1
|
Park JY, Ng Hing Cheung JA, Todorov D, Park SY, Lim H, Shin E, Yoon A, Ha J. Biological augmentation of anterior cruciate ligament reconstruction with bone marrow aspirate concentrate: a systematic review and meta-analysis of randomised controlled trials. INTERNATIONAL ORTHOPAEDICS 2025; 49:35-43. [PMID: 39572452 PMCID: PMC11703946 DOI: 10.1007/s00264-024-06380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/10/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE Biological augmentation of anterior cruciate ligament (ACL) reconstruction with bone marrow aspirate concentrate (BMAC) is gaining attention for its theoretical potential to enhance postoperative healing and recovery. However, its clinical benefits remain uncertain, and its high cost raises questions about efficacy. Hence, we systematically reviewed randomised controlled trials (RCTs) to evaluate the effectiveness of BMAC in ACL reconstruction. METHODS Our search included Cochrane, EMBASE, OVID, PubMed, and Scopus databases for RCTs evaluating the use of BMAC in ACL reconstruction. Primary outcomes focused on International Knee Documentation Committee (IKDC) scores and Lysholm scores. Secondary outcomes included MRI-related outcomes and postoperative complications. Statistical analysis was conducted using Review Manager 5.4 (Cochrane Collaboration), with heterogeneity assessed using Cochrane's Q test and I2 statistics. RESULTS 221 patients from five RCTs were included, with 109 (49.3%) receiving BMAC augmentation. Follow-up ranged from 11.05 to 24 months. No significant differences were found in postoperative IKDC scores between the BMAC and control groups at, three, six and 12 months. The BMAC group had significantly higher IKDC scores at 24 months; however, this difference was unlikely to be clinically significant. No significant differences were observed in postoperative Lysholm scores at 12 or 24 months. MRI-related outcomes suggested potential graft recovery improvement with BMAC, and complication rates were comparable between groups. CONCLUSION In summary, biological augmentation with BMAC in ACL reconstruction does not significantly improve early patient-reported outcomes but offers potential benefits in graft recovery without increasing complication rates.
Collapse
Affiliation(s)
- Jae Yong Park
- Faculty of Medicine, Imperial College London, Ayrton Rd, South Kensington, London, SW7 5NH, UK.
| | | | - Dominik Todorov
- Faculty of Medicine, Imperial College London, Ayrton Rd, South Kensington, London, SW7 5NH, UK
| | | | - Hayeon Lim
- Faculty of Medicine, Imperial College London, Ayrton Rd, South Kensington, London, SW7 5NH, UK
| | - Eunjae Shin
- Faculty of Medicine, Kyungpook National University, Daegu, South Korea
| | - Angelina Yoon
- Faculty of Medicine, Monash University, Melbourne, Australia
| | - Joon Ha
- Foothills Medical Centre, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Kunze KN, Pareek A, Nwachukwu BU, Ranawat AS, Pearle AD, Kelly BT, Allen AA, Williams RJ. Clinical Results of Primary Repair Versus Reconstruction of the Anterior Cruciate Ligament: A Systematic Review and Meta-analysis of Contemporary Trials. Orthop J Sports Med 2024; 12:23259671241253591. [PMID: 38867918 PMCID: PMC11168252 DOI: 10.1177/23259671241253591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 06/14/2024] Open
Abstract
Background Primary anterior cruciate ligament (ACL) repair has gained renewed interest in select centers for patients with proximal or midsubstance ACL tears. Therefore, it is important to reassess contemporary clinical outcomes of ACL repair to determine whether a clinical benefit exists over the gold standard of ACL reconstruction (ACLR). Purpose To (1) perform a meta-analysis of comparative trials to determine whether differences in clinical outcomes and adverse events exist between ACL repair versus ACLR and (2) synthesize the midterm outcomes of available trials. Study Design Systematic review; Level of evidence, 3. Methods The PubMed, OVID/Medline, and Cochrane databases were queried in August 2023 for prospective and retrospective clinical trials comparing ACL repair and ACLR. Data pertaining to tear location, surgical technique, adverse events, and clinical outcome measures were recorded. DerSimonian-Laird random-effects models were constructed to quantitatively evaluate the association between ACL repair/ACLR, adverse events, and clinical outcomes. A subanalysis of minimum 5-year outcomes was performed. Results Twelve studies (893 patients; 464 ACLR and 429 ACL repair) were included. Random-effects models demonstrated a higher relative risk (RR) of recurrent instability/clinical failure (RR = 1.64; 95% confidence interval [CI], 1.04-2.57; P = .032), revision ACLR (RR = 1.63; 95% CI, 1.03-2.59; P = .039), and hardware removal (RR = 4.94; 95% CI, 2.10-11.61; P = .0003) in patients who underwent primary ACL repair versus ACLR. The RR of reoperations and complications (knee-related) were not significantly different between groups. No significant differences were observed when comparing patient-reported outcome scores. In studies with minimum 5-year outcomes, no significant differences in adverse events or Lysholm scores were observed. Conclusion In contemporary comparative trials of ACL repair versus ACLR, the RR of clinical failure, revision surgery due to ACL rerupture, and hardware removal was greater for primary ACL repair compared with ACLR. There were no observed differences in patient-reported outcome scores, reoperations, or knee-related complications between approaches. In the limited literature reporting on minimum 5-year outcomes, significant differences in adverse events or the International Knee Documentation Committee score were not observed.
