1
|
Mathew R, Roy WE, Meena N, Goraya H. Radiation exposure trends with augmented fluoroscopy and C-arm-based tomosynthesis for navigated bronchoscopy. Respir Med 2025; 240:108035. [PMID: 40081669 DOI: 10.1016/j.rmed.2025.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/09/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Augmented fluoroscopy (AF) and C-arm-based tomography (CABT) have enhanced diagnostic outcomes in navigated bronchoscopy, though there is limited documentation on radiation dose trends. METHODS A two-year prospective study with 67 cases was conducted. Patients underwent bronchoscopy biopsies with AF and CABT under general anesthesia. AF used a GE C-arm 9900, and lesion localization was done with Body Vision's CABT system. Radiation doses were measured using cumulative air kerma (CAK), dose area product (DAP), effective dose (ED), and fluoroscopy time (FT) over three two-month phases. RESULTS The average lesion size was 2.1 cm, with a diagnostic yield of 72 % (48/67) using strict criteria. Intermediate criteria, including follow-up CT, increased the yield to 84 % (56/67). Radiation doses averaged CAK 42 mGy, DAP 27 Gy cm2, ED 5 mSv, with 7 min of FT and 1.7 rotations per lesion. Over the study, FT increased (4-7 min), but CAK (54-44 mGy) and DAP (34-26 Gy cm2) decreased. Significant associations with increased CAK radiation doses were found with multiple C-arm spins (P = 0.03), tool adjustments (P = 0.01), BMI above 30 (P = 0.01), extended FT (P = 0.04), higher DAP (P = 0.04), and increased ED (P < 0.001). CONCLUSIONS AF and CABT provide high diagnostic yield with minimal radiation exposure. Pulsed fluoroscopy and careful technique can reduce radiation risk, supporting the use of AF and CABT in navigated bronchoscopy for lung nodules.
Collapse
Affiliation(s)
- Roshen Mathew
- Department of Pulmonary and Critical Care Medicine, WVU Camden Clark Medical Center, Parkersburg, WV, USA.
| | - Winnie Elma Roy
- Department of Pulmonary and Critical Care Medicine, WVU Camden Clark Medical Center, Parkersburg, WV, USA
| | - Nikhil Meena
- Division of Pulmonary and Critical Care Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Harmeen Goraya
- Division of Pulmonary and Critical Care Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
2
|
Li Z, Xu S, Zhang Y, Shi J. Efficacy and safety of cone-beam computed tomography-guided bronchoscopy for peripheral pulmonary lesions: a systematic review and meta-analysis. J Thorac Dis 2025; 17:551-563. [PMID: 40083495 PMCID: PMC11898330 DOI: 10.21037/jtd-24-1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/10/2025] [Indexed: 03/16/2025]
Abstract
Background Cone-beam computed tomography (CBCT)-guided bronchoscopy is increasingly utilized for diagnosing peripheral pulmonary lesions (PPLs). We carried out the meta-analysis for assessing the efficacy and safety of CBCT-guided bronchoscopy for PPLs. Methods An extensive search in several databases was conducted to identify relevant articles. We evaluated the quality of studies with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The pooled diagnostic yield (DY) and adverse event rate with the 95% confidence interval (CI) were computed. Subgroup analyses were performed according to additional use of navigation, use of radial endobronchial ultrasound (rEBUS), use of fixed or mobile CBCT, whether computed tomography (CT) spin was performed before biopsy to affirm tool-in-lesion, use of rapid onsite cytologic examination (ROSE), strictness of the definition of DY, and study design. Further analysis was performed to explore the association between odds of diagnosis with CBCT guided bronchoscopy and PPLs characteristics (>20 vs. ≤20 mm, non-upper lobe vs. upper lobe, with bronchus sign vs. without bronchus sign, and solid vs. non-solid) as well as sampling methods (forceps vs. fine needle aspiration, forceps vs. cryoprobe sampling). The pooled odds ratio (OR) and 95% CI were calculated. The significance level was set at 0.05. All analyses were performed by using meta package in R version 4.3.2. Results We included 23 studies involving 1,769 patients and 1,863 PPLs in the meta-analysis. The overall pooled DY of CBCT-guided bronchoscopy was 80.2% (95% CI: 76.0-84.1%). Subgroup analysis showed that the DY was highest when CBCT was used with robotic-assisted navigation bronchoscopy (pooled DY 87.5%; 95% CI: 81.5-92.4%), the DY was 78.9% (95% CI: 70.8-85.9%) when CBCT was used alone without other navigation techniques. Lesion size >20 mm, presence of bronchus sign and solid lesions were associated with significant increase in the odds of diagnosis with CBCT-guided bronchoscopy. Pooled adverse event rate was 2.3% (95% CI: 1.2-3.6%). Conclusions CBCT-guided bronchoscopy is a safe technique with high DY in diagnosing PPLs.
Collapse
Affiliation(s)
- Ziling Li
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yong Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Shi
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
3
|
Lanfranchi F, Michieletto L. Peripheral pulmonary lesion: novel approaches in endoscopic guidance systems and a state-of-the-art review. Monaldi Arch Chest Dis 2024. [PMID: 39704714 DOI: 10.4081/monaldi.2024.3115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/17/2024] [Indexed: 12/21/2024] Open
Abstract
Diagnosis of peripheral pulmonary lesion (PPL) is the most challenging field in bronchoscopy and interventional pulmonology, which concerns early lung cancer diagnosis. Despite novel techniques and new approaches to the periphery of the lung, almost 25% of PPLs remain undiagnosed. Bronchoscopy with guide systems, virtual and/or electromagnetic navigation, robotic bronchoscopy, and transparenchymal nodule approaches tend to provide a higher percentage of reaching the lesion, but the diagnostic yield rarely exceeds 75%, regardless of the instruments used. Further studies are needed to evaluate what the main constraints of this discrepancy are and if a combined use of these techniques and instruments can provide an increased diagnostic yield.
Collapse
Affiliation(s)
- Filippo Lanfranchi
- Respiratory Disease Unit, Department of Cardiac Thoracic and Vascular Sciences, Ospedale dell'Angelo, Venice
| | - Lucio Michieletto
- Respiratory Disease Unit, Department of Cardiac Thoracic and Vascular Sciences, Ospedale dell'Angelo, Venice
| |
Collapse
|
4
|
Heymann JJ, D'Ambrosio D, Dombrowski KS, Desai N, Illei PB. Pulmonary Cytopathology: Current and Future Impact on Patient Care. Surg Pathol Clin 2024; 17:395-410. [PMID: 39129139 DOI: 10.1016/j.path.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Small biopsies of lung are routinely obtained by many methods, including several that result in cytologic specimens. Because lung cancer is often diagnosed at a stage for which primary resection is not an option, it is critical that all diagnostic, predictive, and prognostic information be derived from such small biopsy specimens. As the number of available diagnostic and predictive markers expands, cytopathologists must familiarize themselves with current requirements for specimen acquisition, handling, results reporting, and molecular and other ancillary testing, all of which are reviewed here.
Collapse
Affiliation(s)
- Jonas J Heymann
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital-Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Danielle D'Ambrosio
- Department of Pathology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016, USA
| | - Katya S Dombrowski
- Department of Pathology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Niyati Desai
- Department of Pathology and Cell Biology, New York-Presbyterian Hospital-Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Peter B Illei
- Department of Pathology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Sumner ET, Chang J, Patel PR, Bedi H, Shaller BD. State of the art: peripheral diagnostic bronchoscopy. J Thorac Dis 2024; 16:5409-5421. [PMID: 39268128 PMCID: PMC11388231 DOI: 10.21037/jtd-24-346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/21/2024] [Indexed: 09/15/2024]
Abstract
Lung cancer is the leading cause of cancer related death worldwide and in the United States according to the World Health Organization and National Cancer Institute. Improvements in the diagnosis and treatment of lung cancer are of the utmost importance. A prompt diagnosis is a crucial factor to improve outcomes in the treatment of lung cancer. Although the implementation of lung cancer screening guidelines and the overall steady growth in the use of computed tomography have improved the likelihood of detecting lung cancer at an earlier stage, the diagnosis of peripheral pulmonary lesions (PPLs) has remained a challenge. The bronchoscopic techniques for PPL sampling have historically offered modest diagnostic yields at best in comparison to computed tomography guided transthoracic needle aspiration (TTNA). Fortunately, recent advances in technology have ushered in a new era of diagnostic peripheral bronchoscopy. In this review, we discuss the introduction of advanced intraprocedural imaging included digital tomosynthesis (DT), augmented fluoroscopy (AF), and cone beam computed tomography. We discuss robotic assisted bronchoscopy with a review of the currently available platforms, and we discuss the implementation of novel biopsy tools. These technologic advances in the bronchoscopic approach to PPLs offer greater diagnostic certainty and pave the way toward peripheral therapeutics in bronchoscopy.
