Collapse
Affiliation(s)
- Cynthia J. Grondin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Allan Peter Davis
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jolene A. Wiegers
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Thomas C. Wiegers
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Daniela Sciaky
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Robin J. Johnson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Carolyn J. Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Keith R, Bhatnagar A. Cardiorespiratory and Immunologic Effects of Electronic Cigarettes. CURRENT ADDICTION REPORTS 2021; 8:336-346. [PMID: 33717828 PMCID: PMC7935224 DOI: 10.1007/s40429-021-00359-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Although e-cigarettes have become popular, especially among youth, the health effects associated with e-cigarette use remain unclear. This review discusses current evidence relating to the cardiovascular, pulmonary, and immunological effects of e-cigarettes. RECENT FINDINGS The use of e-cigarettes by healthy adults has been shown to increase blood pressure, heart rate, and arterial stiffness, as well as resistance to air flow in lungs. Inhalation of e-cigarette aerosol has been shown to elicit immune responses and increase the production of immunomodulatory cytokines in young tobacco-naïve individuals. In animal models, long-term exposure to e-cigarettes leads to marked changes in lung architecture, dysregulation of immune genes, and low-grade inflammation. Exposure to e-cigarette aerosols in mice has been shown to induce DNA damage, inhibit DNA repair, and promote carcinogenesis. Chronic exposure to e-cigarettes has also been reported to result in the accumulation of lipid-laden macrophages in the lung and dysregulation of lipid metabolism and transport in mice. Although, the genotoxic and inflammatory effects of e-cigarettes are milder than those of combustible cigarettes, some of the cardiorespiratory effects of the two insults are comparable. The toxicity of e-cigarettes has been variably linked to nicotine, as well as other e-cigarette constituents, operating conditions, and use patterns. SUMMARY The use of e-cigarettes in humans is associated with significant adverse cardiorespiratory and immunological changes. Data from animal models and in vitro studies support the notion that long-term use of e-cigarettes may pose significant health risks.
Collapse
Affiliation(s)
- Rachel Keith
- American Heart Association Tobacco Regulation and Addiction Center & The Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, 302E Muhammad Ali Blvd, Louisville, KY 40202 USA
| | - Aruni Bhatnagar
- American Heart Association Tobacco Regulation and Addiction Center & The Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, 302E Muhammad Ali Blvd, Louisville, KY 40202 USA
| |
Collapse
|
9
|
Khan NH, Ullah F, Khan TA, Zafar U, Farhan Ali Khan M, Mustaqeem M, Shah SS, Wu DD, Ji XY. Personal-Care Cosmetic Practices in Pakistan: Current Perspectives and Management. Clin Cosmet Investig Dermatol 2021; 14:9-21. [PMID: 33442283 PMCID: PMC7800457 DOI: 10.2147/ccid.s270667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/27/2020] [Indexed: 12/02/2022]
Abstract
To look superior and acceptable in society, people from all over the world use various types of cosmetic products to enhance or alter their facial appearance and body texture. In recent times, an exponential surge in cosmetic use has been observed in Pakistan, and hence spending money on personal-care products is high. However, there are many reported facts about high loads of lead, mercury, copper, and others hazardous and cancerous elements in local Pakistani cosmetic brands. Consumers of these brands are at high risk of many clinical issues, including cancer. As such, it is a necessity to make people aware of the devastating harmful effects related to cosmetic use. The aim of this study was to provide information for stakeholders and raise awareness in the general public about the use of these local unauthorized personal-care cosmetic products, along with government strategies to stop this cosmetic blight on human health.
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Henan 475001, People's Republic of China.,School of Life Sciences, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Faiz Ullah
- Department of Chemistry, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Taskin Aman Khan
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Ujala Zafar
- School of Natural Sciences, National University of Science and Technology, Islamabad, 44000, Pakistan
| | | | - Muhammad Mustaqeem
- Department of Chemistry, University of Sargodha Sub-Campus, Bhakkar 30000, Pakistan
| | - Syed Sakhawat Shah
- Department of Chemistry, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Henan 475001, People's Republic of China.,School of Basic Medical Sciences, Henan University College of Medicine, Henan 475001, People's Republic of China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Henan 475001, People's Republic of China
| |
Collapse
|
10
|
Li B, Tang H, Cheng Z, Zhang Y, Xiang H. The Current Situation and Future Trend of Leukemia Mortality by Sex and Area in China. Front Public Health 2020; 8:598215. [PMID: 33363091 PMCID: PMC7759534 DOI: 10.3389/fpubh.2020.598215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
Leukemia is one of the most common cancers. We conducted this study to comprehensively analyze the temporal trends of leukemia mortality during 2003–2017 and project the trends until 2030. We extracted national-level data on annual leukemia mortality from China Health Statistics Yearbooks (2003–2017). We applied the Joinpoint regression model to assess leukemia mortality trends in urban and rural China by sex during 2003–2017. We also produced sex-specific leukemia mortality using the adjusted Global Burden Disease (GBD) 2016 projection model. In urban areas, age-standardized leukemia mortality decreased significantly among females during 2003–2017 (APC = −0.9%; 95% CI: −1.7, −0.1%). In rural areas, significant decreases of age-standardized leukemia mortality were both found among males (APC = −1.7%; 95% CI: −2.9, −0.5%) and females (APC = −1.6%; 95% CI: −2.6, −0.7%) from 2008 to 2017. Rural-urban and sex disparities of leukemia mortality will continue to exist until the year 2030. According to projection, the leukemia mortality rates of males and rural populations are higher than that of females and urban populations. In 2030, leukemia mortality is projected to decrease to 3.03/100,000 and 3.33/100,000 among the males in urban and rural areas, respectively. In females, leukemia mortality will decrease to 1.87/100,000 and 2.26/100,000 among urban and rural areas, respectively. Our study suggests that more precautionary measures to reduce leukemia mortality are need, and more attention should be paid to rural residents and males in primary prevention of leukemia in China.
Collapse
Affiliation(s)
- Baojing Li
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China.,Global Health Institute, Wuhan University, Wuhan, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China.,Global Health Institute, Wuhan University, Wuhan, China
| | - Zilu Cheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yuxiao Zhang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China.,Global Health Institute, Wuhan University, Wuhan, China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China.,Global Health Institute, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Shallis RM, Weiss JJ, Deziel NC, Gore SD. Challenging the concept of de novo acute myeloid leukemia: Environmental and occupational leukemogens hiding in our midst. Blood Rev 2020; 47:100760. [PMID: 32988660 DOI: 10.1016/j.blre.2020.100760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Abstract
Myeloid neoplasms like acute myeloid leukemia (AML) originate from genomic disruption, usually in a multi-step fashion. Hematopoietic stem/progenitor cell acquisition of abnormalities in vital cellular processes, when coupled with intrinsic factors such as germline predisposition or extrinsic factors such as the marrow microenvironment or environmental agents, can lead to requisite pre-leukemic clonal selection, expansion and evolution. Several of these entities have been invoked as "leukemogens." The known leukemogens are numerous and are found in the therapeutic, occupational and ambient environments, however they are often difficult to implicate for individual patients. Patients treated with particular chemotherapeutic agents or radiotherapy accept a calculated risk of therapy-related AML. Occupational exposures to benzene, dioxins, formaldehyde, electromagnetic and particle radiation have been associated with an increased risk of AML. Although regulatory agencies have established acceptable exposure limits in the workplace, accidental exposures and even ambient exposures to leukemogens are possible. It is plausible that inescapable exposure to non-anthropogenic ambient leukemogens may be responsible for many cases of non-inherited de novo AML. In this review, we discuss the current understanding of leukemogens as they relate to AML, assess to what extent the term "de novo" leukemia is meaningful, and describe the potential to identify and characterize new leukemogens.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, USA.
| | - Julian J Weiss
- Section of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Steven D Gore
- Section of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, USA
| |
Collapse
|
12
|
Novel Materials for Combined Nitrogen Dioxide and Formaldehyde Pollution Control under Ambient Conditions. Catalysts 2020. [DOI: 10.3390/catal10091040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Formaldehyde (HCHO) and nitrogen dioxide (NO2) often co-exist in urban environments at levels that are hazardous to health. There is a demand for a solution to the problem of their combined removal. In this paper, we investigate catalysts, adsorbents and composites for their removal efficiency (RE) toward HCHO and NO2, in the context of creating a pollution control device (PCD). Proton-transfer-reaction mass spectrometry and cavity ring-down spectrometry are used to measure HCHO, and chemiluminescence and absorbance-based monitors for NO2. Commercially available and lab-synthesized materials are tested under relevant conditions. None of the commercial adsorbents are effective for HCHO removal, whereas two metal oxide-based catalysts are highly effective, with REs of 81 ± 4% and 82 ± 1%, an improvement on previous materials tested under similar conditions. The best performing material for combined removal is a novel composite consisting of a noble metal catalyst supported on a metal oxide, combined with a treated active carbon adsorbent. The composite is theorized to work synergistically to physisorb and oxidize HCHO and chemisorb NO2. It has an HCHO RE of 72 ± 2% and an NO2 RE of 96 ± 2%. This material has potential as the active component in PCDs used to reduce personal pollution exposure.
