1
|
Bashir B, Sethi P, Panda S, Manikyam HK, Vishwas S, Singh SK, Singh K, Jain D, Chaitanya MVNL, Coutinho HDM. Unravelling the epigenetic based mechanism in discovery of anticancer phytomedicine: Evidence based studies. Cell Signal 2025; 131:111743. [PMID: 40107479 DOI: 10.1016/j.cellsig.2025.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Epigenetic mechanisms play a crucial role in the normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of these processes can result in changes to gene function and the transformation of cells into a malignant state. Cancer is characterized by widespread alterations in the epigenetic landscape, revealing that it involves not only genetic mutations but also epigenetic abnormalities. Recent progress in the field of cancer epigenetics has demonstrated significant reprogramming of various components of the epigenetic machinery in cancer, such as DNA methylation, modifications to histones, positioning of nucleosomes, and the expression of non-coding RNAs, particularly microRNAs. The ability to reverse epigenetic abnormalities has given rise to the hopeful field of epigenetic therapy, which has shown advancement with the recent approval by the FDA of three drugs targeting epigenetic mechanisms for the treatment of cancer. In the present manuscript, a comprehensive review has been presented about the role of understanding the epigenetic link between cancer and mechanisms by which phytomedicine offers treatment avenues. Further, this review deciphers the significance of natural products in the identification of epigenetic therapeutics, the diversity of their molecular targets, the use of nanotechnology, and the creation of new strategies for overcoming the inherent clinical challenges associated with developing these drug leads.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Satyajit Panda
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha 754202, India
| | - Hemanth Kumar Manikyam
- Department of Chemistry, Faculty of science, North East Frontier Technical University, Arunachal Pradesh 791001, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Divya Jain
- Department of Microbiology, School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India.
| | | |
Collapse
|
2
|
Das S, Samaddar S. Recent Advances in the Clinical Translation of Small-Cell Lung Cancer Therapeutics. Cancers (Basel) 2025; 17:255. [PMID: 39858036 PMCID: PMC11764476 DOI: 10.3390/cancers17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant form of cancer, representing 15% of lung cancer cases globally. SCLC is classified within the range of neuroendocrine pulmonary neoplasms, exhibiting shared morphologic, ultrastructural, immunohistochemical, and molecular genomic features. It is marked by rapid proliferation, a propensity for early metastasis, and an overall poor prognosis. The current conventional therapies involve platinum-etoposide-based chemotherapy in combination with immunotherapy. Nonetheless, the rapid emergence of therapeutic resistance continues to pose substantial difficulties. The genomic profiling of SCLC uncovers significant chromosomal rearrangements along with a considerable mutation burden, typically involving the functional inactivation of the tumor suppressor genes TP53 and RB1. Identifying biomarkers and evaluating new treatments is crucial for enhancing outcomes in patients with SCLC. Targeted therapies such as topoisomerase inhibitors, DLL3 inhibitors, HDAC inhibitors, PARP inhibitors, Chk1 inhibitors, etc., have introduced new therapeutic options for future applications. In this current review, we will attempt to outline the key molecular pathways that play a role in the development and progression of SCLC, together with a comprehensive overview of the most recent advancements in the development of novel targeted treatment strategies, as well as some ongoing clinical trials against SCLC, with the goal of improving patient outcomes.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907, USA
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|
3
|
Yu T, Lok BH. Strategies to Target Chemoradiotherapy Resistance in Small Cell Lung Cancer. Cancers (Basel) 2024; 16:3438. [PMID: 39456533 PMCID: PMC11506711 DOI: 10.3390/cancers16203438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Small cell lung cancer (SCLC) is a lethal form of lung cancer with few treatment options and a high rate of relapse. While SCLC is initially sensitive to first-line DNA-damaging chemo- and radiotherapy, relapse disease is almost universally therapy-resistant. As a result, there has been interest in understanding the mechanisms of therapeutic resistance in this disease. Conclusions: Progress has been made in elucidating these mechanisms, particularly as they relate to the DNA damage response and SCLC differentiation and transformation, leading to many clinical trials investigating new therapies and combinations. Yet there remain many gaps in our understanding, such as the effect of epigenetics or the tumor microenvironment on treatment response, and no single mechanism has been found to be ubiquitous, suggesting a significant heterogeneity in the mechanisms of acquired resistance. Nevertheless, the advancement of techniques in the laboratory and the clinic will improve our ability to study this disease, especially in patient populations, and identify methods to surmount therapeutic resistance.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Benjamin H. Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2M9, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 6 Queen’s Park Crescent, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
4
|
Vojnits K, Feng Z, Johnson P, Porras D, Manocha E, Vandersluis S, Pfammatter S, Thibault P, Bhatia M. Targeting of human cancer stem cells predicts efficacy and toxicity of FDA-approved oncology drugs. Cancer Lett 2024; 599:217108. [PMID: 38986735 DOI: 10.1016/j.canlet.2024.217108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Cancer remains the leading cause of death worldwide with approved oncology drugs continuing to have heterogenous patient responses and accompanied adverse effects (AEs) that limits effectiveness. Here, we examined >100 FDA-approved oncology drugs in the context of stemness using a surrogate model of transformed human pluripotent cancer stem cells (CSCs) vs. healthy stem cells (hSCs) capable of distinguishing abnormal self-renewal and differentiation. Although a proportion of these drugs had no effects (inactive), a larger portion affected CSCs (active), and a unique subset preferentially affected CSCs over hSCs (selective). Single cell gene expression and protein profiling of each drug's FDA recognized target provided a molecular correlation of responses in CSCs vs. hSCs. Uniquely, drugs selective for CSCs demonstrated clinical efficacy, measured by overall survival, and reduced AEs. Our findings reveal that while unintentional, half of anticancer drugs are active against CSCs and associated with improved clinical outcomes. Based on these findings, we suggest ability to target CSC targeting should be included as a property of early onco-therapeutic development.