Collapse
Affiliation(s)
- Eric T Sumner
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiwoon Chang
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pranjal R Patel
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Harmeet Bedi
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian D Shaller
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Matsumoto Y, Kho SS, Furuse H. Improving diagnostic strategies in bronchoscopy for peripheral pulmonary lesions. Expert Rev Respir Med 2024; 18:581-595. [PMID: 39093300 DOI: 10.1080/17476348.2024.2387089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION In the past two decades, bronchoscopy of peripheral pulmonary lesions (PPLs) has improved its diagnostic yield due to the combination of various instruments and devices. Meanwhile, the application is complex and intertwined. AREAS COVERED This review article outlines strategies in diagnostic bronchoscopy for PPLs. We summarize the utility and evidence of key instruments and devices based on the results of clinical trials. Future perspectives of bronchoscopy for PPLs are also discussed. EXPERT OPINION The accuracy of reaching PPLs by bronchoscopy has improved significantly with the introduction of combined instruments such as navigation, radial endobronchial ultrasound, digital tomosynthesis, and cone-beam computed tomography. It has been accelerated with the advent of approach tools such as newer ultrathin bronchoscopes and robotic-assisted bronchoscopy. In addition, needle aspiration and cryobiopsy provide further diagnostic opportunities beyond forceps biopsy. Rapid on-site evaluation may also play an important role in decision making during the procedures. As a result, the diagnostic yield of bronchoscopy for PPLs has improved to a level comparable to that of transthoracic needle biopsy. The techniques and technologies developed in the diagnosis will be carried over to the next step in the transbronchial treatment of PPLs in the future.
Collapse
Affiliation(s)
- Yuji Matsumoto
- Department of Endoscopy, Respiratory Endoscopy Division/Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Sze Shyang Kho
- Division of Respiratory Medicine, Department of Internal Medicine, Sarawak General Hospital, Kuching, Malaysia
| | - Hideaki Furuse
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Husta BC, Menon A, Bergemann R, Lin IH, Schmitz J, Rakočević R, Nadig TR, Adusumilli PS, Beattie JA, Lee RP, Park BJ, Rocco G, Bott MJ, Chawla M, Kalchiem-Dekel O. The incremental contribution of mobile cone-beam computed tomography to the tool-lesion relationship during shape-sensing robotic-assisted bronchoscopy. ERJ Open Res 2024; 10:00993-2023. [PMID: 39040587 PMCID: PMC11261373 DOI: 10.1183/23120541.00993-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/16/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction This study aims to answer the question of whether adding mobile cone-beam computed tomography (mCBCT) imaging to shape-sensing robotic-assisted bronchoscopy (ssRAB) translates into a quantifiable improvement in the tool-lesion relationship. Methods Data from 102 peripheral lung lesions with ≥2 sequential mCBCT orbital spins and from 436 lesions with 0-1 spins were prospectively captured and retrospectively analysed. The primary outcome was the tool-lesion relationship status across the first and the last mCBCT spins. Secondary outcomes included 1) the change in distance between the tip of the sampling tool and the centre of the lesion between the first and the last spins and 2) the per-lesion diagnostic yield. Results Compared to lesions requiring 0-1 spins, lesions requiring ≥2 spins were smaller and had unfavourable bronchus sign and intra-operative sonographic view. On the first spin, 54 lesions (53%) were designated as non-tool-in-lesion (non-TIL) while 48 lesions (47%) were designated as TIL. Of the 54 initially non-TIL cases, 49 (90%) were converted to TIL status by the last spin. Overall, on the last spin, 96 out of 102 lesions (94%) were defined as TIL and six out of 102 lesions (6%) were defined as non-TIL (p<0.0001). The mean distance between the tool and the centre of the lesion decreased from 10.4 to 6.6 mm between the first and last spins (p<0.0001). The overall diagnostic yield was 77%. Conclusion Targeting traditionally challenging lung lesions, intra-operative volumetric imaging allowed for the conversion of 90% of non-TIL status to TIL. Guidance with mCBCT resulted in a significant decrease in the distance between the tip of the needle to lesion centre.
Collapse
Affiliation(s)
- Bryan C. Husta
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anu Menon
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Reza Bergemann
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - I-Hsin Lin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaclyn Schmitz
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rastko Rakočević
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tejaswi R. Nadig
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S. Adusumilli
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason A. Beattie
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert P. Lee
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernard J. Park
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gaetano Rocco
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew J. Bott
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohit Chawla
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Or Kalchiem-Dekel
- Section of Interventional Pulmonology, Pulmonary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
8
|
de Ruiter QMB, Mauda-Havakuk MM, Starost MF, Bakhutashvili I, Esparza-Trujillo JA, Brown A, Natesan H, Kveen G, Lewis AL, Wood BJ, Pritchard WF, Karanian JW. Image-Guided Transbronchial Pulmonary Cryoablation with a Flexible Cryoprobe in Swine: Performance and Radiology-Pathology Correlation. J Vasc Interv Radiol 2024; 35:1022-1030.e4. [PMID: 38599280 PMCID: PMC11194150 DOI: 10.1016/j.jvir.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/30/2024] [Accepted: 02/24/2024] [Indexed: 04/12/2024] Open
Abstract
PURPOSE To evaluate the performance of a prototype flexible transbronchial cryoprobe compared with that of percutaneous transthoracic cryoablation and to define cone-beam computed tomography (CT) imaging and pathology cryolesion features in an in vivo swine model. MATERIALS AND METHODS Transbronchial cryoablation was performed with a prototype flexible cryoprobe (3 central and 3 peripheral lung ablations in 3 swine) and compared with transthoracic cryoablation performed with a commercially available rigid cryoprobe (2 peripheral lung ablations in 1 swine). Procedural time and cryoablation success rates for endobronchial navigation and cryoneedle deployment were measured. Intraoperative cone-beam CT imaging features of cryolesions were characterized and correlated with gross pathology and hematoxylin and eosin-stained sections of the explanted cryolesions. RESULTS The flexible cryoprobe was successfully navigated and delivered to each target through a steerable guiding sheath (6/6). At 4 minutes after ablation, 5 of 6 transbronchial and 2 of 2 transthoracic cryolesions were visible on cone-beam CT. The volumes on cone-beam CT images were 55.5 cm3 (SE ± 8.0) for central transbronchial ablations (n = 2), 72.5 cm3 (SE ± 8.1) for peripheral transbronchial ablations (n = 3), and 79.5 cm3 (SE ±11.6) for peripheral transthoracic ablations (n = 2). Pneumothorax developed in 1 animal after transbronchial ablation and during ablation in the transthoracic cryoablation. Images of cryoablation zones on cone-beam CT correlated well with the matched gross pathology and histopathology sections of the cryolesions. CONCLUSIONS Transbronchial cryoablation with a flexible cryoprobe, delivered through a steerable guiding sheath, is feasible. Transbronchial cryoablation zones are imageable with cone-beam CT, with gross pathology and histopathology similar to those of transthoracic cryoablation.