Collapse
|
13
|
Kwak K, Paek D, Park J. Occupational exposure to formaldehyde and risk of lung cancer: A systematic review and meta-analysis. Am J Ind Med 2020; 63:312-327. [PMID: 32003024 DOI: 10.1002/ajim.23093] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Formaldehyde exposure is associated with nasopharyngeal cancer and leukemia. Previously-described links between formaldehyde exposure and lung cancer have been weak and inconsistent. We performed a systematic review and meta-analysis to evaluate quantitatively the association between formaldehyde exposure and lung cancer. METHODS We searched for articles on occupational formaldehyde exposure and lung cancer in PubMed, EMBASE, Web of Science, and CINAHL databases. In total, 32 articles were selected and 31 studies were included in a meta-analysis. Subgroup analyses and quality assessments were also performed. RESULTS The risk of lung cancer among workers exposed to formaldehyde was not significantly increased, with an overall pooled risk estimate of 1.04 (95% confidence interval [CI], 0.97-1.12). The pooled risk estimate of lung cancer was increased when higher exposure studies were considered (1.19; 95% CI, 0.96-1.46). More statistically robust results were obtained when high quality (1.13; 95% CI, 1.08-1.19) and recent (1.13; 95% CI, 1.07-1.19) studies were used in deriving pooled risk estimates. CONCLUSIONS No significant increase in the risk of lung cancer was evident in the overall pooled risk estimate; even in higher formaldehyde exposure groups. Our findings do not provide strong evidence in favor of formaldehyde as a risk factor for lung cancer. However, since risk estimates were significantly increased for high-quality and recent studies, the possibility that exposure to formaldehyde can increase the risk of lung cancer might still be considered.
Collapse
Affiliation(s)
- Kyeongmin Kwak
- Department of Occupational and Environmental MedicineKorea University Ansan HospitalAnsan Republic of Korea
- Department of Environmental SciencesSeoul National University Graduate School of Public HealthSeoul Republic of Korea
| | - Domyung Paek
- Department of Environmental SciencesSeoul National University Graduate School of Public HealthSeoul Republic of Korea
- Institute of Health and EnvironmentSeoul National UniversitySeoul Republic of Korea
| | - Jong‐Tae Park
- Department of Occupational and Environmental MedicineKorea University Ansan HospitalAnsan Republic of Korea
| |
Collapse
|
14
|
Catalani S, Donato F, Madeo E, Apostoli P, De Palma G, Pira E, Mundt KA, Boffetta P. Occupational exposure to formaldehyde and risk of non hodgkin lymphoma: a meta-analysis. BMC Cancer 2019; 19:1245. [PMID: 31870335 PMCID: PMC6929467 DOI: 10.1186/s12885-019-6445-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Formaldehyde, a widely used chemical, is considered a human carcinogen. We report the results of a meta-analyses of studies on the relationship between occupational exposure to formaldehyde and risk of non-Hodgkin lymphoma (NHL). METHODS We performed a systematic review and meta-analysis according to international guidelines and we identified 12 reports of occupational populations exposed to formaldehyde. We evaluated inter-study heterogeneity and we applied a random effects model. We conducted a cumulative meta-analysis and a meta-analysis according to estimated average exposure of each study population. RESULTS The meta-analysis resulted in a summary relative risk (RR) for NHL of 0.93 (95% confidence interval 0.83-1.04). The cumulative meta-analysis suggests that higher RRs were detected in studies published before 1986, while studies available after 1986 did not show an association. No differences were found between different levels of occupational exposure. Conclusions Notwithstanding some limitations, the results of this meta-analysis do not support the hypothesis of an association between occupational exposure to formaldehyde and risk of NHL.
Collapse
Affiliation(s)
- Simona Catalani
- Department of Medicine and Surgery Specialties, Radiological Sciences and Public Health University of Brescia, 25133, Brescia, Italy.
| | - Francesca Donato
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Egidio Madeo
- Department of Medicine and Surgery Specialties, Radiological Sciences and Public Health University of Brescia, 25133, Brescia, Italy
| | - Pietro Apostoli
- Department of Medicine and Surgery Specialties, Radiological Sciences and Public Health University of Brescia, 25133, Brescia, Italy
| | - Giuseppe De Palma
- Department of Medicine and Surgery Specialties, Radiological Sciences and Public Health University of Brescia, 25133, Brescia, Italy
| | - Enrico Pira
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | | | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Ashraf MA, Liu Z, Peng W, Parsaee Z. Design, preparation and evaluation of a high performance sensor for formaldehyde based on a novel hybride nonocomposite ZnWO 3/rGO. Anal Chim Acta 2019; 1051:120-128. [PMID: 30661608 DOI: 10.1016/j.aca.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
The ultrasound wave assisted synthesis of a novel ZnWO3/rGO hybrid nono composition (ZnWO3/rGO HNC) as a high performance sensor for formaldehyde (FA) has been reported. Different techniques of analysis such as XRD, FE-SEM, TGA, XPS, HRTEM and BET were applied for morphological and spectroscopic characterization of the ZnWO3/rGO HNC. The sensing evaluation of the constructed sensor showed high selectivity, sensitivity and a linear correlation between achieved responses and concentration of target gas (1-10 ppm) with R2 = 0.993 at temperature of 95 °C. The determination of FA was validated and performed using gas chromatography-mass spectrometry combined by solid phase micro-extraction after derivatization with O-(2,3,4,5,6-pentafluoro-benzyl)-hydroxylamine hydrochloride. Validation was carried out in terms of limit of detection linearity, precision, and recovery. The mechanistic evaluation of sensing behavior of the ZnWO3/rGO HNC was interpreted based on large specific surface area (SSA) to volume, mesoporous structure and the heterojunction between rGO and ZnWO3 at the interface between the rGO and ZnWO3.
Collapse
Affiliation(s)
- Muhammad Aqeel Ashraf
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Geology Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia; School of Environmental Studies, China University of Geosciences, Wuhan 430074 China
| | - Zhenling Liu
- School of Management, Henan University of Technology, Zhengzhou, 450001, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Zohreh Parsaee
- Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| |
Collapse
|
16
|
Marant Micallef C, Shield KD, Baldi I, Charbotel B, Fervers B, Gilg Soit Ilg A, Guénel P, Olsson A, Rushton L, Hutchings SJ, Straif K, Soerjomataram I. Occupational exposures and cancer: a review of agents and relative risk estimates. Occup Environ Med 2018; 75:604-614. [PMID: 29735747 DOI: 10.1136/oemed-2017-104858] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The contribution of occupational exposures to the cancer burden can be estimated using population-attributable fractions, which is of great importance for policy making. This paper reviews occupational carcinogens, and presents the most relevant risk relations to cancer in high-income countries using France as an example, to provide a framework for national estimation of cancer burden attributable to occupational exposure. METHODS Occupational exposures that should be included in cancer burden studies were evaluated using multiple criteria: classified as carcinogenic or probably carcinogenic by the International Agency for Research on Cancer (IARC) Monographs volumes 1-114, being a primary occupational exposure, historical and current presence of the exposure in France and the availability of exposure and risk relation data. Relative risk estimates were obtained from published systematic reviews and from the IARC Monographs. RESULTS Of the 118 group 1 and 75 group 2A carcinogens, 37 exposures and 73 exposure-cancer site pairs were relevant. Lung cancer was associated with the most occupational carcinogenic exposures (namely, 18), followed by bladder cancer and non-Hodgkin's lymphoma. Ionising radiation was associated with the highest number of cancer sites (namely, 20), followed by asbestos and working in the rubber manufacturing industry. Asbestos, bis(chloromethyl)ether, nickel and wood dust had the strongest effect on cancer, with relative risks above 5. CONCLUSIONS A large number of occupational exposures continues to impact the burden of cancer in high-income countries such as France. Information on types of exposures, affected jobs, industries and cancer sites affected is key for prioritising policy and prevention initiatives.