Collapse
Affiliation(s)
- Kinga Vojnits
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Zhuohang Feng
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Paige Johnson
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Deanna Porras
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ekta Manocha
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sean Vandersluis
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sibylle Pfammatter
- Department of Chemistry and Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - Pierre Thibault
- Department of Chemistry and Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - Mick Bhatia
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
5
|
Zhang J, Zeng X, Guo Q, Sheng Z, Chen Y, Wan S, Zhang L, Zhang P. Small cell lung cancer: emerging subtypes, signaling pathways, and therapeutic vulnerabilities. Exp Hematol Oncol 2024; 13:78. [PMID: 39103941 DOI: 10.1186/s40164-024-00548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by early metastasis, rapid tumor growth and poor prognosis. In recent decades, the epidemiology, initiation and mutation characteristics of SCLC, as well as abnormal signaling pathways contributing to its progression, have been widely studied. Despite extensive investigation, fewer drugs have been approved for SCLC. Recent advancements in multi-omics studies have revealed diverse classifications of SCLC that are featured by distinct characteristics and therapeutic vulnerabilities. With the accumulation of SCLC samples, different subtypes of SCLC and specific treatments for these subtypes were further explored. The identification of different molecular subtypes has opened up novel avenues for the treatment of SCLC; however, the inconsistent and uncertain classification of SCLC has hindered the translation from basic research to clinical applications. Therefore, a comprehensives review is essential to conclude these emerging subtypes and related drugs targeting specific therapeutic vulnerabilities within abnormal signaling pathways. In this current review, we summarized the epidemiology, risk factors, mutation characteristics of and classification, related molecular pathways and treatments for SCLC. We hope that this review will facilitate the translation of molecular subtyping of SCLC from theory to clinical application.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Xiaoping Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qiji Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhenxin Sheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lele Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Canova S, Trevisan B, Abbate MI, Colonese F, Sala L, Baggi A, Bianchi SP, D'Agostino A, Cortinovis DL. Novel Therapeutic Options for Small Cell Lung Cancer. Curr Oncol Rep 2023; 25:1277-1294. [PMID: 37870696 PMCID: PMC10640463 DOI: 10.1007/s11912-023-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to focus on the recent advances in the molecular knowledge of small cell lung cancer (SCLC) and potential promising new treatment strategies, like targeting the DNA damage pathway, epigenetics, angiogenesis, and oncogenic drivers. RECENT FINDINGS In the last few years, the addition of immunotherapy to chemotherapy has led to significant improvements in clinical outcomes in this complex neoplasia. Nevertheless, the prognosis remains dismal. Recently, numerous genomic alterations have been identified, and they may be useful to classify SCLC into different molecular subtypes (SCLC-A, SCLC-I, SCLC-Y, SCLC-P). SCLC accounts for 10-20% of all lung cancers, most patients have an extensive disease at the diagnosis, and it is characterized by poor prognosis. Despite the progresses in the knowledge of the disease, efficacious targeted treatments are still lacking. In the near future, the molecular characterisation of SCLC will be fundamental to find more effective treatment strategies.
Collapse
Affiliation(s)
- Stefania Canova
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Benedetta Trevisan
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Department of Medical-Surgical Specialties, University of Brescia, Radiological Sciences and Public Health, Brescia, Italy
| | - Maria Ida Abbate
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Francesca Colonese
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Luca Sala
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Alice Baggi
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Department of Medical-Surgical Specialties, University of Brescia, Radiological Sciences and Public Health, Brescia, Italy
| | - Sofia Paola Bianchi
- Radiation Oncology Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Anna D'Agostino
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Diego Luigi Cortinovis
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy.
- Medicine and Surgery Department, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
7
|
El Omari N, Bakrim S, Khalid A, Abdalla AN, Almalki WH, Lee LH, Ardianto C, Ming LC, Bouyahya A. Molecular mechanisms underlying the clinical efficacy of panobinostat involve Stochasticity of epigenetic signaling, sensitization to anticancer drugs, and induction of cellular cell death related to cellular stresses. Biomed Pharmacother 2023; 164:114886. [PMID: 37224752 DOI: 10.1016/j.biopha.2023.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Panobinostat, also known as Farydak®, LBH589, PNB, or panobinostat lactate, is a hydroxamic acid that has been approved by the Food and Drug Administration (FDA) for its anti-cancer properties. This orally bioavailable drug is classified as a non-selective histone deacetylase inhibitor (pan-HDACi) that inhibits class I, II, and IV HDACs at nanomolar levels due to its significant histone modifications and epigenetic mechanisms. A mismatch between histone acetyltransferases (HATs) and HDACs can negatively affect the regulation of the genes concerned, which in turn can contribute to tumorigenesis. Indeed, panobinostat inhibits HDACs, potentially leading to acetylated histone accumulation, re-establishing normal gene expression in cancer cells, and helping to drive multiple signaling pathways. These pathways include induction of histone acetylation and cytotoxicity for the majority of tested cancer cell lines, increased levels of p21 cell cycle proteins, enhanced amounts of pro-apoptotic factors (such as caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase (PARP)) associated with decreased levels of anti-apoptotic factors [B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra-large (Bcl-XL)], as well as regulation of immune response [upregulated programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression] and other events. The therapeutic outcome of panobinostat is therefore mediated by sub-pathways involving proteasome and/or aggresome degradation, endoplasmic reticulum, cell cycle arrest, promotion of extrinsic and intrinsic processes of apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this investigation, we aimed to pinpoint the precise molecular mechanism underlying panobinostat's HDAC inhibitory effect. A more thorough understanding of these mechanisms will greatly advance our knowledge of cancer cell aberrations and, as a result, provide an opportunity for the discovery of significant new therapeutic perspectives through cancer therapeutics.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia.
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
8
|
Hui L, Ziyue Z, Chao L, Bin Y, Aoyu L, Haijing W. Epigenetic Regulations in Autoimmunity and Cancer: from Basic Science to Translational Medicine. Eur J Immunol 2023; 53:e2048980. [PMID: 36647268 DOI: 10.1002/eji.202048980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Epigenetics, as a discipline that aims to explain the differential expression of phenotypes arising from the same gene sequence and the heritability of epigenetic expression, has received much attention in medicine. Epigenetic mechanisms are constantly being discovered, including DNA methylation, histone modifications, noncoding RNAs and m6A. The immune system mainly achieves an immune response through the differentiation and functional expression of immune cells, in which epigenetic modification will have an important impact. Because of immune infiltration in the tumor microenvironment, immunotherapy has become a research hotspot in tumor therapy. Epigenetics plays an important role in autoimmune diseases and cancers through immunology. An increasing number of drugs targeting epigenetic mechanisms, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and drug combinations, are being evaluated in clinical trials for the treatment of various cancers (including leukemia and osteosarcoma) and autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis). This review summarizes the progress of epigenetic regulation for cancers and autoimmune diseases to date, shedding light on potential therapeutic strategies.
Collapse
Affiliation(s)
- Li Hui
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Zhao Ziyue
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Liu Chao
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Yu Bin
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Li Aoyu
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Wu Haijing
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
9
|
Luo H, Shan J, Zhang H, Song G, Li Q, Xu CX. Targeting the epigenetic processes to enhance antitumor immunity in small cell lung cancer. Semin Cancer Biol 2022; 86:960-970. [PMID: 35189321 DOI: 10.1016/j.semcancer.2022.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Dysregulation of the epigenetic processes, such as DNA methylation, histone modifications, and modulation of chromatin states, drives aberrant transcription that promotes initiation and progression of small cell lung cancer (SCLC). Accumulating evidence has proven crucial roles of epigenetic machinery in modulating immune cell functions and antitumor immune response. Epigenetics-targeting drugs such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and histone methyltransferase inhibitors involved in preclinical and clinical trials may trigger antitumor immunity. Herein, we summarize the impact of epigenetic processes on tumor immunogenicity and antitumor immune cell functions in SCLC. Furthermore, we review current clinical trials of epigenetic therapy against SCLC and the mechanisms of epigenetic inhibitors to boost antitumor immunity. Eventually, we discuss the opportunities of developing therapeutic regimens combining epigenetic agents with immunotherapy for SCLC.