Collapse
Affiliation(s)
- Kyle N. Kunze
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| | - Ayoosh Pareek
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| | - Benedict U. Nwachukwu
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| | - Anil S. Ranawat
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| | - Andrew D. Pearle
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| | - Bryan T. Kelly
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| | - Answorth A. Allen
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| | - Riley J. Williams
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
- Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
3
|
Nelson PA, George T, Bowen E, Sheean AJ, Bedi A. An Update on Orthobiologics: Cautious Optimism. Am J Sports Med 2024; 52:242-257. [PMID: 38164688 DOI: 10.1177/03635465231192473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Orthobiologics are rapidly growing in use given their potential to augment healing for multiple musculoskeletal conditions. Orthobiologics consist of a variety of treatments including platelet-rich plasma and stem cells that provide conceptual appeal in providing local delivery of growth factors and inflammation modulation. The lack of standardization in nomenclature and applications within the literature has led to a paucity of high-quality evidence to support their frequent use. The purpose of this review was to describe the current landscape of orthobiologics and the most recent evidence regarding their use.
Collapse
Affiliation(s)
- Patrick A Nelson
- University of Chicago Department of Orthopedic Surgery, Chicago, Illinois, USA
| | - Tom George
- Northshore University Healthcare System, Evanston, Illinois, USA
| | - Edward Bowen
- Weill Cornell Medicine, New York City, New York, USA
| | - Andrew J Sheean
- San Antonio Military Medical Center, Department of Orthopedic Surgery, San Antonio, Texas, USA
| | - Asheesh Bedi
- Northshore University Healthcare System, Evanston, Illinois, USA
| |
Collapse
|
4
|
Chen Y, Zhang Y, Chen X, Huang J, Zhou B, Zhang T, Yin W, Fang C, Yin Z, Pan H, Li X, Shen W, Chen X. Biomimetic Intrafibrillar Mineralization of Native Tendon for Soft-Hard Interface Integration by Infiltration of Amorphous Calcium Phosphate Precursors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304216. [PMID: 37870172 PMCID: PMC10700236 DOI: 10.1002/advs.202304216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Soft and hard tissues possess distinct biological properties. Integrating the soft-hard interface is difficult due to the inherent non-osteogenesis of soft tissue, especially of anterior cruciate ligament and rotator cuff reconstruction. This property makes it difficult for tendons to be mineralized and integrated with bone in vivo. To overcome this challenge, a biomimetic mineralization strategy is employed to engineer mineralized tendons. The strategy involved infiltrating amorphous calcium phosphate precursors into collagen fibrils, resulting in hydroxyapatite deposition along the c-axis. The mineralized tendon presented characteristics similar to bone tissue and induced osteogenic differentiation of mesenchymal stem cells. Additionally, the interface between the newly formed bone and tendon is serrated, suggesting a superb integration between the two tissues. This strategy allows for biomineralization of tendon collagen and replicating the hallmarks of the bone matrix and extracellular niche, including nanostructure and inherent osteoinductive properties, ultimately facilitating the integration of soft and hard tissues.