Collapse
Affiliation(s)
- Claire Marant Micallef
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - Kevin David Shield
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - Isabelle Baldi
- Equipe Santé Environnement, Centre de recherche INSERM U 897, Bordeaux, France
| | - Barbara Charbotel
- Univ Lyon, Univ Lyon 1, IFSTTAR, Service des maladies professionnelles, Hospices Civils de Lyon, UMRESTTE, UMR_T9405, Lyon, France
| | - Béatrice Fervers
- Département Cancer Environnement, Centre Léon Bérard, Université de Lyon, Lyon, France
| | | | - Pascal Guénel
- Centre de recherche en Epidémiologie et Santé des Populations (CESP), Cancer and Environment team, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Ann Olsson
- Section of Environment and Radiation, International Agency for Research on Cancer, Lyon, France
- The Institute of Environmental Medicine, Karolinksa Institutet, Stockholm, Sweden
| | - Lesley Rushton
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Sally J Hutchings
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Kurt Straif
- Section of Evidence Synthesis and Classification, International Agency for Research on Cancer IARC, Lyon, France
| | - Isabelle Soerjomataram
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
17
|
Jacob SL, Cornell E, Kwa M, Funk WE, Xu S. Cosmetics and Cancer: Adverse Event Reports Submitted to the Food and Drug Administration. JNCI Cancer Spectr 2018; 2:pky012. [PMID: 31360845 PMCID: PMC6649728 DOI: 10.1093/jncics/pky012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 11/29/2022] Open
Abstract
There have been numerous controversies surrounding cosmetic products and increased cancer risk. Such controversies include associations between parabens and breast cancer, hair dyes and hematologic malignancies, and talc powders and ovarian cancer. Despite the prominent media coverage and numerous scientific investigations, the majority of these associations currently lack conclusive evidence. In 2016, the US Food and Drug Administration (FDA) made publically available all adverse event reports in Center for Food Safety and Applied Nutrition's Adverse Event Reporting System (CAERS), which includes complaints related to cosmetic products. We mined CAERS for cancer-related reports attributed to cosmetics. Between 2004 and 2017, cancer-related reports caused by cosmetics represented 41% of all adverse events related to cosmetics. This yielded 4427 individual reports of cancer related to a cosmetic product. Of these reports, the FDA redacted the specific product names in 95% of cancer-related reports under the Freedom of Information Act exemptions, most likely due to ongoing legal proceedings. For redacted reports, ovarian cancer reports dominated (n = 3992, 90%), followed by mesothelioma (n = 92, 2%) and malignant neoplasm unspecified (n = 46, 1%). For nonredacted reports, or those reports whose product names were not withheld (n = 218), 70% were related to ovarian cancer attributed to talc powders, followed by skin cancer (11%) and breast cancer (5%) attributed to topical moisturizers. Currently, CAERS is of limited utility, with the available data having been subjected to significant reporter bias and a lack of supportive information such as demographic data, medical history, or concomitant product use. Although the system has promise for safeguarding public health, the future utility of the database requires broader reporting participation and more complete reporting, paired with parallel investments in regulatory science and improved molecular methods.
Collapse
Affiliation(s)
- Saya L Jacob
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Erika Cornell
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Michael Kwa
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | - William E Funk
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine
| | | |
Collapse
|
18
|
Maxim LD, Utell MJ. Review of refractory ceramic fiber (RCF) toxicity, epidemiology and occupational exposure. Inhal Toxicol 2018; 30:49-71. [PMID: 29564943 DOI: 10.1080/08958378.2018.1448019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This literature review on refractory ceramic fibers (RCF) summarizes relevant information on manufacturing, processing, applications, occupational exposure, toxicology and epidemiology studies. Rodent toxicology studies conducted in the 1980s showed that RCF caused fibrosis, lung cancer and mesothelioma. Interpretation of these studies was difficult for various reasons (e.g. overload in chronic inhalation bioassays), but spurred the development of a comprehensive product stewardship program under EPA and later OSHA oversight. Epidemiology studies (both morbidity and mortality) were undertaken to learn more about possible health effects resulting from occupational exposure. No chronic animal bioassay studies on RCF have been conducted since the 1980s. The results of the ongoing epidemiology studies confirm that occupational exposure to RCF is associated with the development of pleural plaques and minor decrements in lung function, but no interstitial fibrosis or incremental lung cancer. Evidence supporting a finding that urinary tumors are associated with RCF exposure remains, but is weaker. One reported, but unconfirmed, mesothelioma was found in an individual with prior occupational asbestos exposure. An elevated SMR for leukemia was found, but was absent in the highly exposed group and has not been observed in studies of other mineral fibers. The industry will continue the product stewardship program including the mortality study.
Collapse
Affiliation(s)
- L Daniel Maxim
- a Everest Consulting Associates , West Windsor , NJ , USA
| | - Mark J Utell
- b University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| |
Collapse
|
19
|
Kwon SC, Kim I, Song J, Park J. Does formaldehyde have a causal association with nasopharyngeal cancer and leukaemia? Ann Occup Environ Med 2018; 30:5. [PMID: 29423228 PMCID: PMC5791191 DOI: 10.1186/s40557-018-0218-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 01/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The South Korean criteria for occupational diseases were amended in July 2013. These criteria included formaldehyde as a newly defined occupational carcinogen, based on cases of "leukemia or nasopharyngeal cancer caused by formaldehyde exposure". This inclusion was based on the Internal Agency for Research on Cancer classification, which classified formaldehyde as definite human carcinogen for nasopharyngeal cancer in 2004 and leukemia in 2012. METHODS We reviewed reports regarding the causal relationship between occupational exposure to formaldehyde in Korea and the development of these cancers, in order to determine whether these cases were work-related. RESULTS Previous reports regarding excess mortality from nasopharyngeal cancer caused by formaldehyde exposure seemed to be influenced by excess mortality from a single plant. The recent meta-risk for nasopharyngeal cancer was significantly increased in case-control studies, but was null for cohort studies (excluding unexplained clusters of nasopharyngeal cancers). A recent analysis of the largest industrial cohort revealed elevated risks of both leukemia and Hodgkin lymphoma at the peak formaldehyde exposure, and both cancers exhibited significant dose-response relationships. A nested case-control study of embalmers revealed that mortality from myeloid leukemia increased significantly with increasing numbers of embalms and with increasing formaldehyde exposure. The recent meta-risks for all leukemia and myeloid leukemia increased significantly. In South Korea, a few cases were considered occupational cancers as a result of mixed exposures to various chemicals (e.g., benzene), although no cases were compensated for formaldehyde exposure. The peak formaldehyde exposure levels in Korea were 2.70-14.8 ppm in a small number of specialized studies, which considered anatomy students, endoscopy employees who handled biopsy specimens, and manufacturing workers who were exposed to high temperatures. CONCLUSION Additional evidence is needed to confirm the relationship between formaldehyde exposure and nasopharyngeal cancer. All lymphohematopoietic malignancies, including leukemia, should be considered in cases with occupational formaldehyde exposure.