Collapse
Affiliation(s)
- Hao Luo
- College of Bioengineering, Key Lab of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, China; School of Medicine, Chongqing University, Chongqing 400030, China; Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Jinlu Shan
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Hong Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Guanbin Song
- College of Bioengineering, Key Lab of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, China.
| | - Qing Li
- College of Bioengineering, Key Lab of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, China.
| | - Cheng-Xiong Xu
- School of Medicine, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
10
|
Zhang C, Wang H. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations. Biochim Biophys Acta Rev Cancer 2022; 1877:188798. [PMID: 36096336 DOI: 10.1016/j.bbcan.2022.188798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Small cell lung cancer (SCLC) is a deadly disease with poor prognosis. Fast growing speed, inclination to metastasis, enrichment in cancer stem cells altogether constitute its aggressive nature. In stark contrast to non-small cell lung cancer (NSCLC) that strides vigorously on the road to precision oncology, SCLC has been on the embryonic path to achieve effective personalized treatments. The survival of patients with SCLC have not been improved greatly, which could be possibly due to our inadequate understanding of genetic alterations of SCLC. Recently, encouraging effects have been observed in patients with SCLC undergoing immunotherapy. However, exciting results have only been observed in a small fraction of patients with SCLC, warranting biomarkers predictive of responses as well as novel therapeutic strategies. In addition, SCLC has previously been viewed to be homogeneous. However, perspectives have been changed thanks to the advances in sequencing techniques and platforms, which unfolds the complex heterogeneity of SCLC both genetically and non-genetically, rendering the treatment of SCLC a further step forward into the precision era. To outline the road of SCLC towards precision oncology, we summarize the progresses and achievements made in precision treatment in SCLC in genomic, transcriptomic, epigenetic, proteomic and metabolic dimensions. Moreover, we conclude relevant therapeutic vulnerabilities in SCLC. Clinically tested drugs and clinical trials have also been demonstrated. Ultimately, we look into the opportunities and challenges ahead to advance the individualized treatment in pursuit of improved survival for patients with SCLC.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
11
|
Carpentier J, Pavlyk I, Mukherjee U, Hall PE, Szlosarek PW. Arginine Deprivation in SCLC: Mechanisms and Perspectives for Therapy. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:53-66. [PMID: 36091646 PMCID: PMC9462517 DOI: 10.2147/lctt.s335117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Arginine deprivation has gained increasing traction as a novel and safe antimetabolite strategy for the treatment of several hard-to-treat cancers characterised by a critical dependency on arginine. Small cell lung cancer (SCLC) displays marked arginine auxotrophy due to inactivation of the rate-limiting enzyme argininosuccinate synthetase 1 (ASS1), and as a consequence may be targeted with pegylated arginine deiminase or ADI-PEG20 (pegargiminase) and human recombinant pegylated arginases (rhArgPEG, BCT-100 and pegzilarginase). Although preclinical studies reveal that ASS1-deficient SCLC cell lines are highly sensitive to arginine-degrading enzymes, there is a clear disconnect with the clinic with minimal activity seen to date that may be due in part to patient selection. Recent studies have explored resistance mechanisms to arginine depletion focusing on tumor adaptation, such as ASS1 re-expression and autophagy, stromal cell inputs including macrophage infiltration, and tumor heterogeneity. Here, we explore how arginine deprivation may be combined strategically with novel agents to improve SCLC management by modulating resistance and increasing the efficacy of existing agents. Moreover, recent work has identified an intriguing role for targeting arginine in combination with PD-1/PD-L1 immune checkpoint inhibitors and clinical trials are in progress. Thus, future studies of arginine-depleting agents with chemoimmunotherapy, the current standard of care for SCLC, may lead to enhanced disease control and much needed improvements in long-term survival for patients.
Collapse
Affiliation(s)
- Joséphine Carpentier
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Iuliia Pavlyk
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Uma Mukherjee
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter E Hall
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter W Szlosarek
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| |
Collapse
|
12
|
Jingyao C, Xiangyu P, Feifei N, Xuelan C, Chong C. Epigenetic reprogramming in small cell lung cancer. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0343. [PMID: 36069525 PMCID: PMC9425178 DOI: 10.20892/j.issn.2095-3941.2022.0343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Chen Jingyao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Pan Xiangyu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Na Feifei
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Chen Xuelan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Chen Chong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610044, China
| |
Collapse
|
13
|
Pal A, Tapadar P, Pal R. Exploring the Molecular Mechanism of Cinnamic Acid-Mediated Cytotoxicity in Triple Negative MDA-MB-231 Breast Cancer Cells. Anticancer Agents Med Chem 2021; 21:1141-1150. [PMID: 32767960 DOI: 10.2174/1871520620666200807222248] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/28/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cinnamic Acid (CA), also known as 3-phenyl-2-propenoic acid, is a naturally occurring aromatic fatty acid found commonly in cinnamon, grapes, tea, cocoa, spinach and celery. Various studies have identified CA to have anti-proliferative action on glioblastoma, melanoma, prostate and lung carcinoma cells. OBJECTIVE Our objective was to investigate the molecular mechanism underlying the cytotoxic effect of CA in killing MDA-MB-231 triple negative breast cancer cells. METHODS We performed MTT assay and trypan blue assay to determine cell viability and cell death, respectively. Comet analysis was carried out to investigate DNA damage of individual cells. Furthermore, AO/EtBr assay and sub-G1 analysis using flow cytometry were used to study apoptosis. Protein isolation followed by immunoblotting was used to observe protein abundance in treated and untreated cancer cells. RESULTS Using MTT assay, we have determined CA to reduce cell viability in MDA-MB-231 breast cancer cells and tumorigenic HEK 293 cells but not in normal NIH3T3 fibroblast cells. Subsequently, trypan blue assay and comet assay showed CA to cause cell death and DNA damage, respectively, in the MDA-MB-231 cells. Using AO/EtBr staining and sub-G1 analysis, we further established CA to increase apoptosis. Additionally, immunoblotting showed the abundance of TNFA, TNF Receptor 1 (TNFR1) and cleaved caspase-8/-3 proapoptotic proteins to increase with CA treatment. Subsequently, blocking of TNFA-TNFR1 signalling by small molecule inhibitor, R-7050, reduced the expression of cleaved caspase-8 and caspase-3 at the protein level. CONCLUSION Thus, from the above observations, we can conclude that CA is an effective anticancer agent that can induce apoptosis in breast cancer cells via TNFA-TNFR1 mediated extrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Ambika Pal
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Poulami Tapadar
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Ranjana Pal
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| |
Collapse
|
14
|
Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 2021; 277:119504. [PMID: 33872660 DOI: 10.1016/j.lfs.2021.119504] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The role of genetic and epigenetic factors in tumor initiation and progression is well documented. Histone deacetylases (HDACs), histone methyl transferases (HMTs), and DNA methyl transferases. (DNMTs) are the main proteins that are involved in regulating the chromatin conformation. Among these, histone deacetylases (HDAC) deacetylate the histone and induce gene repression thereby leading to cancer. In contrast, histone acetyl transferases (HATs) that include GCN5, p300/CBP, PCAF, Tip 60 acetylate the histones. HDAC inhibitors are potent drug molecules that can induce acetylation of histones at lysine residues and induce open chromatin conformation at tumor suppressor gene loci and thus resulting in tumor suppression. The key processes regulated by HDAC inhibitors include cell-cycle arrest, chemo-sensitization, apoptosis induction, upregulation of tumor suppressors. Even though FDA approved drugs are confined mainly to haematological malignancies, the research on HDAC inhibitors in glioblastoma multiforme and triple negative breast cancer (TNBC) are providing positive results. Thus, several combinations of HDAC inhibitors along with DNA methyl transferase inhibitors and histone methyl transferase inhibitors are in clinical trials. This review focuses on how HDAC inhibitors regulate the expression of coding and non-coding genes with specific emphasis on their anti-cancer potential.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, Telangana, India
| | - Rajasekhar Reddy Manyam
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
15
|
Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel) 2021; 13:634. [PMID: 33562653 PMCID: PMC7915831 DOI: 10.3390/cancers13040634] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond "classic" oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
16
|
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol 2020; 83:57-76. [PMID: 33220460 PMCID: PMC8218609 DOI: 10.1016/j.semcancer.2020.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar Kishor Ganti
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
17
|
Emdadi A, Eslahchi C. DSPLMF: A Method for Cancer Drug Sensitivity Prediction Using a Novel Regularization Approach in Logistic Matrix Factorization. Front Genet 2020; 11:75. [PMID: 32174963 PMCID: PMC7056895 DOI: 10.3389/fgene.2020.00075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to predict the drug response for cancer disease based on genomics information is an essential problem in modern oncology, leading to personalized treatment. By predicting accurate anticancer responses, oncologists achieve a complete understanding of the effective treatment for each patient. In this paper, we present DSPLMF (Drug Sensitivity Prediction using Logistic Matrix Factorization) approach based on Recommender Systems. DSPLMF focuses on discovering effective features of cell lines and drugs for computing the probability of the cell lines are sensitive to drugs by logistic matrix factorization approach. Since similar cell lines and similar drugs may have similar drug responses and incorporating similarities between cell lines and drugs can potentially improve the drug response prediction, gene expression profile, copy number alteration, and single-nucleotide mutation information are used for cell line similarity and chemical structures of drugs are used for drug similarity. Evaluation of the proposed method on CCLE and GDSC datasets and comparison with some of the state-of-the-art methods indicates that the result of DSPLMF is significantly more accurate and more efficient than these methods. To demonstrate the ability of the proposed method, the obtained latent vectors are used to identify subtypes of cancer of the cell line and the predicted IC50 values are used to depict drug-pathway associations. The source code of DSPLMF method is available in https://github.com/emdadi/DSPLMF.
Collapse
Affiliation(s)
- Akram Emdadi
- Department of Computer Sciences, Faculty of Mathematics, Shahid Beheshti University, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer Sciences, Faculty of Mathematics, Shahid Beheshti University, Tehran, Iran.,School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
18
|
Chung LY, Tang SJ, Wu YC, Yang KC, Huang HJ, Sun GH, Sun KH. Platinum-based combination chemotherapy triggers cancer cell death through induction of BNIP3 and ROS, but not autophagy. J Cell Mol Med 2019; 24:1993-2003. [PMID: 31856355 PMCID: PMC6991685 DOI: 10.1111/jcmm.14898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/16/2019] [Accepted: 11/24/2019] [Indexed: 12/25/2022] Open
Abstract
These days, cancer can still not be effectively cured because cancer cells readily develop resistance to anticancer drugs. Therefore, an effective combination of drugs with different mechanisms to prevent drug resistance has become a very important issue. Furthermore, the BH3‐only protein BNIP3 is involved in both apoptotic and autophagic cell death. In this study, lung cancer cells were treated with a chemotherapy drug alone or in combination to identify the role of BNIP3 and autophagy in combination chemotherapy for treating cancer. Our data revealed that various combinational treatments of two drugs could increase cancer cell death and cisplatin in combination with rapamycin or LBH589, which triggered the cell cycle arrest at the S phase. Cells with autophagosome and pEGFP‐LC3 puncta increased when treated with drugs. To confirm the role of autophagy, cancer cells were pre‐treated with the autophagy inhibitor 3‐methyladenine (3‐MA). 3‐MA sensitized cancer cells to chemotherapy drug treatments. These results suggest that autophagy may be responsible for cell survival in combination chemotherapy for lung cancer. Moreover, BNIP3 was induced and localized in mitochondria when cells were treated with drugs. The transfection of a dominant negative transmembrane deletion construct of BNIP3 (BNIP3ΔTM) and treatment of a reactive oxygen species (ROS) inhibitor suppressed chemo drug‐induced cell death. These results indicate that BNIP3 and ROS may be involved in combination chemo drug‐induced cell death. However, chemo drug‐induced autophagy may protect cancer cells from drug cytotoxicity. As a result, inhibiting autophagy may improve the effects of combination chemotherapy when treating lung cancer.
Collapse
Affiliation(s)
- Ling-Yen Chung
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, and Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Shye-Jye Tang
- Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Ching Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, and Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Kai-Chi Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, and Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Hui-Ju Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, and Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Guang-Huan Sun
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, and Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
19
|
Wang S, Zimmermann S, Parikh K, Mansfield AS, Adjei AA. Current Diagnosis and Management of Small-Cell Lung Cancer. Mayo Clin Proc 2019; 94:1599-1622. [PMID: 31378235 DOI: 10.1016/j.mayocp.2019.01.034] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/05/2019] [Accepted: 01/31/2019] [Indexed: 12/25/2022]
Abstract
Small-cell lung cancer (SCLC) is an aggressive disease with distinct pathological, clinical, and molecular characteristics from non-small-cell lung cancer. SCLC has high metastatic potential, resulting in a clinically poor prognosis. Early concurrent chemo-radiation is the standard of care for limited-stage SCLC (LS-SCLC). Prophylactic cranial irradiation (PCI) is recommended for patients with LS-SCLC without progression of disease after initial therapy. A combination of etoposide and cisplatin or carboplatin remains the mainstay of first-line treatment for ES-SCLC, with the addition of atezolizumab, now becoming standard. Most SCLCs initially respond to therapy but almost invariably recur. Topotecan and amrubicin (in Japan) remain the primary chemotherapy options for relapsed SCLC. Immunotherapy, including nivolumab with or without ipilimumab, is now available for refractory disease. In general, the poor prognosis of SCLC has not improved significantly for more than 3 decades. Recently, next-generation molecular profiling studies have identified new therapeutic targets for SCLC. A variety of proapoptotic agents, compounds capitalizing on DNA-repair defects, immunotherapy agents, and antibody-drug conjugates are being evaluated in SCLC, with a number of them showing early promise.