Collapse
Affiliation(s)
- Quirina M B de Ruiter
- Center for Interventional Oncology, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Michal M Mauda-Havakuk
- Center for Interventional Oncology, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland; Interventional Radiology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Matthew F Starost
- Division of Veterinary Resources, National Institutes of Health, Bethesda, Maryland
| | - Ivane Bakhutashvili
- Center for Interventional Oncology, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Juan A Esparza-Trujillo
- Center for Interventional Oncology, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Andrew Brown
- Boston Scientific (formerly BTG), Arden Hills, Minnesota
| | | | - Graig Kveen
- Boston Scientific (formerly BTG), Arden Hills, Minnesota
| | - Andrew L Lewis
- Boston Scientific (formerly BTG), Arden Hills, Minnesota; Alchemed Bioscience Consulting Ltd, Farnham, Surrey, United Kingdom
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland; Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - William F Pritchard
- Center for Interventional Oncology, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - John W Karanian
- Center for Interventional Oncology, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
9
|
Gu C, Yuan H, Yang C, Xie F, Chen J, Zhu L, Jiang Y, Sun J. Transbronchial cryoablation in peripheral lung parenchyma with a novel thin cryoprobe and initial clinical testing. Thorax 2024; 79:633-643. [PMID: 38242710 PMCID: PMC11187365 DOI: 10.1136/thorax-2023-220227] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Transbronchial cryoablation shows potential as a local therapy for inoperable peripheral lung cancer. However, its clinical application for peripheral pulmonary lesions has not been reported yet. METHODS An improved cryoprobe with an 8-mm-long, 1.9-mm-wide cryotip was used. Initially, the safety and effectiveness of this cryoprobe were assessed in an in vivo porcine model. Transbronchial cryoablation with 2 or 3 freeze-thaw cycles (10 min or 15 min in each freezing time) was performed in 18 pigs under CT monitoring. Radiological and pathological examinations were performed to evaluate the extent of cryoablation. Subsequently, nine patients with stage IA peripheral lung cancer or metastases underwent transbronchial cryoablation with this cryoprobe under the guidance of navigation bronchoscopy and cone-beam CT. Technical success, safety and outcomes were assessed. RESULTS 36 cryoablation procedures were performed successfully without any major complications in the porcine model. The extent of cryoablation increased with freezing time and the number of freeze-thaw cycles, which peaked at 24 hours and then gradually decreased. Pathological results showed a change from massive haemorrhage at 24 hours to fibrous hyperplasia with chronic inflammation after 4 weeks. In the clinical trial, 10 cryoablations were performed on 9 tumours with a technical success rate of 100%. One mild treatment-related complication occurred. Of the nine tumours, seven achieved complete ablation, while two exhibited incomplete ablation and subsequent local progression at 6 months. CONCLUSION Our initial experience indicated that transbronchial cryoablation was a safe and feasible procedure for non-surgical peripheral stage IA lung cancer or pulmonary metastases. TRIAL REGISTRATION NUMBER ChiCTR2200061544.
Collapse
Affiliation(s)
- Chuanjia Gu
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Haibin Yuan
- Department of Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Yang
- Research and Development Department, AccuTarget MediPharma (Shanghai) Co., Ltd, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fangfang Xie
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Junxiang Chen
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Lei Zhu
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Jiang
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| |
Collapse
|
10
|
Abdelghani R, Omballi M, Abia-Trujillo D, Casillas E, Villalobos R, Badar F, Bansal S, Kheir F. Imaging modalities during navigational bronchoscopy. Expert Rev Respir Med 2024; 18:175-188. [PMID: 38794918 DOI: 10.1080/17476348.2024.2359601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Lung nodules are commonly encountered in clinical practice. Technological advances in navigational bronchoscopy and imaging modalities have led to paradigm shift from nodule screening or follow-up to early lung cancer detection. This is due to improved nodule localization and biopsy confirmation with combined modalities of navigational platforms and imaging tools. To conduct this article, relevant literature was reviewed via PubMed from January 2014 until January 2024. AREAS COVERED This article highlights the literature on different imaging modalities combined with commonly used navigational platforms for diagnosis of peripheral lung nodules. Current limitations and future perspectives of imaging modalities will be discussed. EXPERT OPINION The development of navigational platforms improved localization of targets. However, published diagnostic yield remains lower compared to percutaneous-guided biopsy. The discordance between the actual location of lung nodule during the procedure and preprocedural CT chest is the main factor impacting accurate biopsies. The utilization of advanced imaging tools with navigation-based bronchoscopy has been shown to assist with localizing targets in real-time and improving biopsy success. However, it is important for interventional bronchoscopists to understand the strengths and limitations of these advanced imaging technologies.
Collapse
Affiliation(s)
- Ramsy Abdelghani
- Division of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Mohamed Omballi
- Department of Pulmonary and Critical Care Medicine, University of Toledo, Toledo, OH, USA
| | - David Abia-Trujillo
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Ernesto Casillas
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Regina Villalobos
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Faraz Badar
- Department of Pulmonary and Critical Care Medicine, University of Toledo, Toledo, OH, USA
| | - Sandeep Bansal
- The Lung Center, Penn Highlands Healthcare, DuBois, PA, USA
| | - Fayez Kheir
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Prado RMG, Cicenia J, Almeida FA. Robotic-Assisted Bronchoscopy: A Comprehensive Review of System Functions and Analysis of Outcome Data. Diagnostics (Basel) 2024; 14:399. [PMID: 38396438 PMCID: PMC10888048 DOI: 10.3390/diagnostics14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The past two decades have witnessed a revolutionary era for peripheral bronchoscopy. Though the initial description of radial endobronchial ultrasound can be traced back to 1992, it was not until the mid-2000s that its utilization became commonplace, primarily due to the introduction of electromagnetic navigation (EMN) bronchoscopy. While the diagnostic yield of EMN-assisted sampling has shown substantial improvement over historical fluoroscopy-assisted bronchoscopic biopsy, its diagnostic yield plateaued at around 70%. Factors contributing to this relatively low diagnostic yield include discrepancies in computed tomography to body divergence, which led to unsuccessful lesion localization and resultant unsuccessful sampling of the lesion. Furthermore, much of peripheral bronchoscopy utilized a plastic extended working channel whose tips were difficult to finely aim at potential targets. However, the recent introduction of robotic-assisted bronchoscopy, and its associated stability within the peripheral lung, has ignited optimism for its potential to significantly enhance the diagnostic performance for peripheral lesions. Moreover, some envision this technology eventually playing a pivotal role in the therapeutic delivery to lung tumors. This review aims to describe the currently available robotic-assisted bronchoscopy technologies and to discuss the existing scientific evidence supporting these.
Collapse
Affiliation(s)
- Renan Martins Gomes Prado
- School of Medicine, Center of Health Sciences, State University of Ceara, Fortaleza 60714-903, Brazil
| | - Joseph Cicenia
- Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
12
|
Bhadra K, Rickman OB, Mahajan AK, Hogarth DK. "Tool-in-lesion" Accuracy of Galaxy System-A Robotic Electromagnetic Navigation BroncHoscopy With Integrated Tool-in-lesion-Tomosynthesis Technology: The MATCH Study. J Bronchology Interv Pulmonol 2024; 31:23-29. [PMID: 37072895 PMCID: PMC10763708 DOI: 10.1097/lbr.0000000000000923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/21/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND The Galaxy System (Noah Medical) is a novel robotic endoluminal platform using electromagnetic navigation combined with integrated tomosynthesis technology and augmented fluoroscopy. It provides intraprocedural imaging to correct computerized tomography (CT) to body divergence and novel confirmation of tool-in-lesion (TIL). The primary aim of this study was to assess the TIL accuracy of the robotic bronchoscope with integrated digital tomosynthesis and augmented fluoroscopy. METHODS Four operators conducted the experiment using 4 pigs. Each physician performed between 4 and 6 nodule biopsies for 20 simulated lung nodules with purple dye and a radio pacifier. Using Galaxy's "Tool-in-Lesion Tomography (TOMO+)" with augmented fluoroscopy, the physician navigated to the lung nodules, and a tool (needle) was placed into the lesion. TIL was defined by the needle in the lesion determined by cone-beam CT. RESULTS The lung nodule's average size was 16.3 ± 0.97 mm and was predominantly in the lower lobes (65%). All 4 operators successfully navigated to all (100%) of the lesions in an average of 3 minutes and 39 seconds. The median number of tomosynthesis sweeps was 3 and augmented fluoroscopy was utilized in most cases (17/20 or 85%). TIL after the final TOMO sweep was 95% (19/20) and tool-touch-lesion was 5% (1/20). Biopsy yielding purple pigmentation was also 100% (20/20). CONCLUSION The Galaxy System demonstrated successful digital TOMO confirmed TIL success in 95% (19/20) of lesions and tool-touch-lesion in 5% (1/20) as confirmed by cone-beam CT. Successful diagnostic yield was achieved in 100% (20/20) of lesions as confirmed by intralesional pigment acquisition.