Collapse
Affiliation(s)
- Soon-Chan Kwon
- Department of Occupational and Environmental Medicine, College of Medicine Soonchunhyang University, Cheonan, Republic of Korea
| | - Inah Kim
- Department of Occupational and Environmental Medicine, College of Medicine, Hanyang University, 222 wangshimni-ro, Seoul, 04763 Republic of Korea
| | - Jaechul Song
- Department of Occupational and Environmental Medicine, College of Medicine, Hanyang University, 222 wangshimni-ro, Seoul, 04763 Republic of Korea
| | - Jungsun Park
- Department of Occupational Health, Catholic University of Daegu, Daegu, Republic of Korea
| |
Collapse
|
20
|
Nachaki EO, Ndangili PM, Naumih NM, Masika E. Nickel-Palladium-Based Electrochemical Sensor for Quantitative Detection of Formaldehyde. ChemistrySelect 2018. [DOI: 10.1002/slct.201702019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ernest O. Nachaki
- Department of Chemistry; Kenyatta University; P.O Box 43844 - 00100 Nairobi - Kenya
| | - Peter M. Ndangili
- Department of Chemical Science and Technology; Technical University of Kenya; P.O Box 52428 - 00200 Nairobi - Kenya
| | - Noah M. Naumih
- School of Pharmacy and Health Sciences; United States International University - Africa; P.O Box 14634 - 00800 Nairobi - Kenya
| | - Eric Masika
- Department of Chemistry; Kenyatta University; P.O Box 43844 - 00100 Nairobi - Kenya
| |
Collapse
|
21
|
Mundt KA, Gentry PR, Dell LD, Rodricks JV, Boffetta P. Six years after the NRC review of EPA's Draft IRIS Toxicological Review of Formaldehyde: Regulatory implications of new science in evaluating formaldehyde leukemogenicity. Regul Toxicol Pharmacol 2017; 92:472-490. [PMID: 29158043 DOI: 10.1016/j.yrtph.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/27/2017] [Accepted: 11/15/2017] [Indexed: 11/28/2022]
Abstract
Shortly after the International Agency for Research on Cancer (IARC) determined that formaldehyde causes leukemia, the United States Environmental Protection Agency (EPA) released its Draft IRIS Toxicological Review of Formaldehyde ("Draft IRIS Assessment"), also concluding that formaldehyde causes leukemia. Peer review of the Draft IRIS Assessment by a National Academy of Science committee noted that "causal determinations are not supported by the narrative provided in the draft" (NRC 2011). They offered recommendations for improving the Draft IRIS assessment and identified several important research gaps. Over the six years since the NRC peer review, significant new science has been published. We identify and summarize key recommendations made by NRC and map them to this new science, including extended analysis of epidemiological studies, updates of earlier occupational cohort studies, toxicological experiments using a sensitive mouse strain, mechanistic studies examining the role of exogenous versus endogenous formaldehyde in bone marrow, and several critical reviews. With few exceptions, new findings are consistently negative, and integration of all available evidence challenges the earlier conclusions that formaldehyde causes leukemia. Given formaldehyde's commercial importance, environmental ubiquity and endogenous production, accurate hazard classification and risk evaluation of whether exposure to formaldehyde from occupational, residential and consumer products causes leukemia are critical.
Collapse
Affiliation(s)
- Kenneth A Mundt
- Environment and Health, Ramboll Environ, Amherst MA, United States.
| | - P Robinan Gentry
- Environment and Health, Ramboll Environ, Amherst MA, United States
| | - Linda D Dell
- Environment and Health, Ramboll Environ, Amherst MA, United States
| | | | - Paolo Boffetta
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Klages-Mundt NL, Li L. Formation and repair of DNA-protein crosslink damage. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1065-1076. [PMID: 29098631 DOI: 10.1007/s11427-017-9183-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022]
Abstract
DNA is constantly exposed to a wide array of genotoxic agents, generating a variety of forms of DNA damage. DNA-protein crosslinks (DPCs)-the covalent linkage of proteins with a DNA strand-are one of the most deleterious and understudied forms of DNA damage, posing as steric blockades to transcription and replication. If not properly repaired, these lesions can lead to mutations, genomic instability, and cell death. DPCs can be induced endogenously or through environmental carcinogens and chemotherapeutic agents. Endogenously, DPCs are commonly derived through reactions with aldehydes, as well as through trapping of various enzymatic intermediates onto the DNA. Proteolytic cleavage of the protein moiety of a DPC is a general strategy for removing the lesion. This can be accomplished through a DPC-specific protease and and/or proteasome-mediated degradation. Nucleotide excision repair and homologous recombination are each involved in repairing DPCs, with their respective roles likely dependent on the nature and size of the adduct. The Fanconi anemia pathway may also have a role in processing DPC repair intermediates. In this review, we discuss how these lesions are formed, strategies and mechanisms for their removal, and diseases associated with defective DPC repair.
Collapse
Affiliation(s)
- Naeh L Klages-Mundt
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Ortega-Atienza S, Krawic C, Watts L, McCarthy C, Luczak MW, Zhitkovich A. 20S immunoproteasomes remove formaldehyde-damaged cytoplasmic proteins suppressing caspase-independent cell death. Sci Rep 2017; 7:654. [PMID: 28381880 PMCID: PMC5429636 DOI: 10.1038/s41598-017-00757-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023] Open
Abstract
Immunoproteasomes are known for their involvement in antigen presentation. However, their broad tissue presence and other evidence are indicative of nonimmune functions. We examined a role for immunoproteasomes in cellular responses to the endogenous and environmental carcinogen formaldehyde (FA) that binds to cytosolic and nuclear proteins producing proteotoxic stress and genotoxic DNA-histone crosslinks. We found that immunoproteasomes were important for suppression of a caspase-independent cell death and the long-term survival of FA-treated cells. All major genotoxic responses to FA, including replication inhibition and activation of the transcription factor p53 and the apical ATM and ATR kinases, were unaffected by immunoproteasome inactivity. Immunoproteasome inhibition enhanced activation of the cytosolic protein damage sensor HSF1, elevated levels of K48-polyubiquitinated cytoplasmic proteins and increased depletion of unconjugated ubiquitin. We further found that FA induced the disassembly of 26S immunoproteasomes, but not standard 26S proteasomes, releasing the 20S catalytic immunoproteasome. FA-treated cells also had higher amounts of small activators PA28αβ and PA28γ bound to 20S particles. Our findings highlight the significance of nonnuclear damage in FA injury and reveal a major role for immunoproteasomes in elimination of FA-damaged cytoplasmic proteins through ubiquitin-independent proteolysis.
Collapse
Affiliation(s)
- Sara Ortega-Atienza
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Lauren Watts
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Caitlin McCarthy
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
24
|
Cross-Sectional Study on Nonmalignant Respiratory Morbidity due to Exposure to Synthetic Amorphous Silica. J Occup Environ Med 2017; 58:376-84. [PMID: 27058478 DOI: 10.1097/jom.0000000000000666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to assess the health impact of chronic exposure to synthetic amorphous silica (SAS) on nonmalignant respiratory morbidity. METHODS We used multiple linear and logistic regression models and Monte Carlo multimodel analyses of two exposure scenarios to evaluate the effect of cumulative exposure to inhalable SAS dust on symptoms, spirometry, and chest films in 462 male workers from five German SAS-producing plants. RESULTS Exposure to SAS was associated with a reduction in forced vital capacity (FVC) in one of the two exposure scenarios but had no effect on forced expiratory volume in 1 second (FEV1) or FEV1/FVC in either exposure scenario. Monte Carlo analysis indicated a decline in FVC of -11 mL per 10 mg/m-years exposure (-6 to -0.4). Chest films showed no evidence of pneumoconiosis. CONCLUSION This study provides limited evidence of minor dose-related effects of chronic exposure to SAS on lung function.
Collapse
|
25
|
Nielsen GD, Larsen ST, Wolkoff P. Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch Toxicol 2017; 91:35-61. [PMID: 27209488 PMCID: PMC5225186 DOI: 10.1007/s00204-016-1733-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/27/2016] [Indexed: 11/11/2022]
Abstract
In 2010, the World Health Organization (WHO) established an indoor air quality guideline for short- and long-term exposures to formaldehyde (FA) of 0.1 mg/m3 (0.08 ppm) for all 30-min periods at lifelong exposure. This guideline was supported by studies from 2010 to 2013. Since 2013, new key studies have been published and key cancer cohorts have been updated, which we have evaluated and compared with the WHO guideline. FA is genotoxic, causing DNA adduct formation, and has a clastogenic effect; exposure-response relationships were nonlinear. Relevant genetic polymorphisms were not identified. Normal indoor air FA concentrations do not pass beyond the respiratory epithelium, and therefore FA's direct effects are limited to portal-of-entry effects. However, systemic effects have been observed in rats and mice, which may be due to secondary effects as airway inflammation and (sensory) irritation of eyes and the upper airways, which inter alia decreases respiratory ventilation. Both secondary effects are prevented at the guideline level. Nasopharyngeal cancer and leukaemia were observed inconsistently among studies; new updates of the US National Cancer Institute (NCI) cohort confirmed that the relative risk was not increased with mean FA exposures below 1 ppm and peak exposures below 4 ppm. Hodgkin's lymphoma, not observed in the other studies reviewed and not considered FA dependent, was increased in the NCI cohort at a mean concentration ≥0.6 mg/m3 and at peak exposures ≥2.5 mg/m3; both levels are above the WHO guideline. Overall, the credibility of the WHO guideline has not been challenged by new studies.