Collapse
Affiliation(s)
- Yangwu Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| | - Yuxiang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Department of Plastic SurgerySir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou310000P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
| | - Xiaoyi Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
| | - Jiayun Huang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| | - Bo Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
| | - Tao Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| | - Wei Yin
- Core FacilitiesZhejiang University School of MedicineHangzhou310000P. R. China
| | - Cailian Fang
- Rehabilitation DepartmentLishui People's HospitalLishui323000P. R. China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicineand Department of Orthopedic Surgery of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058P. R. China
| | - Haihua Pan
- Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhou310058P. R. China
| | - Xiongfeng Li
- Huzhou HospitalZhejiang University School of MedicineHuzhou313000P. R. China
| | - Weiliang Shen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058P. R. China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang ProvinceZhejiang UniversityHangzhou310058P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed)Hangzhou310000P. R. China
- Department of Sports MedicineZhejiang University School of MedicineHangzhou310000P. R. China
| |
Collapse
|
5
|
Muir SM, McMandon A, Sadowski E, Lucas J, McDermott JD. Revisiting Anterior Cruciate Ligament Repairs in an Athlete With Combined Grade III Medial Collateral Ligament and High-Grade Posterolateral Anterior Cruciate Ligament Tear: A Case Report. Cureus 2023; 15:e49522. [PMID: 38156121 PMCID: PMC10752827 DOI: 10.7759/cureus.49522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Anterior cruciate ligament tears are primarily treated by reconstruction. The development of novel surgical techniques has led to the reconsideration of this approach. Additionally, Grade III tibial-sided medial collateral ligament tears should be treated surgically due to decreased blood flow and poor healing. We describe the surgical repair of a Grade III tibial-sided tear with partial femoral avulsion of the medial collateral ligament and tear of the posterolateral bundle of the anterior cruciate ligament in a competitive high school athlete. A 17-year-old male presented to the Sports Medicine Clinic after injuring his left knee in a football game. Radiographs suggested normal skeletal anatomical alignment with no acute fractures. Magnetic resonance imaging identified a partial injury of the femoral attachment of the medial collateral ligament and a Grade III medial collateral ligament tear where it attached to the tibia. Arthroscopic evaluation of the knee revealed a posterolateral anterior cruciate ligament tear. Operative management included surgical repair of the Grade III tibial-sided medial collateral ligament tear and the posterolateral anterior cruciate ligament tear. Operative repair of medial collateral ligament and anterior cruciate ligament tears provides an alternative approach to the management of surgical reconstruction.
Collapse
Affiliation(s)
- Sean M Muir
- Medicine, Edward Via College of Osteopathic Medicine, Spartanburg, USA
| | - Alyssa McMandon
- Surgery, Edward Via College of Osteopathic Medicine, Spartanburg, USA
| | - Emily Sadowski
- Sports Medicine, Spartanburg Medical Center, Spartanburg, USA
| | - John Lucas
- Sports Medicine, Spartanburg Medical Center, Spartanburg, USA
| | | |
Collapse
|
6
|
Itthipanichpong T, Tangboonnitiwong N, Limskul D, Tanpowpong T, Kuptniratsaikul S, Thamrongskulsiri N. Arthroscopic Anterior Cruciate Ligament Primary Repair With Synthetic Augmentation and Fixation With the Knotless Suture Anchor. Arthrosc Tech 2023; 12:e1009-e1013. [PMID: 37533897 PMCID: PMC10390709 DOI: 10.1016/j.eats.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/15/2023] [Indexed: 08/04/2023] Open
Abstract
An anterior cruciate ligament (ACL) tear is one of the most common ligament injuries in athletes. The arthroscopic ACL reconstruction procedure is the gold standard for treatment. However, the improvement in injury classification and suture materials has subsequently made arthroscopic ACL primary repair an alternative surgical treatment option. This Technical Note describes an arthroscopic ACL primary repair with synthetic augmentation made of several high-strength sutures and fixation with the knotless suture anchor. The reinforced synthetic material acts as a structural tie to support the ACL while it heals.
Collapse
Affiliation(s)
- Thun Itthipanichpong
- Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Napol Tangboonnitiwong
- Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Danaithep Limskul
- Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Thanathep Tanpowpong
- Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Somsak Kuptniratsaikul
- Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | | |
Collapse
|
7
|
Sinkler MA, Furdock RJ, McMellen CJ, Calcei JG, Voos JE. Biologics, Stem Cells, Growth Factors, Platelet-Rich Plasma, Hemarthrosis, and Scaffolds May Enhance Anterior Cruciate Ligament Surgical Treatment. Arthroscopy 2023; 39:166-175. [PMID: 36370920 DOI: 10.1016/j.arthro.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Biologics including mesenchymal stem cells (MSCs), growth factors, and platelet-rich plasma may enhance anterior cruciate ligament (ACL) reconstruction and even ACL primary repair. In addition, hemarthrosis after acute ACL injury represents a source of biologic factors. MSCs can differentiate into both fibroblasts and osteoblasts, potentially providing a transition between the ligament or graft and bone. MSCs also produce cytokines and growth factors necessary for cartilage, bone, ligament, and tendon regeneration. MSC sources including bone marrow, synovium, adipose tissue, ACL-remnant, patellar tendon, and umbilical cord. Also, scaffolds may represent a tool for ACL tissue engineering. A scaffold should be porous, which allows cell growth and flow of nutrients and waste, should be biocompatible, and might have mechanical properties that match the native ACL. Scaffolds have the potential to deliver bioactive molecules or stem cells. Synthetic and biologically derived scaffolds are widely available. ACL reconstruction with improved outcome, ACL repair, and ACL tissue engineering are promising goals. LEVEL OF EVIDENCE: Level V, expert opinion.