Collapse
Affiliation(s)
- Shuhang Wang
- Peking University Cancer Hospital, Beijing, China
| | - Stefan Zimmermann
- Département d'Oncologie, service d'Immuno-Oncologie, CHUV, Lausanne, Switzerland
| | | | | | | |
Collapse
|
20
|
Korfei M, Stelmaszek D, MacKenzie B, Skwarna S, Chillappagari S, Bach AC, Ruppert C, Saito S, Mahavadi P, Klepetko W, Fink L, Seeger W, Lasky JA, Pullamsetti SS, Krämer OH, Guenther A. Comparison of the antifibrotic effects of the pan-histone deacetylase-inhibitor panobinostat versus the IPF-drug pirfenidone in fibroblasts from patients with idiopathic pulmonary fibrosis. PLoS One 2018; 13:e0207915. [PMID: 30481203 PMCID: PMC6258535 DOI: 10.1371/journal.pone.0207915] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with a poor prognosis. Pirfenidone is the first antifibrotic agent to be approved for IPF-treatment as it is able to slow down disease progression. However, there is no curative treatment other than lung transplantation. Because epigenetic alterations are associated with IPF, histone deacetylase (HDAC)-inhibitors have recently been proven to attenuate fibrotic remodeling in vitro and in vivo. This study compared the effects of pirfenidone with the pan-HDAC-inhibitor panobinostat/LBH589, a FDA-approved drug for the treatment of multiple myeloma, head-to-head on survival, fibrotic activity and proliferation of primary IPF-fibroblasts in vitro. Methods Primary fibroblasts from six IPF-patients were incubated for 24h with vehicle (0.25% DMSO), panobinostat (LBH589, 85 nM) or pirfenidone (2.7 mM), followed by assessment of proliferation and expression analyses for profibrotic and anti-apoptosis genes, as well as for ER stress and apoptosis-markers. In addition, the expression status of all HDAC enzymes was examined. Results Treatment of IPF-fibroblasts with panobinostat or pirfenidone resulted in a downregulated expression of various extracellular matrix (ECM)-associated genes, as compared to vehicle-treated cells. In agreement, both drugs decreased protein level of phosphorylated (p)-STAT3, a transcription factor mediating profibrotic responses, in treated IPF-fibroblasts. Further, an increase in histone acetylation was observed in response to both treatments, but was much more pronounced and excessive in panobinostat-treated IPF-fibroblasts. Panobinostat, but not pirfenidone, led to a significant suppression of proliferation in IPF-fibroblasts, as indicated by WST1- and BrdU assay and markedly diminished levels of cyclin-D1 and p-histone H3. Furthermore, panobinostat-treatment enhanced α-tubulin-acetylation, decreased the expression of survival-related genes Bcl-XL and BIRC5/survivin, and was associated with induction of ER stress and apoptosis in IPF-fibroblasts. In contrast, pirfenidone-treatment maintained Bcl-XL expression, and was neither associated with ER stress-induction nor any apoptotic signaling. Pirfenidone also led to increased expression of HDAC6 and sirtuin-2, and enhanced α-tubulin-deacetylation. But in line with its ability to increase histone acetylation, pirfenidone reduced the expression of HDAC enzymes HDAC1, -2 and -9. Conclusions We conclude that, beside other antifibrotic mechanisms, pirfenidone reduces profibrotic signaling also through STAT3 inactivation and weak epigenetic alterations in IPF-fibroblasts, and permits survival of (altered) fibroblasts. The pan-HDAC-inhibitor panobinostat reduces profibrotic phenotypes while inducing cell cycle arrest and apoptosis in IPF-fibroblasts, thus indicating more efficiency than pirfenidone in inactivating IPF-fibroblasts. We therefore believe that HDAC-inhibitors such as panobinostat can present a novel therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Martina Korfei
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- * E-mail:
| | - Daniel Stelmaszek
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - BreAnne MacKenzie
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Sylwia Skwarna
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Shashipavan Chillappagari
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Anna C. Bach
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
| | - Shigeki Saito
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Walter Klepetko
- Department of Thoracic Surgery, Vienna General Hospital, Vienna, Austria
- European IPF Network and European IPF Registry, Giessen, Germany
| | - Ludger Fink
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
- Institute of Pathology and Cytology, Wetzlar, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | - Joseph A. Lasky
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Soni S. Pullamsetti
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Giessen, Germany
- European IPF Network and European IPF Registry, Giessen, Germany
- Agaplesion Lung Clinic Waldhof Elgershausen, Greifenstein, Germany
| |
Collapse
|
21
|
Sangwan R, Rajan R, Mandal PK. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur J Med Chem 2018; 158:620-706. [DOI: 10.1016/j.ejmech.2018.08.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/09/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
|
22
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
23
|
Tsoukalas N, Aravantinou-Fatorou E, Baxevanos P, Tolia M, Tsapakidis K, Galanopoulos M, Liontos M, Kyrgias G. Advanced small cell lung cancer (SCLC): new challenges and new expectations. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:145. [PMID: 29862234 DOI: 10.21037/atm.2018.03.31] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small cell lung cancer (SCLC) remains one of the most lethal malignancies and a major health riddle. The therapeutic options are limited. The combination of etoposide or irinotecan with platinum chemotherapy is the standard of care at any stage. The last decade systemic efforts have been done to reveal specific therapeutic targets for small cell lung carcinomas. In this review, we focus on the new therapeutic strategies of SCLC, including immune-related treatment that may change the prognosis of the disease. The main genetic mutations observed in SCLC are TP53 and RB1 mutations; however, it is well known that these molecules are not yet targetable. In recent years, research has revealed other frequent genetic alterations and activated signaling pathways that might be an effective treatment target. Loss of PTEN, activating PI3K mutations, inhibition of NOTCH pathway and aurora kinase activation are among them. Moreover, FDGFR1 amplification, activation of the Hedgehog pathway and repair-protein PARP1 seem to participate in SCLC tumorigenesis. These new findings have identified some interesting targets. Moreover, immunotherapy tries to find its place in the treatment of SCLC. Immune checkpoint inhibitors are under investigation in phase I to III clinical trials. We hope that in next years the treatment of SCLC patients will be improved with the administration of targeting therapy and the introduction of immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Maria Tolia
- Department of Radiotherapy-Radiation Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantinos Tsapakidis
- Department of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | - Michail Liontos
- Department of Oncology, Alexandra General Hospital, Athens, Greece
| | - George Kyrgias
- Department of Radiotherapy-Radiation Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
24
|
Panobinostat Potentiates Temozolomide Effects and Reverses Epithelial–Mesenchymal Transition in Glioblastoma Cells. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
25
|