Collapse
Affiliation(s)
- Krish Bhadra
- CHI Memorial Rees Skillern Cancer Institute, Chattanooga
| | | | | | | |
Collapse
|
13
|
Ortiz-Jaimes G, Reisenauer J. Real-World Impact of Robotic-Assisted Bronchoscopy on the Staging and Diagnosis of Lung Cancer: The Shape of Current and Potential Opportunities. Pragmat Obs Res 2023; 14:75-94. [PMID: 37694262 PMCID: PMC10492559 DOI: 10.2147/por.s395806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
The approach to peripheral pulmonary lesions (PPL) has been evolving continuously. Advanced bronchoscopic navigational techniques have improved the airway-based approaches to these lesions. Robotic Assisted Bronchoscopy (RAB) can be considered the current pinnacle of this evolution; allowing for a safer approach to sampling lesions previously considered outside of bronchoscopic reach. We present a comprehensive review of the changing epidemiology of lung cancer and the importance of early tissue sampling, the evolution of sampling and navigational bronchoscopic techniques, technical considerations and evidence pertaining to the use of RAB, and adjunct techniques in the diagnosis of lung cancer. Complications and future applications of RAB are also discussed.
Collapse
Affiliation(s)
- Gabriel Ortiz-Jaimes
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Janani Reisenauer
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Thoracic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Verhoeven RLJ, Kops SEP, Wijma IN, Ter Woerds DKM, van der Heijden EHFM. Cone-beam CT in lung biopsy: a clinical practice review on lessons learned and future perspectives. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:361. [PMID: 37675336 PMCID: PMC10477635 DOI: 10.21037/atm-22-2845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 09/08/2023]
Abstract
Pulmonary nodules with intermediate to high risk of malignancy should preferably be diagnosed with image guide minimally invasive diagnostics before treatment. Several technological innovations have been developed to endobronchially navigate to these lesions and obtain tissue for diagnosis. This review addresses these technological advancements in navigation bronchoscopy in three basic steps: navigation, position confirmation and acquisition, with a specific focus on cone-beam computed tomography (CBCT). For navigation purposes ultrathin bronchoscopy combined with virtual bronchoscopy navigation, electromagnetic navigation and robotic assisted bronchoscopy all achieve good results as a navigation guidance tool, but cannot confirm location or guide biopsy positioning. Diagnostic yield has seen improvement by combining these techniques with a secondary imaging tool like radial endobronchial ultrasound (rEBUS) and fluoroscopy. For confirmation of lesion access, rEBUS provides local detailed ultrasound-imaging and can be used to confirm lesion access in combination with fluoroscopy, measure nodule-contact area length and determine catheter position for sampling. CBCT is the only technology that can provide precise 3D positioning confirmation. When focusing on tissue acquisition, there is often more than 10% difference between reaching the target and getting a diagnosis. This discrepancy is multifactorial and caused by breathing movements, small samples sizes, instrument tip displacements by tool rigidity and tumour inhomogeneity. Yield can be improved by targeting fluorodeoxyglucose (FDG)-avid regions, immediate feedback of rapid onsite evaluation, choosing sampling tools with different passive stiffnesses, by increasing the number biopsies taken and (future) catheter modifications like (robotic assisted-) active steering. CBCT with augmented fluoroscopy (CBCT-AF) based navigation bronchoscopy combines navigation guidance with 3D-image confirmation of instrument-in-lesion positioning in one device. CBCT-AF allows for overlaying the lesion and navigation pathway and the possibility to outline trans-parenchymal pathways. It can help guide and verify sampling in 3D in near real-time. Disadvantages are the learning curve, the inherent use of radiation and limited availability/access to hybrid theatres. A mobile C-arm can provide 3D imaging, but lower image quality due to lower power and lower contrast-to-noise ratio is a limiting factor. In conclusion, a multi-modality approach in experienced hands seems the best option for achieving a diagnostic accuracy >85%. Either adequate case selection or detailed 3D imaging are essential to obtain high accuracy. For current and future transbronchial treatments, high-resolution (CBCT) 3D-imaging is essential.
Collapse
Affiliation(s)
- Roel L J Verhoeven
- Department of Pulmonary Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephan E P Kops
- Department of Pulmonary Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Inge N Wijma
- Department of Pulmonary Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Desi K M Ter Woerds
- Department of Pulmonary Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
15
|
Manley CJ, Kramer T, Kumar R, Gong Y, Ehya H, Ross E, Bonta PI, Annema JT. Robotic bronchoscopic needle-based confocal laser endomicroscopy to diagnose peripheral lung nodules. Respirology 2023; 28:475-483. [PMID: 36535801 PMCID: PMC11590500 DOI: 10.1111/resp.14438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Robotic bronchoscopy has demonstrated high navigational success in small peripheral lung nodules but the diagnostic yield is discrepantly lower. Needle based confocal laser endomicroscopy (nCLE) enables real-time microscopic imaging at the needle tip. We aim to assess feasibility, safety and needle repositioning based on real-time nCLE-guidance during robotic bronchoscopy in small peripheral lung nodules. METHODS Patients with suspected peripheral lung cancer underwent fluoroscopy and radial EBUS assisted robotic bronchoscopy. After radial EBUS nodule identification, nCLE-imaging of the target area was performed. nCLE-malignancy and airway/lung parenchyma criteria were used to identify the optimal sampling location. In case airway was visualized, repositioning of the biopsy needle was performed. After nCLE tool-in-nodule confirmation, needle passes and biopsies were performed at the same location. MEASUREMENTS AND MAIN RESULTS Twenty patients were included (final diagnosis n = 17 (lung) cancer) with a median lung nodule size of 14.5 mm (range 8-28 mm). No complications occurred. In 19/20 patients, good quality nCLE-videos were obtained. In 9 patients (45%), real-time nCLE-imaging revealed inadequate positioning of the needle and repositioning was performed. After repositioning, nCLE-imaging provided tool-in-nodule-confirmation in 19/20 patients. Subsequent ROSE demonstrated representative material in 9/20 patients (45%) and overall diagnostic yield was 80% (16/20). Of the three patients with malignant nCLE-imaging but inadequate pathology, two were diagnosed with malignancy during follow-up. CONCLUSION Robotic bronchoscopic nCLE-imaging is feasible and safe. nCLE-imaging in small, difficult-to-access lung nodules provided additional real-time feedback on the correct needle positioning with the potential to optimize the sampling location and diagnostic yield.