Collapse
Affiliation(s)
- Gunnar Damgård Nielsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark.
| | - Søren Thor Larsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Peder Wolkoff
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| |
Collapse
|
26
|
Ortega-Atienza S, Rubis B, McCarthy C, Zhitkovich A. Formaldehyde Is a Potent Proteotoxic Stressor Causing Rapid Heat Shock Transcription Factor 1 Activation and Lys48-Linked Polyubiquitination of Proteins. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2857-2868. [PMID: 27639166 DOI: 10.1016/j.ajpath.2016.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
Abstract
Endogenous and exogenous formaldehyde (FA) has been linked to cancer, neurotoxicity, and other pathophysiologic effects. Molecular and cellular mechanisms that underlie FA-induced damage are poorly understood. In this study, we investigated whether proteotoxicity is an important, unrecognized factor in cell injury caused by FA. We found that irrespective of their cell cycle phases, all FA-treated human cells rapidly accumulated large amounts of proteins with proteasome-targeting K48-linked polyubiquitin, which was comparable with levels of polyubiquitination in proteasome-inhibited MG132 controls. Both nuclear and cytoplasmic proteins were damaged and underwent K48-polyubiquitination. There were no significant changes in the nonproteolytic K63-polyubiquitination of soluble and insoluble cellular proteins. FA also rapidly induced nuclear accumulation and Ser326 phosphorylation of the main heat shock-responsive transcription factor HSF1, which was not a result of protein polyubiquitination. Consistent with the activation of the functional heat shock response, FA strongly elevated the expression of HSP70 genes. In contrast to the responsiveness of the cytoplasmic protein damage sensor HSF1, FA did not activate the unfolded protein response in either the endoplasmic reticulum or mitochondria. Inhibition of HSP90 chaperone activity increased the levels of K48-polyubiquitinated proteins and diminished cell viability after FA treatment. Overall, our results indicate that FA is a strong proteotoxic agent, which helps explain its diverse pathologic effects, including injury in nonproliferative tissues.
Collapse
Affiliation(s)
- Sara Ortega-Atienza
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Blazej Rubis
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Caitlin McCarthy
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island.
| |
Collapse
|
27
|
Bassig BA, Zhang L, Vermeulen R, Tang X, Li G, Hu W, Guo W, Purdue MP, Yin S, Rappaport SM, Shen M, Ji Z, Qiu C, Ge Y, Hosgood HD, Reiss B, Wu B, Xie Y, Li L, Yue F, Freeman LEB, Blair A, Hayes RB, Huang H, Smith MT, Rothman N, Lan Q. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene. Carcinogenesis 2016; 37:692-700. [PMID: 27207665 DOI: 10.1093/carcin/bgw053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/27/2016] [Indexed: 01/19/2023] Open
Abstract
Benzene, formaldehyde (FA) and trichloroethylene (TCE) are ubiquitous chemicals in workplaces and the general environment. Benzene is an established myeloid leukemogen and probable lymphomagen. FA is classified as a myeloid leukemogen but has not been associated with non-Hodgkin lymphoma (NHL), whereas TCE has been associated with NHL but not myeloid leukemia. Epidemiologic associations between FA and myeloid leukemia, and between benzene, TCE and NHL are, however, still debated. Previously, we showed that these chemicals are associated with hematotoxicity in cross-sectional studies of factory workers in China, which included extensive personal monitoring and biological sample collection. Here, we compare and contrast patterns of hematotoxicity, monosomy 7 in myeloid progenitor cells (MPCs), and B-cell activation biomarkers across these studies to further evaluate possible mechanisms of action and consistency of effects with observed hematologic cancer risks. Workers exposed to benzene or FA, but not TCE, showed declines in cell types derived from MPCs, including granulocytes and platelets. Alterations in lymphoid cell types, including B cells and CD4+ T cells, and B-cell activation markers were apparent in workers exposed to benzene or TCE. Given that alterations in myeloid and lymphoid cell types are associated with hematological malignancies, our data provide biologic insight into the epidemiological evidence linking benzene and FA exposure with myeloid leukemia risk, and TCE and benzene exposure with NHL risk.
Collapse
Affiliation(s)
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Guilan Li
- Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | - Weihong Guo
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | | | - Songnian Yin
- Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Stephen M Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | | | - Zhiying Ji
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Chuangyi Qiu
- Guangdong Poison Control Center, Guangzhou, China
| | - Yichen Ge
- Guangdong Poison Control Center, Guangzhou, China
| | - H Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Boris Reiss
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA and
| | - Banghua Wu
- Guangdong Poison Control Center, Guangzhou, China
| | - Yuxuan Xie
- Guangdong Poison Control Center, Guangzhou, China
| | - Laiyu Li
- Guangdong Poison Control Center, Guangzhou, China
| | - Fei Yue
- Guangdong Poison Control Center, Guangzhou, China
| | | | | | - Richard B Hayes
- Division of Epidemiology, Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Hanlin Huang
- Guangdong Poison Control Center, Guangzhou, China
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | | | | |
Collapse
|
28
|
Niu J, Lin Y, Guo Z, Niu M, Su C. The Epidemiological Investigation on the Risk Factors of Hepatocellular Carcinoma: A Case-Control Study in Southeast China. Medicine (Baltimore) 2016; 95:e2758. [PMID: 26871825 PMCID: PMC4753921 DOI: 10.1097/md.0000000000002758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Incidence of hepatocellular carcinoma (HCC) ranked the fifth in male and ninth in the female counterparts, and 50% of incidence HCC cases were occurred in China with high hepatitis B virus (HBV) prevalence. HCC has seriously compromised the health status of general population in China. A case-control study of 314 HCC cases and 346 controls was conducted in Xiamen, which is an epidemic area in China for both hepatitis B infection and HCC. Face-to-face interview was conducted to gather information on demographic characteristics as well as exposure of environmental factors. Commercial enzyme-linked immunosorbent assay kits were used to determine the status of serological markers of HBV infection. Odds ratios and 95% confidence intervals were estimated by using unconditional logistic regression. Multivariate unconditional logistic regression analysis was applied to evaluate the potential interactions of variables or confounders.As expected, HBV and alcohol intake still are the major risk factors of HCC. Liver disease history and passive smoking are also associated with elevated HCC risk. Indoor air pollution and pesticide exposure have newly identified as risk factors of HCC. Fruit and tea intake can significantly lower the HCC risk.The application of HBV vaccine and reduction on alcohol intake should be further promoted in high-risk population. Fruit and tea can be served as chemoprevention in daily life due to their high accessibility.