Meder L, Büttner R, Odenthal M. Notch signaling triggers the tumor heterogeneity of small cell lung cancer. J Thorac Dis 2017; 9:4884-4888. [PMID: 29312683 DOI: 10.21037/jtd.2017.11.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lydia Meder
- Department 1 for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Pathology, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Pathology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
26
|
Cho JH, Oezkan F, Koenig M, Otterson GA, Herman JG, He K. Epigenetic Therapeutics and Their Impact in Immunotherapy of Lung Cancer. CURRENT PHARMACOLOGY REPORTS 2017; 3:360-373. [PMID: 29503796 PMCID: PMC5831502 DOI: 10.1007/s40495-017-0110-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lung cancer is the leading cause of cancer-related death in the United States and worldwide. Novel therapeutic developments are critically necessary to improve outcomes for this disease. Aberrant epigenetic change plays an important role in lung cancer development and progression. Therefore, drugs targeting the epigenome are being investigated in the treatment of lung cancer. Monotherapy of epigenetic therapeutics such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) have so far not shown any apparent benefit while one of the clinical trials with the combinations of DNMTi and HDACi showed a small positive signal for treating lung cancer. Combinations of DNMTi and HDACi with chemotherapies have some efficacy but are often limited by increased toxicities. Preclinical data and clinical trial results suggest that combining epigenetic therapeutics with targeted therapies might potentially improve outcomes in lung cancer patients. Furthermore, several clinical studies suggest that the HDACi vorinostat could be used as a radiosensitizer in lung cancer patients receiving radiation therapy. Immune checkpoint blockade therapies are revolutionizing lung cancer management. However, only a minority of lung cancer patients experience long-lasting benefits from immunotherapy. The role of epigenetic reprogramming in boosting the effects of immunotherapy is an area of active investigation. Preclinical studies and early clinical trial results support this approach which may improve lung cancer treatment, with potentially prolonged survival and tolerable toxicity. In this review, we discuss the current status of epigenetic therapeutics and their combination with other antineoplastic therapies, including novel immunotherapies, in lung cancer management.
Collapse
Affiliation(s)
- Ju Hwan Cho
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - Filiz Oezkan
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
- Department of Interventional Pneumology, Ruhrlandklinik, West German
Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Michael Koenig
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - Gregory A. Otterson
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - James Gordon Herman
- Department of Medicine, Division of Hematology/Oncology, University
of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai He
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
27
|
Baize N, Monnet I, Greillier L, Quere G, Kerjouan M, Janicot H, Vergnenegre A, Auliac JB, Chouaid C. Second-line treatments of small-cell lung cancers. Expert Rev Anticancer Ther 2017; 17:1033-1043. [DOI: 10.1080/14737140.2017.1372198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nathalie Baize
- UTTIOM (Unité Transversale de Thérapeutiques Innovantes en Oncologie Médicale), CHU Angers, France
| | - Isabelle Monnet
- Department of Pulmonology, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Laurent Greillier
- Service d’Oncologie Multidisciplinaire et Innovations Thérapeutiques, AP-HM, Aix-Marseille Université, Marseille, France
| | - Gilles Quere
- Respiratory Disease Department, Brest University Brest, Brest, France
| | - Mallorie Kerjouan
- Respiratory Disease Department, Pontchaillou University Hospital, Rennes, France
| | - Henri Janicot
- Service de pneumologie, CHU Clermont-Ferrand, Clermont Ferrand, France
| | - Alain Vergnenegre
- UOTC (Unité d’Oncologie Thoracique et Cutanée), CHU Limoges, Limoges, France
| | | | - Christos Chouaid
- Department of Pulmonology, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| |
Collapse
|
28
|
Abstract
Small cell lung cancer (SCLC) is an aggressive tumor characterized by rapid doubling time and high propensity for early development of disseminated disease. Although most patients respond to initial therapy with a platinum doublet, the majority of those with limited stage and virtually all patients with metastatic disease eventually develop tumor progression for which there are limited treatment options. There have been no recent changes in the treatment of SCLC, with platinum plus etoposide and topotecan as the standard first-line and second-line respectively, neither showing survival benefit over the combination of cyclophosphamide, doxorubicin and vincristine, which was developed in the 1970s. More recently, a new understanding of the biology of SCLC has led to the development of novel drugs, of which the most promising are the immune checkpoint inhibitors and the antibody drug conjugate rovalpituzumab tesirine.
Collapse
|
29
|
Nam JH, Cho H, Kang H, Lee J, Jung M, Chang Y, Kim K, Hoe H. A Mercaptoacetamide‐Based Class II Histone Deacetylase Inhibitor Suppresses Cell Migration and Invasion in Monomorphic Malignant Human Glioma Cells by Inhibiting FAK/STAT3 Signaling. J Cell Biochem 2017; 118:4672-4685. [DOI: 10.1002/jcb.26133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/11/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Jin Han Nam
- Department of Neural Development and DiseaseKorea Brain Research Institute (KBRI)61, Cheomdan‐ro, Dong‐guDaegu41068Korea
| | - Hyun‐Ji Cho
- Department of Neural Development and DiseaseKorea Brain Research Institute (KBRI)61, Cheomdan‐ro, Dong‐guDaegu41068Korea
| | - Hyejin Kang
- Department of Neural Development and DiseaseKorea Brain Research Institute (KBRI)61, Cheomdan‐ro, Dong‐guDaegu41068Korea
| | - Ju‐Young Lee
- Department of Neural Development and DiseaseKorea Brain Research Institute (KBRI)61, Cheomdan‐ro, Dong‐guDaegu41068Korea
| | - Mira Jung
- Department of Radiation MedicineLombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDistrict Of Columbia, DC20057‐1464
| | - Young‐Chae Chang
- Research Institute of Biomedical Engineering and Department of MedicineCatholic University of Daegu School of MedicineDaegu42472Korea
| | - Keetae Kim
- Department of New BiologyDGISTDaegu42988Korea
| | - Hyang‐Sook Hoe
- Department of Neural Development and DiseaseKorea Brain Research Institute (KBRI)61, Cheomdan‐ro, Dong‐guDaegu41068Korea
| |
Collapse
|
30
|
Abstract
Small cell lung cancer (SCLC) remains a major public health problem and accounts for 10% to 15% of all lung cancers. It has unique clinical features such as rapid growth, early metastatic spread, and widespread dissemination. A platinum-etoposide combination is the backbone treatment of SCLC; addition of thoracic and prophylactic cranial irradiation has been shown to improve outcome in limited-stage SCLC and in subgroups of extensive-stage SCLC. Over the last decade, significant progress has been made in characterizing the SCLC tumor biology and its developmental pathways. Most recently, efforts have focused not only on molecular targets, but also on the development of novel drugs targeting tumor evolution and immune escape mechanisms; these approaches are promising and offer opportunities that may finally improve the outcomes of SCLC.