Collapse
Affiliation(s)
- Christopher J Manley
- Department of Pulmonary and Critical Care, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tess Kramer
- Department of Respiratory Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Rohit Kumar
- Department of Pulmonary and Critical Care, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yulan Gong
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Hormoz Ehya
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Eric Ross
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Peter I Bonta
- Department of Respiratory Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Jouke T Annema
- Department of Respiratory Medicine, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
16
|
Kops SEP, Heus P, Korevaar DA, Damen JAA, Idema DL, Verhoeven RLJ, Annema JT, Hooft L, van der Heijden EHFM. Diagnostic yield and safety of navigation bronchoscopy: A systematic review and meta-analysis. Lung Cancer 2023; 180:107196. [PMID: 37130440 DOI: 10.1016/j.lungcan.2023.107196] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Navigation bronchoscopy has seen rapid development in the past decade in terms of new navigation techniques and multi-modality approaches utilizing different techniques and tools. This systematic review analyses the diagnostic yield and safety of navigation bronchoscopy for the diagnosis of peripheral pulmonary nodules suspected of lung cancer. METHODS An extensive search was performed in Embase, Medline and Cochrane CENTRAL in May 2022. Eligible studies used cone-beam CT-guided navigation (CBCT), electromagnetic navigation (EMN), robotic navigation (RB) or virtual bronchoscopy (VB) as the primary navigation technique. Primary outcomes were diagnostic yield and adverse events. Quality of studies was assessed using QUADAS-2. Random effects meta-analysis was performed, with subgroup analyses for different navigation techniques, newer versus older techniques, nodule size, publication year, and strictness of diagnostic yield definition. Explorative analyses of subgroups reported by studies was performed for nodule size and bronchus sign. RESULTS A total of 95 studies (n = 10,381 patients; n = 10,682 nodules) were included. The majority (n = 63; 66.3%) had high risk of bias or applicability concerns in at least one QUADAS-2 domain. Summary diagnostic yield was 70.9% (95%-CI 68.4%-73.2%). Overall pneumothorax rate was 2.5%. Newer navigation techniques using advanced imaging and/or robotics(CBCT, RB, tomosynthesis guided EMN; n = 24 studies) had a statistically significant higher diagnostic yield compared to longer established techniques (EMN, VB; n = 82 studies): 77.5% (95%-CI 74.7%-80.1%) vs 68.8% (95%-CI 65.9%-71.6%) (p < 0.001).Explorative subgroup analyses showed that larger nodule size and bronchus sign presence were associated with a statistically significant higher diagnostic yield. Other subgroup analyses showed no significant differences. CONCLUSION Navigation bronchoscopy is a safe procedure, with the potential for high diagnostic yield, in particular using newer techniques such as RB, CBCT and tomosynthesis-guided EMN. Studies showed a large amount of heterogeneity, making comparisons difficult. Standardized definitions for outcomes with relevant clinical context will improve future comparability.
Collapse
Affiliation(s)
- Stephan E P Kops
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Pauline Heus
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Daniël A Korevaar
- Department of Respiratory Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Johanna A A Damen
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Demy L Idema
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roel L J Verhoeven
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jouke T Annema
- Department of Respiratory Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Lotty Hooft
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
17
|
Advanced Imaging for Robotic Bronchoscopy: A Review. Diagnostics (Basel) 2023; 13:diagnostics13050990. [PMID: 36900134 PMCID: PMC10001114 DOI: 10.3390/diagnostics13050990] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Recent advances in navigational platforms have led bronchoscopists to make major strides in diagnostic interventions for pulmonary parenchymal lesions. Over the last decade, multiple platforms including electromagnetic navigation and robotic bronchoscopy have allowed bronchoscopists to safely navigate farther into the lung parenchyma with increased stability and accuracy. Limitations persist, even with these newer technologies, in achieving a similar or higher diagnostic yield when compared to the transthoracic computed tomography (CT) guided needle approach. One of the major limitations to this effect is due to CT-to-body divergence. Real-time feedback that better defines the tool-lesion relationship is vital and can be obtained with additional imaging using radial endobronchial ultrasound, C-arm based tomosynthesis, cone-beam CT (fixed or mobile), and O-arm CT. Herein, we describe the role of this adjunct imaging with robotic bronchoscopy for diagnostic purposes, describe potential strategies to counteract the CT-to-body divergence phenomenon, and address the potential role of advanced imaging for lung tumor ablation.
Collapse
|
18
|
Vijayan R, Sheth N, Mekki L, Lu A, Uneri A, Sisniega A, Magaraggia J, Kleinszig G, Vogt S, Thiboutot J, Lee H, Yarmus L, Siewerdsen JH. 3D-2D image registration in the presence of soft-tissue deformation in image-guided transbronchial interventions. Phys Med Biol 2022; 68. [PMID: 36317269 DOI: 10.1088/1361-6560/ac9e3c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Purpose. Target localization in pulmonary interventions (e.g. transbronchial biopsy of a lung nodule) is challenged by deformable motion and may benefit from fluoroscopic overlay of the target to provide accurate guidance. We present and evaluate a 3D-2D image registration method for fluoroscopic overlay in the presence of tissue deformation using a multi-resolution/multi-scale (MRMS) framework with an objective function that drives registration primarily by soft-tissue image gradients.Methods. The MRMS method registers 3D cone-beam CT to 2D fluoroscopy without gating of respiratory phase by coarse-to-fine resampling and global-to-local rescaling about target regions-of-interest. A variation of the gradient orientation (GO) similarity metric (denotedGO') was developed to downweight bone gradients and drive registration via soft-tissue gradients. Performance was evaluated in terms of projection distance error at isocenter (PDEiso). Phantom studies determined nominal algorithm parameters and capture range. Preclinical studies used a freshly deceased, ventilated porcine specimen to evaluate performance in the presence of real tissue deformation and a broad range of 3D-2D image mismatch.Results. Nominal algorithm parameters were identified that provided robust performance over a broad range of motion (0-20 mm), including an adaptive parameter selection technique to accommodate unknown mismatch in respiratory phase. TheGO'metric yielded median PDEiso= 1.2 mm, compared to 6.2 mm for conventionalGO.Preclinical studies with real lung deformation demonstrated median PDEiso= 1.3 mm with MRMS +GO'registration, compared to 2.2 mm with a conventional transform. Runtime was 26 s and can be reduced to 2.5 s given a prior registration within ∼5 mm as initialization.Conclusions. MRMS registration via soft-tissue gradients achieved accurate fluoroscopic overlay in the presence of deformable lung motion. By driving registration via soft-tissue image gradients, the method avoided false local minima presented by bones and was robust to a wide range of motion magnitude.
Collapse
Affiliation(s)
- R Vijayan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - N Sheth
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - L Mekki
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Uneri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | | | | | - S Vogt
- Siemens Healthineers, Erlangen, Germany
| | - J Thiboutot
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institution, Baltimore, MD, United States of America
| | - H Lee
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institution, Baltimore, MD, United States of America
| | - L Yarmus
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institution, Baltimore, MD, United States of America
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America.,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
19
|
The Feasibility of Using the "Artery Sign" for Pre-Procedural Planning in Navigational Bronchoscopy for Parenchymal Pulmonary Lesion Sampling. Diagnostics (Basel) 2022; 12:diagnostics12123059. [PMID: 36553068 PMCID: PMC9777140 DOI: 10.3390/diagnostics12123059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Electromagnetic navigation bronchoscopy (ENB) and robotic-assisted bronchoscopy (RAB) systems are used for pulmonary lesion sampling, and utilize a pre-procedural CT scan where an airway, or "bronchus sign", is used to map a pathway to the target lesion. However, up to 40% of pre-procedural CT's lack a "bronchus sign" partially due to surrounding emphysema or limitation in CT resolution. Recognizing that the branches of the pulmonary artery, lymphatics, and airways are often present together as the bronchovascular bundle, we postulate that a branch of the pulmonary artery ("artery sign") could be used for pathway mapping during navigation bronchoscopy when a "bronchus sign" is absent. Herein we describe the navigation success and safety of using the "artery sign" to create a pathway for pulmonary lesion sampling. METHODS We reviewed data on consecutive cases in which the "artery sign" was used for pre-procedural planning for conventional ENB (superDimension™, Medtronic) and RAB (Monarch™, Johnson & Johnson). Patients who underwent these procedures from July 2020 until July 2021 at the University of Minnesota Medical Center and from June 2018 until December 2019 at the University of Chicago Medical Center were included in this analysis (IRB #19-0011 for the University of Chicago and IRB #00013135 for the University of Minnesota). The primary outcome was navigation success, defined as successfully maneuvering the bronchoscope to the target lesion based on feedback from the navigation system. Secondary outcomes included navigation success based on radial EBUS imaging, pneumothorax, and bleeding rates. RESULTS A total of 30 patients were enrolled in this analysis. The median diameter of the lesions was 17 mm. The median distance of the lesion from the pleura was 5 mm. Eleven lesions were solid, 15 were pure ground glass, and 4 were mixed. All cases were planned successfully using the "artery sign" on either the superDimension™ ENB (n = 15) or the Monarch™ RAB (n = 15). Navigation to the target was successful for 29 lesions (96.7%) based on feedback from the navigation system (virtual target). Radial EBUS image was acquired in 27 cases (90%) [eccentric view in 13 (43.33%) and concentric view in 14 patients (46.66%)], while in 3 cases (10%) no r-EBUS view was obtained. Pneumothorax occurred in one case (3%). Significant airway bleeding was reported in one case (3%). CONCLUSIONS We describe the concept of using the "artery sign" as an alternative for planning EMN and RAB procedures when "bronchus sign" is absent. The navigation success based on virtual target or r-EBUS imaging is high and safety of sampling of such lesions compares favorably with prior reports. Prospective studies are needed to assess the impact of the "artery sign" on diagnostic yield.