Collapse
Affiliation(s)
- Margaret A Sinkler
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A..
| | - Ryan J Furdock
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| | - Christopher J McMellen
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| | - Jacob G Calcei
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| | - James E Voos
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| |
Collapse
|
8
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
9
|
Tie K, Cai J, Shi H, Li X, Shangguan Y, Chen L. Autologous Dedifferentiated Osteogenic Bone Marrow Mesenchymal Stem Cells Promote Bone Formation in a Rabbit Model of Anterior Cruciate Ligament Reconstruction versus Bone Marrow Mesenchymal Stem Cells. Arthroscopy 2022; 38:2246-2254.e1. [PMID: 35093495 DOI: 10.1016/j.arthro.2022.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE This study aimed to verify whether transplantation of dedifferentiated osteogenic bone marrow mesenchymal stem cells (De-BMSCs) at the tendon-bone interface could result in more bone formation than BMSC transplantation in anterior cruciate ligament (ACL) reconstruction. METHODS BMSCs from femur and tibia of New Zealand White rabbit were subjected to osteogenic induction and then cultured in osteogenic factor-free medium; the obtained cell population was termed De-BMSCs. Bilateral ACL reconstruction was performed in 48 adult rabbits. Three groups were established: control group with alginate gel injection, BMSCs group with the BMSCs injection, and De-BMSCs group with the De-BMSCs injection. At week 4 and 12 postoperatively, tendon-bone healing by histologic staining, micro-computed tomography examination, and biomechanical test were evaluated. RESULTS The expression of α1 chain of type I collagen, osteocalcin, and osteopontin at the tendon-bone interface in the De-BMSCs group was greater than in the control or BMSCs group. The bone volume/total volume by micro-computed tomography scan was significantly greater in the De-BMSCs group than that in the control group (P = .013) or BMSCs group (P = .045) at 4 weeks, and greater than that in the control group (P = .014) or BMSCs group (P = .017) at 12 weeks. The tunnel area was significantly smaller in the De-BMSCs group than in the control group (P = .013) or BMSCs group (P = .044) at 12 weeks. The failure load and stiffness in De-BMSCs group were both significantly enhanced at 4 and 12 weeks than control group or De-BMSCs group. CONCLUSIONS De-BMSCs transplantation can promote bone formation at the tendon-bone interface better than BMSCs transplantation in ACL reconstruction and increase the early biomechanical strength of the reconstructed ACL CLINICAL RELEVANCE: De-BMSCs transplantation is a potential choice for enhancing early bone formation in the tunnel in ACL reconstruction.
Collapse
Affiliation(s)
- Kai Tie
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinghang Cai
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huasong Shi
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xufeng Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yangfan Shangguan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Baird JPE, Anz A, Andrews J, Plummer HA, McGowan B, Gonzalez M, Jordan S. Cellular Augmentation of Anterior Cruciate Ligament Surgery Is Not Currently Evidence Based: A Systematic Review of Clinical Studies. Arthroscopy 2022; 38:2047-2061. [PMID: 34921956 DOI: 10.1016/j.arthro.2021.11.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To perform a systematic review of clinical outcome studies exploring cellular augmentation of anterior cruciate ligament (ACL) surgery, including stem cell techniques. METHODS A systematic search was performed according to the Preferred Reporting Items of Systematic Reviews and Meta-analyses (PRISMA) guidelines using the Cochrane, PubMed, MEDLINE, SPORTDiscus, and CINAHL (Cumulative Index to Nursing and Allied Health Literature) databases from 2000 to 2019. The inclusion criteria were clinical studies that reported on ACL surgery augmented with stem cells or cellular therapy and patient-reported outcome measures or graft healing. Risk of bias was assessed using the Cochrane risk-of-bias tool for randomized clinical trials, and nonrandomized trials were assessed using the Methodological Items for Non-randomized Studies (MINORS) tool. Methodologic assessment was performed according to the Modified Coleman Methodology Score. RESULTS Four studies were found: 2 randomized clinical trials, 1 cohort study with a matched historical control group, and 1 case series. The mean Modified Coleman Methodology Score in these studies was 59, and there was a low risk of bias in 1 study. One study reported outcomes of augmented ACL repair, and 3 studies reported the results of augmented ACL reconstruction. Cellular therapies varied and included concentrated bone marrow aspirate, collagenase/centrifuge processed adipose, and marrow stimulation combined with platelet-rich plasma, as well as cells cultured from allograft bone marrow aspirate. The concentrated bone marrow aspirate and adipose tissue study results did not support their use. The marrow stimulation technique combined with repair led to promising clinical results. The use of allograft cultured cells improved patient-reported outcomes and postoperative radiographic findings. CONCLUSIONS Augmentation of ACL surgery with cellular therapy is not supported by clinical evidence at this time. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Joanne P E Baird
- Bayside Orthopaedics Sports Medicine & Rehab, Fairhope, Alabama, U.S.A
| | - Adam Anz
- Andrews Research & Education Foundation, Gulf Breeze, Florida, U.S.A..