Collapse
|
31
|
Schiattarella GG, Sannino A, Toscano E, Cattaneo F, Trimarco B, Esposito G, Perrino C. Cardiovascular effects of histone deacetylase inhibitors epigenetic therapies: Systematic review of 62 studies and new hypotheses for future research. Int J Cardiol 2016; 219:396-403. [PMID: 27362830 DOI: 10.1016/j.ijcard.2016.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Gabriele Giacomo Schiattarella
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy; Departments of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anna Sannino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy; Baylor Heart and Vascular Hospital, Baylor Research Institute, Dallas, TX, USA
| | - Evelina Toscano
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Fabio Cattaneo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| |
Collapse
|
32
|
Development of molecularly targeted agents and immunotherapies in small cell lung cancer. Eur J Cancer 2016; 60:26-39. [DOI: 10.1016/j.ejca.2016.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
|
33
|
Santarpia M, Daffinà MG, Karachaliou N, González-Cao M, Lazzari C, Altavilla G, Rosell R. Targeted drugs in small-cell lung cancer. Transl Lung Cancer Res 2016; 5:51-70. [PMID: 26958493 DOI: 10.3978/j.issn.2218-6751.2016.01.12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In contrast to non-small-cell lung cancer (NSCLC), few advances have been made in systemic treatment of small-cell lung cancer (SCLC) in recent years. Most patients are diagnosed with extensive stage disease and are commonly treated with platinum-based chemotherapy which, although attaining high initial objective responses, has a limited impact on survival. Due to the dismal prognosis of SCLC, novel and more effective treatment strategies are urgently needed. A deeper characterization of the genomic landscape of SCLC has led to the development of rational and promising targeted agents. However, despite a large number of clinical trials, results have been disappointing and there are still no approved targeted drugs for SCLC. Recent comprehensive genomic studies suggest SCLC is a heterogeneous disease, characterized by genomic alterations targeting a broad variety of genes, including those involved in transcription regulation and chromatin modification which seem to be a hallmark of this specific lung cancer subtype. Current research efforts are focusing on further understanding of the cellular and molecular abnormalities underlying SCLC development, progression and resistance to chemotherapy. Unraveling the genomic complexity of SCLC could be the key to optimize existing treatments, including chemotherapy and radiotherapy, and for identifying those patients most likely to benefit from selected targeted therapeutic approaches.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - Maria Grazia Daffinà
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - Niki Karachaliou
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - Maria González-Cao
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - Chiara Lazzari
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - Giuseppe Altavilla
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - Rafael Rosell
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| |
Collapse
|
34
|
Yan-Fang T, Zhi-Heng L, Li-Xiao X, Fang F, Jun L, Gang L, Lan C, Na-Na W, Xiao-Juan D, Li-Chao S, Wen-Li Z, Pei-Fang X, He Z, Guang-Hao S, Yan-Hong L, Yi-Ping L, Yun-Yun X, Hui-Ting Z, Yi W, Mei-Fang J, Lin L, Jian N, Shao-Yan H, Xue-Ming Z, Xing F, Jian W, Jian P. Molecular Mechanism of the Cell Death Induced by the Histone Deacetylase Pan Inhibitor LBH589 (Panobinostat) in Wilms Tumor Cells. PLoS One 2015; 10:e0126566. [PMID: 26176219 PMCID: PMC4503685 DOI: 10.1371/journal.pone.0126566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/03/2015] [Indexed: 01/20/2023] Open
Abstract
Background Wilms tumor (WT) is an embryonic kidney cancer, for which histone acetylation might be a therapeutic target. LBH589, a novel targeted agent, suppresses histone deacetylases in many tumors. This study investigated the antitumor activity of LBH589 in SK-NEP-1 and G401 cells. Methods SK-NEP-1 and G401 cell growth was assessed by CCK-8 and in nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometry detected apoptosis in cell culture. Gene expressions of LBH589-treated tumor cells were analyzed using an Arraystar Human LncRNA Array. The Multi Experiment View cluster software analyzed the expression data. Differentially expressed genes from the cluster analyses were imported into the Ingenuity Pathway Analysis tool. Results LBH589 inhibited cell proliferation of SK-NEP-1 and G401 cells in a dose-dependent manner. Annexin V, TUNEL and Hochest 33342 staining analysis showed that LBH589-treated cells showed more apoptotic features compared with the control. LBH589 treatment inhibited the growth of SK-NEP-1 xenograft tumors in nude mice. Arraystar Human LncRNA Array analysis of genes and lncRNAs regulated by LBH589 identified 6653 mRNAs and 8135 lncRNAs in LBH589-treated SK-NEP-1 cells. The most enriched gene ontology terms were those involved in nucleosome assembly. KEGG pathway analysis identified cell cycle proteins, including CCNA2, CCNB2, CCND1, CCND2, CDK4, CDKN1B and HDAC2, etc. Ingenuity Pathway Analysis identified important upstream molecules: HIST2H3C, HIST1H4A, HIST1A, HIST1C, HIST1D, histone H1, histone H3, RPRM, HSP70 and MYC. Conclusions LBH589 treatment caused apoptosis and inhibition of cell proliferation of SK-NEP-1and G401 cells. LBH589 had a significant effect and few side effects on SK-NEP-1 xenograft tumors. Expression profiling, and GO, KEGG and IPA analyses identified new targets and a new “network” of genes responding to LBH589 treatment in SK-NEP-1 cells. RPRM, HSP70 and MYC may be important regulators during LBH589 treatment. Our results provide new clues to the proapoptotic mechanism of LBH589.