Collapse
|
20
|
Novel approaches utilizing robotic navigational bronchoscopy: a single institution experience. J Robot Surg 2022; 17:1001-1006. [DOI: 10.1007/s11701-022-01507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
|
21
|
Manley CJ, Pritchett MA. Nodules, Navigation, Robotic Bronchoscopy, and Real-Time Imaging. Semin Respir Crit Care Med 2022; 43:473-479. [PMID: 36104024 DOI: 10.1055/s-0042-1747930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The process of detection, diagnosis, and management of lung nodules is complex due to the heterogeneity of lung pathology and a relatively low malignancy rate. Technological advances in bronchoscopy have led to less-invasive diagnostic procedures and advances in imaging technology have helped to improve nodule localization and biopsy confirmation. Future research is required to determine which modality or combination of complimentary modalities is best suited for safe, accurate, and cost-effective management of lung nodules.
Collapse
Affiliation(s)
- Christopher J Manley
- Division of Pulmonary and Critical Care, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Michael A Pritchett
- Division of Pulmonary and Critical Care Medicine, Chest Center of the Carolinas at FirstHealth, FirstHealth of the Carolinas and Pinehurst Medical Clinic, Pinehurst, North Carolina
| |
Collapse
|
22
|
Goizueta AA, Casal RF. Bronchoscopic Lung Nodule Ablation. CURRENT PULMONOLOGY REPORTS 2022. [DOI: 10.1007/s13665-022-00287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Folch EE, Bowling MR, Pritchett MA, Murgu SD, Nead MA, Flandes J, Krimsky WS, Mahajan AK, LeMense GP, Murillo BA, Bansal S, Lau K, Gildea TR, Christensen M, Arenberg DA, Singh J, Bhadra K, Hogarth DK, Towe CW, Lamprecht B, Bezzi M, Mattingley JS, Hood KL, Lin H, Wolvers JJ, Khandhar SJ. NAVIGATE 24-Month Results: Electromagnetic navigation bronchoscopy for pulmonary lesions at 37 centers in Europe and the United States. J Thorac Oncol 2021; 17:519-531. [PMID: 34973418 DOI: 10.1016/j.jtho.2021.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Electromagnetic navigation bronchoscopy (ENB) is a minimally invasive, image-guided approach to access lung lesions for biopsy or localization for treatment. However, no studies have reported prospective 24-month follow-up from a large, multinational, generalizable cohort. This study evaluated ENB safety, diagnostic yield, and usage patterns in an unrestricted, real-world observational design. METHODS The NAVIGATE single-arm, pragmatic cohort study (NCT02410837) enrolled subjects at 37 academic and community sites in 7 countries with prospective 24-month follow-up. Subjects underwent ENB using the superDimension navigation system versions 6.3 to 7.1. The prespecified primary endpoint was procedure-related pneumothorax requiring intervention or hospitalization. RESULTS A total of 1,388 subjects were enrolled for lung lesion biopsy (1,329; 95.7%), fiducial marker placement (272; 19.6%), dye marking (23; 1.7%), and/or lymph node biopsy (36; 2.6%). Concurrent endobronchial ultrasound-guided staging occurred in 456 subjects. General anesthesia (78.2% overall, 56.6% Europe, 81.4% US), radial endobronchial ultrasound (50.6%, 4.0%, 57.4%), fluoroscopy (85.0%, 41.7%, 91.0%), and rapid on-site evaluation use (61.7%, 17.3%, 68.5%) differed between regions. Pneumothorax and bronchopulmonary hemorrhage occurred in 4.7% and 2.7% of subjects, respectively (3.2% [primary endpoint] and 1.7% requiring intervention or hospitalization). Respiratory failure occurred in 0.6%. The diagnostic yield was 67.8% (range 61.9%-70.7%; 55.2% Europe, 69.8% US). Sensitivity for malignancy was 62.6%. Lung cancer clinical stage was I-II in 64.7% (55.3% Europe, 65.8% US). CONCLUSIONS Despite a heterogeneous cohort and regional differences in procedural techniques, ENB demonstrates low complications and a 67.8% diagnostic yield while allowing biopsy, staging, fiducial placement, and dye marking in a single procedure.
Collapse
Affiliation(s)
- Erik E Folch
- Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Bulfinch 148, Boston, MA 02114
| | - Mark R Bowling
- Brody School of Medicine, East Carolina University, 500 Moye Blvd, Greenville, NC 27834
| | - Michael A Pritchett
- FirstHealth of the Carolinas and Pinehurst Medical Clinic, 205 Page Road, Pinehurst, NC, 28374
| | - Septimiu D Murgu
- University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637
| | - Michael A Nead
- University of Rochester Medical Center, 601 Elmwood Avenue, Box 692, Rochester NY 14642
| | - Javier Flandes
- Hospital Fundación Jiménez Díaz IIS-FJD Ciberes, Avda. Reyes Católicos 2, Madrid 28043, Spain
| | - William S Krimsky
- Pulmonary and Critical Care Associates of Baltimore, 9103 Franklin Square Drive, Suite 300, Baltimore, MD 21237
| | - Amit K Mahajan
- Inova Health System, Virginia Cancer Specialists, 2921 Telestar Court, Falls Church, VA, 22042
| | - Gregory P LeMense
- Blount Memorial Physicians Group(†), 266 Joule Street, Alcoa, TN 37701
| | - Boris A Murillo
- Providence Health Center and Waco Lung Associates, 340 Richland West Circle, Waco, TX 76657
| | - Sandeep Bansal
- Penn Highlands Healthcare, 100 Hospital Avenue, PO Box 447, DuBois, PA 15801
| | - Kelvin Lau
- St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Thomas R Gildea
- Cleveland Clinic, 9500 Euclid Avenue MC M2-141, Cleveland, OH 44195
| | - Merete Christensen
- Rigshospitalet, Thoraxkirurgisk klin 78ik RT 2151, Copenhagen, Denmark, Merete.Christensen
| | - Douglas A Arenberg
- University of Michigan, 1150 West Medical Center Drive, University of Michigan, Ann Arbor, MI, 48109
| | - Jaspal Singh
- Atrium Health and Levine Cancer Institute, 503B Med Ed Building, Charlotte, NC, 28203
| | - Krish Bhadra
- CHI Memorial Rees Skillern Cancer Institute, 725 Glenwood Dr E-500, Chattanooga, TN, 37401
| | - D Kyle Hogarth
- The University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637
| | - Christopher W Towe
- University Hospitals Cleveland Medical Center and Case Western Reserve School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106
| | - Bernd Lamprecht
- Kepler Universitätsklinikum, 4021 Linz, Krankenhausstraße 9, Linz, Austria
| | - Michela Bezzi
- Azienda Ospedaliero Universitaria Careggi, Largo Brambilla, 3 - 50134, Florence, Italy
| | | | - Kristin L Hood
- Medtronic, Clinical Research and Medical Science, 161 Cheshire Ln, Plymouth, MN 55441