Collapse
Affiliation(s)
- Jianjun Niu
- From the Zhongshan Hospital, Xiamen University (JN); Xiamen Center for Disease Control and Prevention (YL, ZG, MN, CS); and School of Public Health, Xiamen University, Xiamen, Fujian Province, People's Republic of China (CS)
| | | | | | | | | |
Collapse
|
29
|
Ortega-Atienza S, Wong VC, DeLoughery Z, Luczak MW, Zhitkovich A. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage. Nucleic Acids Res 2016; 44:198-209. [PMID: 26420831 PMCID: PMC4705693 DOI: 10.1093/nar/gkv957] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/09/2015] [Accepted: 09/10/2015] [Indexed: 01/18/2023] Open
Abstract
Many carcinogens damage both DNA and protein constituents of chromatin, and it is unclear how cells respond to this compound injury. We examined activation of the main DNA damage-responsive kinase ATM and formation of DNA double-strand breaks (DSB) by formaldehyde (FA) that forms histone adducts and replication-blocking DNA-protein crosslinks (DPC). We found that low FA doses caused a strong and rapid activation of ATM signaling in human cells, which was ATR-independent and restricted to S-phase. High FA doses inactivated ATM via its covalent dimerization and formation of larger crosslinks. FA-induced ATM signaling showed higher CHK2 phosphorylation but much lower phospho-KAP1 relative to DSB inducers. Replication blockage by DPC did not produce damaged forks or detectable amounts of DSB during the main wave of ATM activation, which did not require MRE11. Chromatin-monitoring KAT5 (Tip60) acetyltransferase was responsible for acetylation and activation of ATM by FA. KAT5 and ATM were equally important for triggering of intra-S-phase checkpoint and ATM signaling promoted recovery of normal human cells after low-dose FA. Our results revealed a major role of the KAT5-ATM axis in protection of replicating chromatin against damage by the endogenous carcinogen FA.
Collapse
Affiliation(s)
- Sara Ortega-Atienza
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Victor C Wong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Zachary DeLoughery
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
30
|
Axelrod T, Eltzov E, Marks RS. Bioluminescent bioreporter pad biosensor for monitoring water toxicity. Talanta 2015; 149:290-297. [PMID: 26717844 DOI: 10.1016/j.talanta.2015.11.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/22/2015] [Accepted: 11/25/2015] [Indexed: 01/26/2023]
Abstract
Toxicants in water sources are of concern. We developed a tool that is affordable and easy-to-use for monitoring toxicity in water. It is a biosensor composed of disposable bioreporter pads (calcium alginate matrix with immobilized bacteria) and a non-disposable CMOS photodetector. Various parameters to enhance the sensor's signal have been tested, including the effect of alginate and bacterium concentrations. The effect of various toxicants, as well as, environmental samples were tested by evaluating their effect on bacterial luminescence. This is the first step in the creation of a sensitive and simple operative tool that may be used in different environments.
Collapse
Affiliation(s)
- Tim Axelrod
- Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Evgeni Eltzov
- Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel; School of Material Science and Engineering, Nanyang Technology University, Nanyang Avenue, 639798 Singapore
| | - Robert S Marks
- Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel; School of Material Science and Engineering, Nanyang Technology University, Nanyang Avenue, 639798 Singapore; National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
31
|
Ortega-Atienza S, Green SE, Zhitkovich A. Proteasome activity is important for replication recovery, CHK1 phosphorylation and prevention of G2 arrest after low-dose formaldehyde. Toxicol Appl Pharmacol 2015; 286:135-41. [PMID: 25817892 PMCID: PMC4458209 DOI: 10.1016/j.taap.2015.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 11/24/2022]
Abstract
Formaldehyde (FA) is a human carcinogen with numerous sources of environmental and occupational exposures. This reactive aldehyde is also produced endogenously during metabolism of drugs and other processes. DNA-protein crosslinks (DPCs) are considered to be the main genotoxic lesions for FA. Accumulating evidence suggests that DPC repair in high eukaryotes involves proteolysis of crosslinked proteins. Here, we examined a role of the main cellular proteolytic machinery proteasomes in toxic responses of human lung cells to low FA doses. We found that transient inhibition of proteasome activity increased cytotoxicity and diminished clonogenic viability of FA-treated cells. Proteasome inactivation exacerbated suppressive effects of FA on DNA replication and increased the levels of the genotoxic stress marker γ-H2AX in normal human cells. A transient loss of proteasome activity in FA-exposed cells also caused delayed perturbations of cell cycle, which included G2 arrest and a depletion of S-phase populations at FA doses that had no effects in control cells. Proteasome activity diminished p53-Ser15 phosphorylation but was important for FA-induced CHK1 phosphorylation, which is a biochemical marker of DPC proteolysis in replicating cells. Unlike FA, proteasome inhibition had no effect on cell survival and CHK1 phosphorylation by the non-DPC replication stressor hydroxyurea. Overall, we obtained evidence for the importance of proteasomes in protection of human cells against biologically relevant doses of FA. Biochemically, our findings indicate the involvement of proteasomes in proteolytic repair of DPC, which removes replication blockage by these highly bulky lesions.
Collapse
Affiliation(s)
- Sara Ortega-Atienza
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Samantha E Green
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
32
|
Formaldehyde induces the bone marrow toxicity in mice by regulating the expression of Prx3 protein. ACTA ACUST UNITED AC 2015; 35:82-86. [DOI: 10.1007/s11596-015-1393-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 10/21/2014] [Indexed: 01/08/2023]
|
33
|
Zhao Z, Hao J, Song X, Ren S, Hao C. A sensor for formaldehyde detection: luminescent metal–organic framework [Zn2(H2L)(2,2′-bpy)2(H2O)]n. RSC Adv 2015. [DOI: 10.1039/c5ra07373a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The comparison between the two systems shows that the encapsulation of formaldehyde can affect the luminescence behavior of [Zn2(H2L)(2,2′-bpy)2(H2O)]n.
Collapse
Affiliation(s)
- Zhengyan Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- China
| | - Juanyuan Hao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- China
| | - Xuedan Song
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- China
| | - Suzhen Ren
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- China
| | - Ce Hao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- China
| |
Collapse
|
34
|
Yu G, Chen Q, Liu X, Guo C, Du H, Sun Z. Formaldehyde induces bone marrow toxicity in mice by inhibiting peroxiredoxin 2 expression. Mol Med Rep 2014; 10:1915-20. [PMID: 25109304 DOI: 10.3892/mmr.2014.2473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/05/2014] [Indexed: 11/05/2022] Open
Abstract
Peroxiredoxin 2 (Prx2), a member of the peroxiredoxin family, regulates numerous cellular processes through intracellular oxidative signal transduction pathways. Formaldehyde (FA)-induced toxic damage involves reactive oxygen species (ROS) that trigger subsequent toxic effects and inflammatory responses. The present study aimed to investigate the role of Prx2 in the development of bone marrow toxicity caused by FA and the mechanism underlying FA toxicity. According to the results of the preliminary investigations, the mice were divided into four groups (n=6 per group). One group was exposed to ambient air and the other three groups were exposed to different concentrations of FA (20, 40, 80 mg/m3) for 15 days in the respective inhalation chambers, for 2 h a day. At the end of the 15-day experimental period, all of the mice were sacrificed and bone marrow cells were obtained. Cell samples were used for the determination of pathology, glutathione peroxidase (GSH-Px) activity and myeloperoxidase (MPO) activity and protein expression; as well as for the determination of DNA damage and Prx2 expression. The results revealed an evident pathological change in the FA-treated groups, as compared with the controls. In the FA treatment group GSH-Px activity was decreased, while MPO activity and protein expression were increased. The rate of micronucleus and DNA damage in the FA-treated groups was also increased and was significantly different compared with the control, while the expression of Prx2 was decreased. The present study suggested that at certain concentrations, FA had a toxic effect on bone marrow cells and that changes in the Prx2 expression are involved in this process.