Collapse
Affiliation(s)
- Tao Yan-Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li Zhi-Heng
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Xu Li-Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Lu Jun
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li Gang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Cao Lan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Wang Na-Na
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Du Xiao-Juan
- Department of Gastroenterology, the 5th Hospital of Chinese PLA, Yin chuan, China
| | - Sun Li-Chao
- Department of Cell and Molecular Biology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhao Wen-Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Xiao Pei-Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhao He
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Su Guang-Hao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li Yan-Hong
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li Yi-Ping
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Xu Yun-Yun
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhou Hui-Ting
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Wu Yi
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jin Mei-Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Liu Lin
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Ni Jian
- Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing, China
| | - Hu Shao-Yan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhu Xue-Ming
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Feng Xing
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Wang Jian
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
- * E-mail: (PJ); (WJ)
| | - Pan Jian
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
- * E-mail: (PJ); (WJ)
| |
Collapse
|
35
|
Abstract
SIGNIFICANCE Epigenetic inactivation of pivotal genes involved in cell growth is a hallmark of human pathologies, in particular cancer. Histone acetylation balance obtained through opposing actions of histone deacetylases (HDACs) and histone acetyltransferases is one epigenetic mechanism controlling gene expression and is, thus, associated with disease etiology and progression. Interfering pharmacologically with HDAC activity can correct abnormalities in cell proliferation, migration, vascularization, and death. RECENT ADVANCES Histone deacetylase inhibitors (HDACi) represent a new class of cytostatic agents that interfere with the function of HDACs and are able to increase gene expression by indirectly inducing histone acetylation. Several HDACi, alone or in combination with DNA-demethylating agents, chemopreventive, or classical chemotherapeutic drugs, are currently being used in clinical trials for solid and hematological malignancies, and are, thus, promising candidates for cancer therapy. CRITICAL ISSUES (i) Non-specific (off-target) HDACi effects due to activities unassociated with HDAC inhibition. (ii) Advantages/disadvantages of non-selective or isoform-directed HDACi. (iii) Limited number of response-predictive biomarkers. (iv) Toxicity leading to dysfunction of critical biological processes. FUTURE DIRECTIONS Selective HDACi could achieve enhanced clinical utility by reducing or eliminating the serious side effects associated with current first-generation non-selective HDACi. Isoform-selective and pan-HDACi candidates might benefit from the identification of biomarkers, enabling better patient stratification and prediction of response to treatment.
Collapse
Affiliation(s)
- Rosaria Benedetti
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy
| | - Mariarosaria Conte
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy
| | - Lucia Altucci
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy .,2 Istituto di Genetica e Biofisica "Adriano Buzzati-Traverso," Napoli, Italy
| |
Collapse
|
36
|
|
37
|
Arcaro A. Targeted therapies for small cell lung cancer: Where do we stand? Crit Rev Oncol Hematol 2015; 95:154-64. [PMID: 25800975 DOI: 10.1016/j.critrevonc.2015.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/23/2015] [Accepted: 03/04/2015] [Indexed: 12/19/2022] Open
Abstract
Small cell lung cancer (SCLC) accounts for 15% of lung cancer cases and is associated with a dismal prognosis. Standard therapeutic regimens have been improved over the past decades, but without a major impact on patient survival. The development of targeted therapies based on a better understanding of the molecular basis of the disease is urgently needed. At the genetic level, SCLC appears very heterogenous, although somatic mutations targeting classical oncogenes and tumor suppressors have been reported. SCLC also possesses somatic mutations in many other cancer genes, including transcription factors, enzymes involved in chromatin modification, receptor tyrosine kinases and their downstream signaling components. Several avenues have been explored to develop targeted therapies for SCLC. So far, however, there has been limited success with these targeted approaches in clinical trials. Further progress in the optimization of targeted therapies for SCLC will require the development of more personalized approaches for the patients.
Collapse
Affiliation(s)
- Alexandre Arcaro
- Department of Clinical Research, University of Bern, CH-3010 Bern, Switzerland.
| |
Collapse
|
38
|
Mottamal M, Zheng S, Huang TL, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 2015; 20:3898-941. [PMID: 25738536 PMCID: PMC4372801 DOI: 10.3390/molecules20033898] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/04/2023] Open
Abstract
Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate expression of tumor suppressor genes. They are implicated in many human diseases, especially cancer, making them a promising therapeutic target for treatment of the latter by developing a wide variety of inhibitors. HDAC inhibitors interfere with HDAC activity and regulate biological events, such as cell cycle, differentiation and apoptosis in cancer cells. As a result, HDAC inhibitor-based therapies have gained much attention for cancer treatment. To date, the FDA has approved three HDAC inhibitors for cutaneous/peripheral T-cell lymphoma and many more HDAC inhibitors are in different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. In the intensifying efforts to discover new, hopefully more therapeutically efficacious HDAC inhibitors, molecular modeling-based rational drug design has played an important role in identifying potential inhibitors that vary in molecular structures and properties. In this review, we summarize four major structural classes of HDAC inhibitors that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.
Collapse
Affiliation(s)
- Madhusoodanan Mottamal
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Shilong Zheng
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Tien L Huang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| |
Collapse
|
39
|
Wildey G, Chen Y, Lent I, Stetson L, Pink J, Barnholtz-Sloan JS, Dowlati A. Pharmacogenomic approach to identify drug sensitivity in small-cell lung cancer. PLoS One 2014; 9:e106784. [PMID: 25198282 PMCID: PMC4157793 DOI: 10.1371/journal.pone.0106784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/31/2014] [Indexed: 11/18/2022] Open
Abstract
There are currently no molecular targeted approaches to treat small-cell lung cancer (SCLC) similar to those used successfully against non-small-cell lung cancer. This failure is attributable to our inability to identify clinically-relevant subtypes of this disease. Thus, a more systematic approach to drug discovery for SCLC is needed. In this regard, two comprehensive studies recently published in Nature, the Cancer Cell Line Encyclopedia and the Cancer Genome Project, provide a wealth of data regarding the drug sensitivity and genomic profiles of many different types of cancer cells. In the present study we have mined these two studies for new therapeutic agents for SCLC and identified heat shock proteins, cyclin-dependent kinases and polo-like kinases (PLK) as attractive molecular targets with little current clinical trial activity in SCLC. Remarkably, our analyses demonstrated that most SCLC cell lines clustered into a single, predominant subgroup by either gene expression or CNV analyses, leading us to take a pharmacogenomic approach to identify subgroups of drug-sensitive SCLC cells. Using PLK inhibitors as an example, we identified and validated a gene signature for drug sensitivity in SCLC cell lines. This gene signature could distinguish subpopulations among human SCLC tumors, suggesting its potential clinical utility. Finally, circos plots were constructed to yield a comprehensive view of how transcriptional, copy number and mutational elements affect PLK sensitivity in SCLC cell lines. Taken together, this study outlines an approach to predict drug sensitivity in SCLC to novel targeted therapeutics.
Collapse
Affiliation(s)
- Gary Wildey
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yanwen Chen
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ian Lent
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lindsay Stetson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - John Pink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jill S. Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Afshin Dowlati
- Case Comprehensive Cancer Center and the Division of Hematology and Oncology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
40
|
Zhou Y, Pan DS, Shan S, Zhu JZ, Zhang K, Yue XP, Nie LP, Wan J, Lu XP, Zhang W, Ning ZQ. Non-toxic dose chidamide synergistically enhances platinum-induced DNA damage responses and apoptosis in Non-Small-Cell lung cancer cells. Biomed Pharmacother 2014; 68:483-91. [DOI: 10.1016/j.biopha.2014.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/04/2014] [Indexed: 01/18/2023] Open
|