| | - Haiying Lin
- Medtronic, Clinical Research and Medical Science, 161 Cheshire Ln, Plymouth, MN 55441
| | - Jennifer J Wolvers
- Medtronic, Clinical Research and Medical Science, 161 Cheshire Ln, Plymouth, MN 55441
| | - Sandeep J Khandhar
- Inova Health System, Virginia Cancer Specialists, 8503 Arlington Blvd, Fairfax, VA, 22031
| | | |
Collapse
|
24
|
Dooms C, Yserbyt J. Getting innovative bronchoscopic techniques into real clinical practice. Thorax 2021; 77:327-328. [PMID: 34937803 DOI: 10.1136/thoraxjnl-2021-217745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Christophe Dooms
- Department of Respiratory Diseases, University Hospitals KU Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- Department of Respiratory Diseases, University Hospitals KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Oki M, Saka H. Augmented fluoroscopy and cone beam CT-guided needle biopsy using a steerable guiding sheath: a promising approach for peripheral pulmonary lesions. Transl Lung Cancer Res 2021; 10:3701-3704. [PMID: 34733620 PMCID: PMC8512464 DOI: 10.21037/tlcr-21-696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Masahide Oki
- Department of Respiratory Medicine, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hideo Saka
- Department of Respiratory Medicine, National Hospital Organization Nagoya Medical Center, Nagoya, Japan.,Department of Respiratory Medicine, Matsunami General Hospital, Gifu, Japan
| |
Collapse
|
26
|
Shen YC, Chen CH, Tu CY. Advances in Diagnostic Bronchoscopy. Diagnostics (Basel) 2021; 11:diagnostics11111984. [PMID: 34829331 PMCID: PMC8620115 DOI: 10.3390/diagnostics11111984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
The increase in incidental discovery of pulmonary nodules has led to more urgent requirement of tissue diagnosis. The peripheral pulmonary nodules are especially challenging for clinicians. There are various modalities for diagnosis and tissue sampling of pulmonary lesions, but most of these modalities have their own limitations. This has led to the development of many advanced technical modalities, which have empowered pulmonologists to reach the periphery of the lung safely and effectively. These techniques include thin/ultrathin bronchoscopes, radial probe endobronchial ultrasound (RP-EBUS), and navigation bronchoscopy—including virtual navigation bronchoscopy (VNB) and electromagnetic navigation bronchoscopy (ENB). Recently, newer technologies—including robotic-assisted bronchoscopy (RAB), cone-beam CT (CBCT), and augmented fluoroscopy (AF)—have been introduced to aid in the navigation to peripheral pulmonary nodules. Technological advances will also enable more precise tissue sampling of smaller peripheral lung nodules for local ablative and other therapies of peripheral lung cancers in the future. However, we still need to overcome the CT-to-body divergence, among other limitations. In this review, our aim is to summarize the recent advances in diagnostic bronchoscopy technology.
Collapse
Affiliation(s)
- Yi-Cheng Shen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40447, Taiwan
| | - Chia-Hung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: (C.-H.C.); (C.-Y.T.); Tel.: +886-4-22052121 (ext. 2623) (C.-H.C.); +886-4-22052121 (ext. 3485) (C.-Y.T.); Fax: +886-4-22038883 (C.-H.C. & C.-Y.T.)
| | - Chih-Yen Tu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: (C.-H.C.); (C.-Y.T.); Tel.: +886-4-22052121 (ext. 2623) (C.-H.C.); +886-4-22052121 (ext. 3485) (C.-Y.T.); Fax: +886-4-22038883 (C.-H.C. & C.-Y.T.)
| |
Collapse
|
27
|
Piro R, Fontana M, Casalini E, Taddei S, Bertolini M, Iori M, Facciolongo N. Cone beam CT augmented fluoroscopy allows safe and efficient diagnosis of a difficult lung nodule. BMC Pulm Med 2021; 21:327. [PMID: 34670551 PMCID: PMC8527755 DOI: 10.1186/s12890-021-01697-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background Detection of small peripheral lung nodules is constantly increasing with the development of low dose computed tomography lung cancer screening programs. A tissue diagnosis is often required to confirm malignity, with endobronchial biopsies being associated with a lower pneumothorax rate than percutaneous approaches. Endoscopic diagnosis of peripheral small size lung nodules is however often challenging using traditional bronchoscopy and endobronchial ultrasound alone. New virtual bronchoscopic navigation techniques such as electromagnetic navigational bronchoscopy (ENB) have developed to improve peripheral navigation, with diagnostic yield however remaining in the 30–50% range for small lesions. Recent studies have shown the benefits of combining Cone beam computed tomography (CBCT) with ENB to improve diagnostic yield to up to 83%. The use of ENB however remains limited by disposable cost, bronchus sign dependency and inaccuracies due to CT to body divergence. Case presentation This case report highlights the feasibility and usefulness of CBCT-guided bronchoscopy for the sampling of lung nodules difficult to reach through traditional bronchoscopy because of nodule size and peripheral position. Procedure was scheduled in a mobile robotic hybrid operating room with patient under general anaesthesia. CBCT acquisition was performed to localize the target lesion and plan the best path to reach it into bronchial tree. A dedicated software was used to segment the lesion and the bronchial path which 3D outlines were automatically fused in real time on the fluoroscopic images to augment live guidance. Navigation to the lesion was guided with bronchoscopy and augmented fluoroscopy alone. Before the sampling, CBCT imaging was repeated to confirm the proper position of the instrument into the lesion. Four transbronchial needle aspirations (TBNA) were performed and the tissue analysis showed a primary lung adenocarcinoma. Conclusions CBCT and augmented fluoroscopy technique is a safe and effective and has potential to improve early stage peripheral lesions endobronchial diagnostic yield without ENB. Additional studies are warranted to confirm its safety, efficacy and technical benefits, both for diagnosis of oncological and non-oncological disease and for endobronchial treatment of inoperable patients.
Collapse
Affiliation(s)
- Roberto Piro
- Pulmonology Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Via Amendola 2, 42123, Reggio Emilia, Italy.