Collapse
Affiliation(s)
- Guangyan Yu
- Department of Preventative Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qiang Chen
- Department of Preventative Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaomei Liu
- Department of Preventative Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Caixia Guo
- Department of Hygenic Toxicology, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Haiying Du
- Department of Preventative Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhiwei Sun
- Department of Preventative Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
35
|
Pira E, Romano C, Verga F, La Vecchia C. Mortality from lymphohematopoietic neoplasms and other causes in a cohort of laminated plastic workers exposed to formaldehyde. Cancer Causes Control 2014; 25:1343-9. [PMID: 25053406 DOI: 10.1007/s10552-014-0440-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/10/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE A possible relationship between exposure to formaldehyde and leukemia-particularly myeloid leukemia-as well as of lymphoid neoplasms has been debated and is still controversial. We thus examined the issue using data from a cohort of workers of a laminated plastic factory sited in Piedmont, northern Italy. METHODS The study cohort included 2,750 subjects (2,227 men and 523 women) who worked in the factory between 1947 and 2011, for at least 180 days. Follow-up ended in May 2011, for a total of 70,933 person-years of observation. We computed standardized mortality ratios (SMR) and 95% confidence intervals (CI) using national and (whenever available) Piedmont Region death rates. RESULTS Overall, there were 417 deaths versus 493.4 expected ones (SMR = 84.5, 95% CI 76.6-93.0). The SMRs were 79.8 (95% CI 67.5-93.6) for total cancer mortality, 148.5 (95% CI 68.0-282.2) for oral cavity and pharynx (three deaths were registered, but not confirmed, as nasopharyngeal cancer), 48.3 (95% CI 13.1-123.7) for pancreas, 66.1 (95% CI 13.6-193.0) for larynx, and 96.7 (95% CI 72.0-127.2) for lung cancer. The SMR of all lymphohematopoietic malignancies was 68.6 (95% CI 31.4-130.3; nine observed deaths). This tended to increase with duration of exposure and to decrease with period at first exposure, always remaining below 100. There were four deaths from lymphoma (SMR = 74.1, 95% CI 20.1-189.6) and five deaths from leukemia (SMR = 92.4, 95% CI 29.9-215.3). CONCLUSIONS We found no meaningful excess mortality from any lymphohematopoietic nor other neoplasms, except possibly for nasopharyngeal cancer.
Collapse
Affiliation(s)
- Enrico Pira
- Section of Occupational Medicine, Department of Public Health and Pediatrics, University of Turin, Via Zuretti 29, 10126, Turin, Italy
| | | | | | | |
Collapse
|
36
|
Lymphohematopoietic cancers induced by chemicals and other agents and their implications for risk evaluation: An overview. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:40-64. [PMID: 24731989 DOI: 10.1016/j.mrrev.2014.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/13/2022]
Abstract
Lymphohematopoietic neoplasia are one of the most common types of cancer induced by therapeutic and environmental agents. Of the more than 100 human carcinogens identified by the International Agency for Research on Cancer, approximately 25% induce leukemias or lymphomas. The objective of this review is to provide an introduction into the origins and mechanisms underlying lymphohematopoietic cancers induced by xenobiotics in humans with an emphasis on acute myeloid leukemia, and discuss the implications of this information for risk assessment. Among the agents causing lymphohematopoietic cancers, a number of patterns were observed. Most physical and chemical leukemia-inducing agents such as the therapeutic alkylating agents, topoisomerase II inhibitors, and ionizing radiation induce mainly acute myeloid leukemia through DNA-damaging mechanisms that result in either gene or chromosomal mutations. In contrast, biological agents and a few immunosuppressive chemicals induce primarily lymphoid neoplasms through mechanisms that involve alterations in immune response. Among the environmental agents examined, benzene was clearly associated with acute myeloid leukemia in humans, with increasing but still limited evidence for an association with lymphoid neoplasms. Ethylene oxide and 1,3-butadiene were linked primarily to lymphoid cancers. Although the association between formaldehyde and leukemia remains controversial, several recent evaluations have indicated a potential link between formaldehyde and acute myeloid leukemia. The four environmental agents examined in detail were all genotoxic, inducing gene mutations, chromosomal alterations, and/or micronuclei in vivo. Although it is clear that rapid progress has been made in recent years in our understanding of leukemogenesis, many questions remain for future research regarding chemically induced leukemias and lymphomas, including the mechanisms by which the environmental agents reviewed here induce these diseases and the risks associated with exposures to such agents.
Collapse
|
37
|
Maneli MH, Smith P, Khumalo NP. Elevated formaldehyde concentration in “Brazilian keratin type” hair-straightening products: A cross-sectional study. J Am Acad Dermatol 2014; 70:276-80. [DOI: 10.1016/j.jaad.2013.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 11/16/2022]
|
38
|
Boyer IJ, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Amended Safety Assessment of Formaldehyde and Methylene Glycol as Used in Cosmetics. Int J Toxicol 2013; 32:5S-32S. [DOI: 10.1177/1091581813511831] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Formaldehyde and methylene glycol may be used safely in cosmetics if established limits are not exceeded and are safe for use in nail hardeners in the present practices of use and concentration, which include instructions to avoid skin contact. In hair-smoothing products, however, in the present practices of use and concentration, formaldehyde and methylene glycol are unsafe. Methylene glycol is continuously converted to formaldehyde, and vice versa, even at equilibrium, which can be easily shifted by heating, drying, and other conditions to increase the amount of formaldehyde. This rapid, reversible formaldehyde/methylene glycol equilibrium is distinguished from the slow, irreversible release of formaldehyde resulting from the so-called formaldehyde releaser preservatives, which are not addressed in this safety assessment (formaldehyde releasers may continue to be safely used in cosmetics at the levels established in their individual Cosmetic Ingredient Review safety assessments).
Collapse
Affiliation(s)
- Ivan J. Boyer
- Cosmetic Ingredient Review Toxicologist, Washington, DC, USA
| | - Bart Heldreth
- Cosmetic Ingredient Review Chemist, Washington, DC, USA
| | | | | | - Ronald A. Hill
- Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | | | | | - James G. Marks
- Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | - Ronald C. Shank
- Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | - Thomas J. Slaga
- Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | - Paul W. Snyder
- Cosmetic Ingredient Review Expert Panel Member, Washington, DC, USA
| | | |
Collapse
|
39
|
Meyers AR, Pinkerton LE, Hein MJ. Cohort mortality study of garment industry workers exposed to formaldehyde: update and internal comparisons. Am J Ind Med 2013; 56:1027-39. [PMID: 23788124 DOI: 10.1002/ajim.22199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND To further evaluate the association between formaldehyde and leukemia, we extended follow-up through 2008 for a cohort mortality study of 11,043 US formaldehyde-exposed garment workers. METHODS We computed standardized mortality ratios and standardized rate ratios stratified by year of first exposure, exposure duration, and time since first exposure. Associations between exposure duration and rates of leukemia and myeloid leukemia were further examined using Poisson regression models. RESULTS Compared to the US population, myeloid leukemia mortality was elevated but overall leukemia mortality was not. In internal analyses, overall leukemia mortality increased with increasing exposure duration and this trend was statistically significant. CONCLUSIONS We continue to see limited evidence of an association between formaldehyde and leukemia. However, the extended follow-up did not strengthen previously observed associations. In addition to continued epidemiologic research, we recommend further research to evaluate the biological plausibility of a causal relation between formaldehyde and leukemia.
Collapse
Affiliation(s)
| | - Lynne E. Pinkerton
- Division of Surveillance, Hazard Evaluations and Field Studies, Industrywide Studies Branch; The National Institute for Occupational Safety and Health; Cincinnati, Ohio
| | - Misty J. Hein
- Division of Surveillance, Hazard Evaluations and Field Studies, Industrywide Studies Branch; The National Institute for Occupational Safety and Health; Cincinnati, Ohio
| |
Collapse
|
40
|
Abstract
Leukemia is a complex disease, which only became better understood during the last decades following the development of new laboratory techniques and diagnostic methods. Despite our improved understanding of the physiology of the disease, little is yet known about the causes of leukemia. A variety of potential risk factors have been suggested so far, including personal habits and lifestyle, and a wide range of occupational or environmental exposures. A causal association with leukemia has only been documented to date for ionizing radiation, benzene and treatment with cytostatic drugs, but there is an ongoing scientific debate on the possible association of leukemia with a number of other work-related hazards. In this article, we have reviewed scientific studies, published over the past 5 years, which investigated potential associations between leukemia and exposure to occupational risk factors. The systematic literature review took place via electronic databases, using specific search criteria, and independent reviewers have further filtered the search results to identify the number of articles, presented in our paper. A large number of studies included in the review referred to the effects of ionizing radiation, where new data suggest that the effects of exposure to small doses of ionizing radiation should probably be reevaluated. Some other works appear to substantiate a potential association of the disease with certain pesticides. Further research is also suggested regarding the role of infectious agents or exposure to certain chemicals like formaldehyde or butadiene in the pathogenesis of leukemia.
