1
|
Sutanto H, Pratiwi L, Romadhon PZ, Bintoro SUY. Advancing chronic myeloid leukemia research with next-generation sequencing: potential benefits, limitations, and future clinical integration. Hum Genet 2025:10.1007/s00439-025-02745-x. [PMID: 40257486 DOI: 10.1007/s00439-025-02745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Next-generation sequencing (NGS) has emerged as a powerful tool for advancing research in chronic myeloid leukemia (CML) by providing a deeper understanding of its genetic complexity. Beyond detecting the hallmark BCR::ABL1 fusion gene, NGS has enabled the identification of additional mutations associated with disease progression, therapy resistance, and clonal evolution. NGS also facilitates the detection of rare BCR::ABL1 fusion variants and cryptic rearrangements, offering a more refined genetic characterization of the disease. Additionally, it enhances the study of minimal residual disease (MRD) and evolving resistance patterns, which are crucial for developing targeted therapeutic strategies. However, challenges such as data interpretation, standardization, and cost constraints continue to limit the widespread application of NGS in routine research and clinical settings. This review explores the contributions of NGS to CML research, highlighting its role in uncovering novel genetic alterations, tracking clonal evolution, and identifying potential therapeutic targets. As sequencing technologies evolve, NGS is expected to further shape the future of CML research, providing critical insights that may ultimately refine disease management strategies.
Collapse
Affiliation(s)
- Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Laras Pratiwi
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pradana Zaky Romadhon
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia
| | - Siprianus Ugroseno Yudho Bintoro
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
2
|
Ahmad O, Försti A. The complementary roles of genome-wide approaches in identifying genes linked to an inherited risk of colorectal cancer. Hered Cancer Clin Pract 2023; 21:1. [PMID: 36707860 PMCID: PMC9883872 DOI: 10.1186/s13053-023-00245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
The current understanding of the inherited risk of colorectal cancer (CRC) started with an observational clinical era in the late 19th century, which was followed by a genetic era starting in the late 20th century. Genome-wide linkage analysis allowed mapping several high-risk genes, which marked the beginning of the genetic era. The current high-throughput genomic phase includes genome-wide association study (GWAS) and genome-wide sequencing approaches which have revolutionized the conception of the inherited risk of CRC. On the one hand, GWAS has allowed the identification of multiple low risk loci correlated with CRC. On the other, genome-wide sequencing has led to the discovery of a second batch of high-to-moderate-risk genes that correlate to atypical familial CRC and polyposis syndromes. In contrast to other common cancers, which are usually dominated by a polygenic background, CRC risk is believed to be equally explained by monogenic and polygenic architectures, which jointly contribute to a quarter of familial clustering. Despite the fact that genome-wide approaches have allowed the identification of a continuum of responsible high-to-moderate-to-low-risk variants, much of the predisposition and familial clustering of CRC has not yet been explained. Other genetic, epigenetic and environmental factors might be playing important roles as well. In this review we aim to provide insights on the complementary roles played by different genomic approaches in allowing the current understanding of the genetic architecture of inherited CRC.
Collapse
Affiliation(s)
- Olfat Ahmad
- grid.510964.fHopp Children’s Cancer Center (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany ,grid.4991.50000 0004 1936 8948University of Oxford, Oxford, UK ,grid.419782.10000 0001 1847 1773King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Asta Försti
- grid.510964.fHopp Children’s Cancer Center (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|