| | - Matteo Fontana
- Pulmonology Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Via Amendola 2, 42123, Reggio Emilia, Italy
| | - Eleonora Casalini
- Pulmonology Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Via Amendola 2, 42123, Reggio Emilia, Italy
| | - Sofia Taddei
- Pulmonology Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Via Amendola 2, 42123, Reggio Emilia, Italy
| | - Marco Bertolini
- Medical Physics Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Nicola Facciolongo
- Pulmonology Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Via Amendola 2, 42123, Reggio Emilia, Italy
| |
Collapse
|
28
|
Ost DE. Assessing Performance of Bronchoscopic Diagnostic Techniques: Looking for Combinations That Offer Synergy. Chest 2021; 160:1181-1183. [PMID: 34625169 DOI: 10.1016/j.chest.2021.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 10/20/2022] Open
Affiliation(s)
- David E Ost
- The University of Texas, MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
29
|
de Ruiter QMB, Fontana JR, Pritchard WF, Mauda-Havakuk M, Bakhutashvili I, Esparza-Trujillo JA, Varble NA, Verstege M, Xu S, Seifabadi R, Browning RF, Wood BJ, Karanian JW. Endovascular steerable and endobronchial precurved guiding sheaths for transbronchial needle delivery under augmented fluoroscopy and cone beam CT image guidance. Transl Lung Cancer Res 2021; 10:3627-3644. [PMID: 34584862 PMCID: PMC8435394 DOI: 10.21037/tlcr-21-275] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endobronchial navigation is performed in a variety of ways, none of which are meeting all the clinicians' needs required to reach diagnostic success in every patient. We sought to characterize precurved and steerable guiding sheaths (GS) in endobronchial targeting for lung biopsy using cone beam computed tomography (CBCT) based augmented fluoroscopy (AF) image guidance. METHODS Four precurved GS (EdgeTM 45, 90, 180, 180EW, Medtronic) and two steerable GS [6.5 F Destino Twist (DT), Oscor; 6 F Morph, BioCardia] were evaluated alone and in combination with an electromagnetic tracking (EM) guide and biopsy needles in three experimental phases: (I) bench model to assess GS deflection and perform biopsy simulations; (II) ex vivo swine lung comparing 2 steerable and 2 precurved GS; and (III) in vivo male swine lung to deliver a needle (n=2 swine) or to deliver a fiducial marker (n=2 swine) using 2 steerable GS. Ex vivo and in vivo image guidance was performed with either commercial or prototype AF image guidance software (Philips) based on either prior CT or procedural CBCT. Primary outcomes were GS delivery angle (θGS) and needle delivery angle (θN) in bench evaluation and needle delivery error (mm) (mean ± se) for ex vivo and in vivo studies. RESULTS The steerable DT had the largest range of GS delivery angles (θN: 0-114°) with either the 21 G or 19 G biopsy needle in the bench model. In ex vivo swine lung, needle delivery errors were 8.7±0.9 mm (precurved Edge 90), 5.4±1.9 mm (precurved Edge 180), 4.7±1.2 mm (steerable DT), and 5.6±2.4 mm (steerable Morph). In vivo, the needle delivery errors for the steerable GS were 6.0±1.0 mm (DT) and 15±7.0 mm (Morph). In vivo marker coil delivery was successful for both the steerable DT and morph GS. A case report demonstrated successful needle biopsy with the steerable DT. CONCLUSIONS Endobronchial needle delivery with AF guidance is feasible without a bronchoscope with steerable GS providing comparable or improved accuracy compared to precurved GS.
Collapse
Affiliation(s)
- Quirina M. B. de Ruiter
- Center for Interventional Oncology, Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Joseph R. Fontana
- Pulmonary Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - William F. Pritchard
- Center for Interventional Oncology, Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Michal Mauda-Havakuk
- Center for Interventional Oncology, Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Ivane Bakhutashvili
- Center for Interventional Oncology, Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Juan A. Esparza-Trujillo
- Center for Interventional Oncology, Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Nicole A. Varble
- Center for Interventional Oncology, Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
- Philips Research of North America, Cambridge, MA, USA
| | | | - Sheng Xu
- Center for Interventional Oncology, Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Reza Seifabadi
- Center for Interventional Oncology, Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | | | - Bradford J. Wood
- Center for Interventional Oncology, Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
- Center for Cancer Research, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - John W. Karanian
- Center for Interventional Oncology, Radiology & Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA
| |
Collapse
|
30
|
Pritchett MA, Lau K, Skibo S, Phillips KA, Bhadra K. Anesthesia considerations to reduce motion and atelectasis during advanced guided bronchoscopy. BMC Pulm Med 2021; 21:240. [PMID: 34273966 PMCID: PMC8286573 DOI: 10.1186/s12890-021-01584-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
Partnership between anesthesia providers and proceduralists is essential to ensure patient safety and optimize outcomes. A renewed importance of this axiom has emerged in advanced bronchoscopy and interventional pulmonology. While anesthesia-induced atelectasis is common, it is not typically clinically significant. Advanced guided bronchoscopic biopsy is an exception in which anesthesia protocols substantially impact outcomes. Procedure success depends on careful ventilation to avoid excessive motion, reduce distortion causing computed tomography (CT)-to-body-divergence, stabilize dependent areas, and optimize breath-hold maneuvers to prevent atelectasis. Herein are anesthesia recommendations during guided bronchoscopy. An FiO2 of 0.6 to 0.8 is recommended for pre-oxygenation, maintained at the lowest tolerable level for the entire the procedure. Expeditious intubation (not rapid-sequence) with a larger endotracheal tube and non-depolarizing muscle relaxants are preferred. Positive end-expiratory pressure (PEEP) of up to 10-12 cm H2O and increased tidal volumes help to maintain optimal lung inflation, if tolerated by the patient as determined during recruitment. A breath-hold is required to reduce motion artifact during intraprocedural imaging (e.g., cone-beam CT, digital tomosynthesis), timed at the end of a normal tidal breath (peak inspiration) and held until pressures equilibrate and the imaging cycle is complete. Use of the adjustable pressure-limiting valve is critical to maintain the desired PEEP and reduce movement during breath-hold maneuvers. These measures will reduce atelectasis and CT-to-body divergence, minimize motion artifact, and provide clearer, more accurate images during guided bronchoscopy. Following these recommendations will facilitate a successful lung biopsy, potentially accelerating the time to treatment by avoiding additional biopsies. Application of these methods should be at the discretion of the anesthesiologist and the proceduralist; best medical judgement should be used in all cases to ensure the safety of the patient.
Collapse
Affiliation(s)
- Michael A Pritchett
- Chest Center of the Carolinas at First Health, President of the Society for Advanced Bronchoscopy, FirstHealth of the Carolinas and Pinehurst Medical Clinic, 205 Page Road, Pinehurst, NC, 28374, USA.
| | - Kelvin Lau
- Thoracic Surgery, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Scott Skibo
- Interventional Thoracic Oncology, Pulmonary Critical Care, Haywood Regional Medical Center (A Duke LifePoint Hospital), 262 Leroy George Drive, Clyde, NC, 28721, USA
| | - Karen A Phillips
- Anesthesiologist and Intensivist, Medtronic, 2101 Faraday Avenue, Carlsbad, CA, 92008, USA
| | - Krish Bhadra
- Interventional Pulmonology, CHI Memorial Rees Skillern Cancer Institute, 725 Glenwood Dr E-500, Chattanooga, TN, 37401, USA
| |
Collapse
|
31
|
Pertzov B, Gershman E, Izhakian S, Heching M, Amor SM, Rosengarten D, Kramer MR. The LungVision navigational platform for peripheral lung nodule biopsy and the added value of cryobiopsy. Thorac Cancer 2021; 12:2007-2012. [PMID: 34096182 PMCID: PMC8258356 DOI: 10.1111/1759-7714.14003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The LungVision system is a novel augmented-fluoroscopy-based real-time navigation and guidance technology for bronchoscopy that can be integrated with any standard biopsy tool, including the cryoprobe, to enable real-time visualization and localization of pulmonary nodules. OBJECTIVES To evaluate the diagnostic yield and safety among patients undergoing peripheral pulmonary nodule biopsy with the LungVision system. METHODS This prospective, single-center study was conducted at Rabin Medical Center in Israel. All patients that underwent peripheral pulmonary nodule biopsy with the LungVision system from January 2016 to August 2020 were included. All procedures were performed under moderate sedation. The primary outcome was tissue diagnosis by either identification of malignant cells or benign diagnosis. Secondary outcomes were safety and the added value of cryobiopsy. RESULTS Sixty-three procedures were performed during the study period. Median lesion size (interquartile range) was 25.0 mm (18-28 mm). The diagnostic yield overall was 27/33 (81.8%) and for lesions smaller than 20 mm was 13/18 (72.2%). In nine cases the transbronchial cryobiopsy showed tissue with malignant cells that were not found in any other biopsy material taken with other sampling tools. One patient was treated with a chest tube for a pneumothorax. No other major complications were reported. CONCLUSIONS The LungVision system showed good feasibility and safety for peripheral pulmonary nodule biopsy. The system is compatible with all biopsy tools, including the cryoprobe. Randomized controlled trials are needed to accurately ascertain its diagnostic yield.
Collapse
Affiliation(s)
- Barak Pertzov
- Pulmonary Division, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Evgeni Gershman
- Pulmonary Division, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimon Izhakian
- Pulmonary Division, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Heching
- Pulmonary Division, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai Moshe Amor
- Pulmonary Division, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror Rosengarten
- Pulmonary Division, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mordechai Reuven Kramer
- Pulmonary Division, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|