Collapse
|
41
|
Pinkerton LE, Hein MJ, Meyers A, Kamel F. Assessment of ALS mortality in a cohort of formaldehyde-exposed garment workers. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:353-5. [PMID: 23570513 DOI: 10.3109/21678421.2013.778284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lynne E Pinkerton
- Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, 4676 Columbia Parkway, Cincinnati, OH 45226, USA.
| | | | | | | |
Collapse
|
42
|
Checkoway H, Boffetta P, Mundt DJ, Mundt KA. Response letter to the Editor RE: Formaldehyde and leukemia: missing evidence! Cancer Causes Control 2013. [DOI: 10.1007/s10552-012-0112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Bolt HM, Morfeld P. New results on formaldehyde: the 2nd International Formaldehyde Science Conference (Madrid, 19-20 April 2012). Arch Toxicol 2013; 87:217-22. [PMID: 23138381 PMCID: PMC3535350 DOI: 10.1007/s00204-012-0966-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/23/2012] [Indexed: 12/19/2022]
Abstract
The toxicology and epidemiology of formaldehyde were discussed on the 2nd International Formaldehyde Science Conference in Madrid, 19-20 April 2012. It was noted that a substantial amount of new scientific data has appeared within the last years since the 1st conference in 2007. Progress has been made in characterisation of genotoxicity, toxicokinetics, formation of exogenous and endogenous DNA adducts, controlled human studies and epidemiology. Thus, new research results are now at hand to be incorporated into existing evaluations on formaldehyde by official bodies.
Collapse
Affiliation(s)
- Hermann M Bolt
- Leibniz Research Centre on Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139 Dortmund, Germany.
| | | |
Collapse
|
44
|
Nielsen GD, Larsen ST, Wolkoff P. Recent trend in risk assessment of formaldehyde exposures from indoor air. Arch Toxicol 2013; 87:73-98. [PMID: 23179754 PMCID: PMC3618407 DOI: 10.1007/s00204-012-0975-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/31/2012] [Indexed: 01/09/2023]
Abstract
Studies about formaldehyde (FA) published since the guideline of 0.1 mg/m(3) by the World Health Organization (WHO) in 2010 have been evaluated; critical effects were eye and nasal (portal-of-entry) irritation. Also, it was considered to prevent long-term effects, including all types of cancer. The majority of the recent toxicokinetic studies showed no exposure-dependent FA-DNA adducts outside the portal-of-entry area and FA-DNA adducts at distant sites were due to endogenously generated FA. The no-observed-adverse-effect level for sensory irritation was 0.5 ppm and recently reconfirmed in hypo- and hypersensitive individuals. Investigation of the relationship between FA exposure and asthma or other airway effects in children showed no convincing association. In rats, repeated exposures showed no point mutation in the p53 and K-Ras genes at ≤15 ppm neither increased cell proliferation, histopathological changes and changes in gene expression at 0.7 ppm. Repeated controlled exposures (0.5 ppm with peaks at 1 ppm) did not increase micronucleus formation in human buccal cells or nasal tissue (0.7 ppm) or in vivo genotoxicity in peripheral blood lymphocytes (0.7 ppm), but higher occupational exposures were associated with genotoxicity in buccal cells and cultivated peripheral blood lymphocytes. It is still valid that exposures not inducing nasal squamous cell carcinoma in rats will not induce nasopharyngeal cancer or lymphohematopoietic malignancies in humans. Reproductive and developmental toxicity are not considered relevant in the absence of sensory irritation. In conclusion, the WHO guideline has been strengthened.
Collapse
Affiliation(s)
- Gunnar Damgård Nielsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
45
|
|
46
|
Wong VCL, Cash HL, Morse JL, Lu S, Zhitkovich A. S-phase sensing of DNA-protein crosslinks triggers TopBP1-independent ATR activation and p53-mediated cell death by formaldehyde. Cell Cycle 2012; 11:2526-37. [PMID: 22722496 DOI: 10.4161/cc.20905] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We examined genotoxic signaling and cell fate decisions in response to a potent DNA-protein crosslinker formaldehyde (FA). DNA-protein crosslinks (DPC) are poorly understood lesions produced by bifunctional carcinogens and several cancer drugs. FA-treated human cells showed a rapid activation of ATR kinase that preferentially targeted the p53 transcription factor at low doses and CHK1 kinase at more severe damage, producing bell-shaped and sublinear responses, respectively. CHK1 phosphorylation was transient, and its loss was accompanied by increased p53 accumulation and Ser15 phosphorylation. Activation of p53 was insensitive to inhibition of mismatch repair and nucleotide and base excision repair, excluding the role of small DNA adducts in this response. The p53-targeted signaling was transcription-independent, absent in quiescent cells and specific to S-phase in cycling populations. Unlike other S-phase stressors, FA-activated p53 was functional transcriptionally, promoted apoptosis in lung epithelial cells and caused senescence in normal lung fibroblasts. FA did not induce ATR, RAD1 or RPA foci, and p53 phosphorylation was TopBP1-independent, indicating a noncanonical mode of ATR activation. Replication arrest by FA caused a dissociation of ATR from a chromatin-loaded MCM helicase but no PCNA monoubiquitination associated with stalled polymerases. These results suggest that unlike typical DNA adducts that stall DNA polymerases, replication inhibition by bulkier DPC largely results from blocking upstream MCM helicase, which prevents accumulation of ssDNA. Overall, our findings indicate that S-phase-specific, TopBP1-independent activation of the ATR-p53 axis is a critical stress response to FA-DPC, which has implications for understanding of FA carcinogenesis.
Collapse
Affiliation(s)
- Victor Chun-Lam Wong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
47
|
Kim KH, Jahan SA, Lee JT. Exposure to formaldehyde and its potential human health hazards. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2011; 29:277-299. [PMID: 22107164 DOI: 10.1080/10590501.2011.629972] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A widely used chemical, formaldehyde is normally present in both indoor and outdoor air. The rapid growth of formaldehyde-related industries in the past two decades reflects the result of its increased use in building materials and other commercial sectors. Consequently, formaldehyde is encountered almost every day from large segments of society due to its various sources. Many governments and agencies around the world have thus issued a series of standards to regulate its exposure in homes, office buildings, workshops, public places, and food. In light of the deleterious properties of formaldehyde, this article provides an overview of its market, regulation standards, and human health effects.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Department of Environment & Energy, Sejong University, Seoul, Korea.
| | | | | |
Collapse
|
48
|
Rhomberg LR, Bailey LA, Goodman JE, Hamade AK, Mayfield D. Is exposure to formaldehyde in air causally associated with leukemia?--A hypothesis-based weight-of-evidence analysis. Crit Rev Toxicol 2011; 41:555-621. [PMID: 21635189 PMCID: PMC3167468 DOI: 10.3109/10408444.2011.560140] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/13/2010] [Accepted: 09/13/2010] [Indexed: 12/17/2022]
Abstract
Recent scientific debate has focused on the potential for inhaled formaldehyde to cause lymphohematopoietic cancers, particularly leukemias, in humans. The concern stems from certain epidemiology studies reporting an association, although particulars of endpoints and dosimetry are inconsistent across studies and several other studies show no such effects. Animal studies generally report neither hematotoxicity nor leukemia associated with formaldehyde inhalation, and hematotoxicity studies in humans are inconsistent. Formaldehyde's reactivity has been thought to preclude systemic exposure following inhalation, and its apparent inability to reach and affect the target tissues attacked by known leukemogens has, heretofore, led to skepticism regarding its potential to cause human lymphohematopoietic cancers. Recently, however, potential modes of action for formaldehyde leukemogenesis have been hypothesized, and it has been suggested that formaldehyde be identified as a known human leukemogen. In this article, we apply our hypothesis-based weight-of-evidence (HBWoE) approach to evaluate the large body of evidence regarding formaldehyde and leukemogenesis, attending to how human, animal, and mode-of-action results inform one another. We trace the logic of inference within and across all studies, and articulate how one could account for the suite of available observations under the various proposed hypotheses. Upon comparison of alternative proposals regarding what causal processes may have led to the array of observations as we see them, we conclude that the case for a causal association is weak and strains biological plausibility. Instead, apparent association between formaldehyde inhalation and leukemia in some human studies is better interpreted as due to chance or confounding.
Collapse
|
49
|
Uchiyama S, Inaba Y, Kunugita N. Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine and their subsequent determination by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1282-9. [DOI: 10.1016/j.jchromb.2010.09.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/21/2010] [Accepted: 09/26/2010] [Indexed: 11/29/2022]
|