| | - James Andrews
- Andrews Research & Education Foundation, Gulf Breeze, Florida, U.S.A
| | - Hillary A Plummer
- Andrews Research & Education Foundation, Gulf Breeze, Florida, U.S.A
| | - Britt McGowan
- John C. Pace Library, University of West Florida, Pensacola, Florida, U.S.A
| | - Melissa Gonzalez
- John C. Pace Library, University of West Florida, Pensacola, Florida, U.S.A
| | - Steve Jordan
- Andrews Research & Education Foundation, Gulf Breeze, Florida, U.S.A
| |
Collapse
|
11
|
Takahashi T, Watanabe S, Ito T. Current and future of anterior cruciate ligament reconstruction techniques. World J Meta-Anal 2021; 9:411-437. [DOI: 10.13105/wjma.v9.i5.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/09/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, anterior cruciate ligament (ACL) reconstruction has generally yielded favorable outcomes. However, ACL reconstruction has not provided satisfactory results in terms of the rate of returning to sports and prevention of osteoarthritis (OA) progression. In this paper, we outline current techniques for ACL reconstruction such as graft materials, double-bundle or single-bundle reconstruction, femoral tunnel drilling, all-inside technique, graft fixation, preservation of remnant, anterolateral ligament reconstruction, ACL repair, revision surgery, treatment for ACL injury with OA and problems, and discuss expected future trends. To enable many more orthopedic surgeons to achieve excellent ACL reconstruction outcomes with less invasive surgery, further studies aimed at improving surgical techniques are warranted. Further development of biological augmentation and robotic surgery technologies for ACL reconstruction is also required.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- Department of Sports and Health Science, Ehime University, Matsuyama 790-8577, Ehime, Japan
| | - Seiji Watanabe
- Department of Orthopedic Surgery, Ehime University Graduate School of Medicine, Toon 791-0295, Ehime, Japan
| | - Toshio Ito
- Department of Orthopaedic Surgery, Murakami Memorial Hospital, Saijo 793-0030, Ehime, Japan
| |
Collapse
|
12
|
Desai S, Jayasuriya CT. Implementation of Endogenous and Exogenous Mesenchymal Progenitor Cells for Skeletal Tissue Regeneration and Repair. Bioengineering (Basel) 2020; 7:E86. [PMID: 32759659 PMCID: PMC7552784 DOI: 10.3390/bioengineering7030086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Harnessing adult mesenchymal stem/progenitor cells to stimulate skeletal tissue repair is a strategy that is being actively investigated. While scientists continue to develop creative and thoughtful ways to utilize these cells for tissue repair, the vast majority of these methodologies can ultimately be categorized into two main approaches: (1) Facilitating the recruitment of endogenous host cells to the injury site; and (2) physically administering into the injury site cells themselves, exogenously, either by autologous or allogeneic implantation. The aim of this paper is to comprehensively review recent key literature on the use of these two approaches in stimulating healing and repair of different skeletal tissues. As expected, each of the two strategies have their own advantages and limitations (which we describe), especially when considering the diverse microenvironments of different skeletal tissues like bone, tendon/ligament, and cartilage/fibrocartilage. This paper also discusses stem/progenitor cells commonly used for repairing different skeletal tissues, and it lists ongoing clinical trials that have risen from the implementation of these cells and strategies. Lastly, we discuss our own thoughts on where the field is headed in the near future.
Collapse
Affiliation(s)
| | - Chathuraka T. Jayasuriya
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and the Rhode Island Hospital, Providence, RI 02903, USA;
| |
Collapse
|